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Abstract

Asymptotic properties of random graph sequences, like the occurrence of a giant com-
ponent or full connectivity in Erdos—Rényi graphs, are usually derived with very specific
choices for the defining parameters. The question arises as to what extent those parame-
ter choices may be perturbed without losing the asymptotic property. For two sequences
of graph distributions, asymptotic equivalence (convergence in total variation) and con-
tiguity have been considered by Janson (2010) and others; here we use so-called remote
contiguity to show that connectivity properties are preserved in more heavily perturbed
Erdos—Rényi graphs. The techniques we demonstrate here with random graphs also
extend to general asymptotic properties, e.g. in more complex large-graph limits, scaling
limits, large-sample limits, etc.
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component
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1. Asymptotic properties of random graphs

Most asymptotic properties of random graph sequences are derived in a highly regular set-
ting, based on certain precise choices for the defining parameters. This specificity raises the
question of to what extent perturbations of parameters leave said properties intact. For pertur-
bations of the Erdos—Rényi (ER) graph (e.g. [2]), Janson’s seminal paper [6] discusses how
an asymptotic property of one ER graph sequence can be related to that of another, based on
asymptotic equivalence (convergence in total variation) and contiguity [4, 8, 9, 12].

In this paper we propose a more general form of asymptotic congruence called remote con-
tiguity, introduced in [7]. While the conditions inducing asymptotic equivalence or contiguity
can sometimes be too stringent, remote contiguity is applicable more widely. To demonstrate
this, we consider two sequences of random graphs (X") and (Y"), with distributions denoted
by (Py,) and (Q,) respectively. The subscript n denotes the number of vertices in the graph:
we look at graphs that grow to infinite size and study conditions under which some or all of
the asymptotic properties of (X") also apply to (¥Y"), based on uniform tightness of rescaled
log-likelihood ratios of (Q,) with respect to (Py,).
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2 B. J. K. KLEIIN AND S. RIZZELLI

By an asymptotic graph property we mean any sort of limit in probability: the property is
expressed in the form P,(A,) — 0, with some sequence of n-vertex graph events (A4,). In the
case at hand we consider well-known connectivity properties of ER graphs with asymptotically
bounded expected degrees, such as the occurrence of a giant component in the supercrit-
ical regime and O(log (n))-fragmentation in the subcritical regime, as well as asymptotic
connectedness in the less sparse regime of ER graphs with expected degrees that diverge
logarithmically. We also consider the so-called critical window, in which the largest compo-
nent displays asymptotic growth of order O(n*/3). (For an extensive review of random graph
asymptotics and asymptotic properties of ER graphs in particular, see [13]).

1.1. Perturbations of graph sequences

To find laws Q,, for random graphs Y” that share asymptotic properties with the X" ~ P,,, we
can impose the (sufficient) condition that the Hellinger (or total variational) distance between
P, and Q, goes to zero in the limit (asymptotic equivalence, see [6, Definition 1.1]); then
any property of (X") is shared by the graph sequence (¥Y") in the sense that, for any sequence
of n-vertex graph events (4,), P,(A,) — On(A,) — 0. Asymptotic equivalence occurs if and
only if there exists a coupling of Xj, and Y,, such that P(X,, # Y;) tends to zero as n — oo [6,
Theorem 4.2].

Janson argues that asymptotic equivalence is too strong as a condition for the sharing of
asymptotic properties: for example, the giant component occurs in a large family of inho-
mogeneous versions of the ER graph [1], much larger than the subset of all asymptotically
equivalent graphs. Le Cam’s notion of contiguity [8, 9, 10] is a weaker, more appropriate
condition for the sharing of asymptotic properties: (Q) is said to be contiguous with respect
to (Py) (notation Q, < P,) if P,(A,) =0(1) = 0,(A,;) =o(1) for any sequence of n-vertex
events (A,). Janson applies contiguity to sequences of perturbed ER graphs and demonstrates
its wider applicability. (We discuss Janson’s condition for contiguity of inhomogeneous ER
graphs in Section 3.)

The main point of this paper is that contiguity is still too strong if the P, (A,) are known to
converge to zero faster than a certain rate (a,) (rather than just being o(1)). Given a sequence
an | 0, we say that (Q,) is a,-remotely contiguous with respect to (P,) (notation Q, < a,’ P
if

Py(Ap) = o0(an) = On(Ay) =0(1) (D

for any sequence of n-vertex events (A,). Remote contiguity was introduced in [7] for the
frequentist analysis of Bayesian, posterior-based limits, and argued to offer generalization of
contiguity-based statistical arguments, which typically apply in smooth-parametric (e.g. local-
asymptotically normal, see [8]) models, to a much more general (e.g. non-parametric) setting;
see [7, Subsection 3.3]. [3] and [11] use remote contiguity to generalize a consistency conclu-
sion reached for an idealized sequence of data distributions to the general class of sequences
that are realistic for the data in the problem.

To use remote contiguity with sequences of random graphs, we look for sequential models
(P,) for n-vertex graphs with asymptotic properties (A,) and known (ay), as in (1), and analyse
the family of those sequential graph distributions (Q,) that satisfy O, < a;; 'p, to conclude
that random graphs distributed according to (Q,) share the asymptotic property reflected by
the events (A,). It is noted that for many asymptotic graph properties, sharp rates (a,) are
known (see, e.g., [13]).

In Section 2 we briefly review ER random graphs to fix the notation, and we recall Janson’s
condition for contiguity of ER graph sequences. In Section 3 we apply remote contiguity to
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sequences of inhomogeneous ER graphs, compare with Janson’s condition, and formulate a
weaker, Lindeberg-type condition that involves the rate sequence (a,) (which, in most cases,
is not only sufficient but also necessary). In Section 4 we define so-called remotely contiguous
domains of attraction for all the aforementioned asymptotic connectivity properties of ER
graphs. Section 5 summarizes conclusions and discusses possible directions of further research.
Details on remote contiguity are discussed in [7] and summarized in Appendix A.

The ultimate goal of this paper is to convince the reader that remote contiguity provides
a meaningful generalization of the notion of contiguity, applicable to a much wider range
of problems. We remark that, like asymptotic equivalence and contiguity, remote contiguity
compares any pair of sequences of probability distributions, including (but not limited to) the
comparison of ER graph distributions.

2. Homogeneous and inhomogeneous ER graphs

Let G, =([n], E,) denote the complete graph with n vertices, with vertex labels from
[#]:= {1,2,...,n} and edge set E,, (which does not include self-loops; the edge between
vertices i and j is denoted (ij)). Denote the space of all subgraphs of G, by Z;,. The homo-
geneous ER random graph with edge probability 0 < p < 1, a random element of Z;, denoted
X", is ([n], E},) where E|, contains any e € E, independently with probability p. The presence
or absence of an edge ¢ = (ij) from E,, in the graph X" is expressed in terms of (independent)
random variables, X,’} =1or X,’} = 0 respectively. The degree of vertex i is denoted by D;(X™).
We denote the distribution of X" with edge probability p by P, ,. When we speak of an ‘ER
graph (with edge probability p)’, we refer to the sequence of distributions (Pp, ;) as an element
of [1, M'(2,), and we denote the class of all ER graphs as & We generalize from & in two
stages: we distinguish the class 7°C [ [, M Y(%;,) of all homogeneous ER graphs, containing
all sequences (Q,) of the form Q, =P, », for some n-dependent 0 < p, < 1; we generalize
further by considering the class .# C [], M'(2;) of all inhomogeneous ER graphs, in which
the probability for occurrence of an edge may depend on the vertices it connects (see below).

The n-dependence of the (p,) plays a central role for the asymptotic properties of homo-
geneous ER graphs: a prime example is the sequence of ER graphs with edge probabilities
pn=A/n (A <1,r=1and A > 1 characterize the so-called subcritical, critical, and supercrit-
ical regimes). With a slight abuse of notation, we denote the distributions of these graphs with
P;. ». In some cases we also leave room for further n-dependence, e.g. ER graphs Y" ~ P; .

The inhomogeneous ER random graph with edge probabilities 0 < p, ;; < 1for 1 <i<j<
n is ([n], F,,), where F, contains any e = (ij) € E, independently with probabilities p, ;;; we
denote the distribution of the inhomogeneous ER graph Y” with edge probabilities (p, ;j: 1 <
i <j=<n)by Py, ;)n The presence or absence of an edge e = (ij) from E), in F), is expressed
in terms of (independent) random variables, Y. l']’ =lorY l’} = 0 respectively; write Yi’]'- ~ Pp nij
and P, )0 = ]_[i<j Pp n,ij- Of foremost interest to this work are edge probabilities of the form
Dn,ij = Mn,ij/n» for which it is assumed throughout that

Hn,ij

lim sup <1, 2)

n—>00 i N

i.e. that edge probabilities are uniformly bounded away from 1 (compare with the bound p;; , <
0.9 in Janson’s theorem, see Theorem 1). For later reference, we define the parameter spaces
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A, = R"=D/2 for all n > 1, with inner product norm
= talld =D Gy — bmif)*
i<j

In what follows, we examine to what extent known properties of ER graphs, like the occur-
rence of a giant component or a critical window, are shared in the classes of homogeneous
and inhomogeneous ER graphs (like the stochastic block model that is central in network the-
ory). For a general review, see [1]; for more in relation to contiguity, see [6, Examples 3.1, 3.5
and 3.6]; for other possibilities, see [6, Remark 1.6] and [5]. For the following theorem and
lemma, consider two inhomogeneous ER graphs distributed according to P, = Py, ;)» and
On = P(g, ;).n- Restricted to contiguity and transcribed into our notation, Janson’s Corollary
2.12 says the following.

Theorem 1. ([6]) Assume that SUp;_;j Pn,ij < 0.9. If
)2
o PraZ i _ gy 3
iy Pn.ij
then Q, < Py,
(Janson’s Corollary 2.12 also specifies that P, and Q, are asymptotically equivalent if the
sum in (3) is o(1) rather than O(1), but that fact plays no role in what follows.)
3. Remote contiguity of inhomogeneous ER graphs
The application of remote contiguity to the ER graph involves sufficient conditions

(considered in Subsection 3.1) and necessary conditions (considered in Subsection 3.2).

3.1. Sufficient conditions for remote contiguity of ER graphs

To extend the results of [6] to remotely contiguous random graphs, consider the likelihood
ratio with observation Y”, which is that of %n(n — 1) independent Bernoulli experiments:

4P ) _ I (p,,,ij>Y::’/’- (1 _pn,ij)l—Yi'}
d0n

1<i<j<n dn.ij 1- In.ij

l_[ ( DPn,ij 1 _Qrt,ij>Y’j<1 _pn,ij>
1 —DPn,ij  Yqn,ij 1- qn,ij

1<i<j<n

i<j

where

(1 — .. 1— ..
ky i =1log (—qn'l]( pn’lj)), In,ij =1log (—qn’lj)
pn,ij(] - ‘In,ij) 1 — Pn,ij

Before stating the lemma, we note that the Kullback—Leibler divergences of P, with respect to

0Oy, equal
dpP
dQn = Z (kn,ian,ij + ln,ij) > 0.
n

i<j

—Eg, log
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Lemma 1. If we write A, = —Eg, log (dP,/dQ,) + log (a,), and for every € > 0 there is an
M > 0 such that, for large enough n,

o (Z nif (Y} — i) > log (M) — An) <e, 5)
i<j
then O, < a;an.

Proof. Consider the application of Lemma 8(ii) to the likelihood ratios (4), with Y ~ Q,,.
For given € > 0, let M > 0 be as in (5); then

On ( Z (kn,in;} + ln,z]) + IOg (an) > IOg (M)> <E€,

i<j
which we may rewrite as Q,(a,((dP, /dQn)(Y"))_1 > M) < € for large enough n > 1. U

Clearly, of primary concern is the connection with [6]: the following proposition illustrates
how Janson’s Corollary 2.12 (represented in abridged form in Theorem 1) relates to remote
contiguity.

Proposition 1. Assume that sup;_; pn.;j < C/(1 + C) for some C > 0, and that Janson’s condi-
tion (3) holds. Then Q,, < a;an for any a;, — 0.

Remark 1. The assertion of Proposition 1, O, <a, lp, for any rate ap, is equivalent to
contiguity, Q, <1 P,, the assertion of Theorem 1.

Proof. According to (5), remote contiguity revolves around the control of tail probabilities
for the sequence ij kn, ij(Yg — ¢gp,j)- A sufficient condition for uniform tightness is

2
Eo, ( > k(Y — qn,l-ﬂ) =0(1),

i<j

. 2
which we prove below. Note that Eg, ( iy hnif (V] — dnij)) = i k,zl’ijqn,ij(l — gn,j), and

that
2
log <M) log (1 — q"Jj) }
Dn.ij I — pn,ij
2 2
.e 1 _ ..
S4<log <@>> +4<10g (—q’“f)) :
Pn,ij 1 — Pn,ij
using the inequality (log ())? <(y — 1)?/y for y > 0 either with y = gy, ;j/pn,;j or with y =
(1 = gn,i))/(1 — pn,j), we obtain

2 2
2, <4(M_1> Pn»if+4<1—qn,u_l) L= Pui

’

K <4max{

n,ij —

i = Pn,ij qn,ij 1 — Pn.ij 1— qn,ij
_ 4(pn,ij - Qn,ij)z L T 4(pn,ij - Qn,ij)z 1
Pn.ij qn,ij 1 — Pnij 1- qn,ij
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Substituting and using that sup; _; py,ij < C/(1 + C), we find

P — i)’ (Poij — nip)
Z ki iian,ii(1 = gn.ij) <4 Z L (1= g +4 Z L g
Pn,ij 1 — Pn,ij

i<j i<j i<j

(Pn ij —4qn ij)2

<41+0)). e
n.y

i<j

and under Janson’s condition (3) the term on the right-hand side is O(1). In addition, in view
of the inequality log (y) < (y — 1) for y > 0, we have

dpP q 1 —qni
_EQn log ﬁ = Z log ( “ l]) qn,ij + ZIOg (l—nl]>(1 - Qn,ij)
n .

Pn,ij i< — Dn,ij
q —q
<Z<nl]_1>qnu+z< — nl] >(l_qn,{/)
i<j Pn.ij i<j Prij

_ Z (Gn,ij — pn, lj) <+ C)Z (qn,ij pn,ij)Z.
Pn, 1/(1 — Dn, z/) Dn.ij

i<j i<j

Under Janson’s condition (3) the term on the right-hand side is O(1). Consequently, —A,, — oo
for any a, — 0. Together with the uniform tlghtness of the sequence of sums ), _: i (Kn, ,]Y +
In,ij), this leads to remote contiguity O, < a,; Lp, for any a, — 0. U
This contiguity proof, however, does not exploit the presence of a sum of independent com-
ponents to the full extent. To sharpen the argument, we normalize the sums appropriately and

impose sufficient conditions for remote contiguity. In this case the contributions to sums are
independent, and the appropriate normalization constants are

5p= Z iy iian.ii(1 = Gn.ij)
i<j

for all n> 1, as per Lindeberg’s theorem. To illustrate how conditions for remote contigu-
ity weaken those for contiguity, we note that Janson’s condition (3) implies that sﬁ remains
bounded, whereas in Lemma 2 sﬁ may diverge.

Lemma 2. Assume that s,, < oo for every n > 1, and s,, — 00. Suppose that, for every € > 0,
2
Z EQn n lJ ij q"’ij) l{kn,ij|y,{}*¢1n.ij‘>55n}) — 0. (6)
” i<j

Then Q, < a;lP,, for any (ay), a, | 0, such that

1
— ( Z(kn,ij%l,ij + ln,ij) + 10g (an)) —> —0OQ. @)

Sn —
i<j

Proof. Apply the Lindeberg—Feller condition of Theorem 5 to (5), s,-normalized sums con-
verge weakly to the standard normal distribution if (6) holds. Note that, under condition (7), we
have —A,, /s, — 00, and we conclude that, for every € > 0 and any choice for M > 0, condition
(5) holds for large enough n. U
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3.2. Necessary conditions for remote contiguity of ER graphs

Next, we argue that, when (6) holds and s;,, — oo, then (7) is also a necessary condition for
remote contiguity at rate a,,.

Lemma 3. Assume that s, < oo for every n>1 and that s, — 0o, and suppose that (6) is
satisfied for every € > 0. Then (7) is necessary for Q, < a, P, to hold.

Proof. For every n > 1, let v, be a measure that dominates both P,, and Q,, (e.g. v, = (P, +
0n)/2) and define p, =dP,/dv, and g, =dQ,/dv,. Let (a,), (b,) be such that a,, b, > 0,
a,, b, | 0, and s;l log (b,) — 0. Define C,, = {y" € Zu: gu()") > pr ") /(anby)}. It is imme-
diate that P,(C,) < an anbng, ") dv, ") < apb, 0, (Cy) = 0(ay). For any n > 0 and n large

enough, we find
On(Cy) = On| anbn| —X») >1

dQy
0 (Z,-<,- knig(Vf — ani)  —log (bu) _ Au )
Sn Sn Sn
>0y (ij ik R n— ﬂ>,
Sn Sn

since — log (b,)/s, — 0. If (7) does not hold, lim,,_, o A, /s, > —00, so that, for some M > 0
and all n large enough,

ij kn,ij(Yir;' = qn,ij)

Sn

Qn(Cn)EQn( >77+M>-

By Theorem 5, ij kn,,-j(Y;} — qn,ij)/Sn converges weakly to a standard normal distribution.
Then lim inf,,_, oo On(Cy) > 0 and (Qp,) is not a,-remotely contiguous with respect to (P,). We
conclude that (7) is necessary for remote contiguity at rate (a;). O

To estimate whether sequential data (Y"), Y" € 2, was generated by (P,) or by (Qn),
statisticians use (randomized tests based on) test functions ¢, : 2, — [0, 1]. A test function is
considered (minimax-)optimal if it minimizes the sum of type-I and type-II errors:

Ta(Pn) = EPn¢n(Yn) + IEQ,I(I - (bn(Yn))

As it turns out, there is a general upper bound for r,, in terms of the Hellinger affinity «(P,, Q)
between P, and Q,;:

inf7,¢) < /ZV OG0 A (= a(Pa. On)),

and the likelihood ratio test function minimizes 7, (see also [9, Section 16.4]). Clearly, if there
exists a sequence (¢,) such that 7, (¢,) = o(1), then (P,) and (Q,) are not contiguous.

To reason likewise regarding a,-remote contiguity, consider an a,-weighted version of 7,
7} (pn) = a;lEpn ou(Y") +Eg,(1 — ¢,(Y")). Reasoning the same as in the contiguous case, we
find the following correspondence between testability and remote contiguity.

Lemma 4. [f there exists a sequence (¢,) such that 7t (¢,) = o(1), then the sequences (P,) and

(Qn) are not ay-remotely contiguous. This is the case whenever a(P,, Qn) = o(a,]/ 2).
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Proof. For every n > 1, the likelihood ratio test function, defined for all y* € 2}, by ¥,(y*) =
1¢4,>a, p,}(/"), minimizes 7,,. Suppose that there exists a sequence (¢,) such that 7, (¢,) =
o(1). Then 7}, (,) = o(1), so there are events A, = {y": g,(;") > a, p,(y"")} such that P,,(A,,) =
o(ay), but Q,(A,) — 1, showing that (P,) and (Q,) are not a,-remotely contiguous. We note
the following upper bound for 7,

s (%)—lnfﬂ (¢)—f (" )dvn(yn)"‘/ gn(Y") dv, (")

{qn>an pn} {gn=<an pn}

/ an Pn(yn)qn(y") dv, (")
{qn>an pn}

+ f Van a0 O™ dva6") < a2 (P, Q).
{(In <ap 1711}

where the last bound holds for large enough n. O

In the proof of Lemma 3 we change the argument of Lemma 4 slightly (through the inclu-
sion of a separate sequence b, | 0), but the essence is the same: the existence of certain test
sequences precludes remote contiguity.

In the case of n-vertex ER graph distributions, the Hellinger affinity is equal to the prod-
uct of the Hellinger affinities for each of the independent, Bernoulli-distributed random
variables Ylf}:

a(Pu. On) = [ | (VPnig @i + v/ = Pri)1 — @ y). ®)

i<j

3.3. Perturbations of ER graphs

Lemma 2 formulates a condition that delimits the range of applicability for remote con-
tiguity in terms of a Lindeberg-type condition involving the sequence of Kullback-Leibler
divergences. In this section we simplify that condition with sufficient conditions formulated
directly in terms of the defining parameters of the ER graphs.

Lemma 5. Choose qy jj = An,ij/N, Dn,ij = n,ij/n With 0 < Ay jj, iy ij <n, and define P, =
P(pn_l.j),,,, 0, = P(qn’,.j),,,for alln>1andall 1 <i,j<n. Assume that

U, S A i — )2
Fp = sup |Mn,tj n,t/| -0, R, := ( n,ij l/«n,z]) =

)
i<j  Hnjj prl N U )

Then Q, < a;an if and only if a, = o(exp (— Ry)). If; instead, R,, = O(1), then Q) < P,.

Proof. Let n> 1 be given. Using the inequality log (1 + x) <x, valid for any x > —1, we
estimate the Kullback-Leibler divergence as follows:

11—
IEinog?(Y")_Zlog an])‘]nlj"'zlog(] qnl])(l n,ij)

i<j Yy i<j Yy
= Z |: ny log (1 + —_Mn’ij)
i<j M"’U
+2_log (1 _ G — i/ “"’”)/”> (1 - M)}
i<j 1- Mn,ij/" n
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<Z nl/ //an/()\nt/_l_kn,ij/n>

Mon,ij 1 _,un,lj/”

i<j
_ Z <1 i Mn,ij/n ) ()"}’llj - H«n,ij)2 _ ()\n,ij - ll»n,ij)2
iz 1—- Mn,ij/n Nfdn,ij iz ,un,ij(n - Mn,ij)

Note that, by (2), (9), and the expansion log (1 + x) =x + O(x%) (x — 0), we have
k2 <10g <)Ln,ij 1 _N«n,ij/”l))2
e M 1= Anj/n
_ <10g (1 + )\n,ij - Mn,ij) _ log (1 . ()\n,ij - l/Ln,ij)/n>>2
Mn,ij 1- Mn,ij/n

(e ()
- n
Mon,ij 1- Mn,ij/n

forall 1 <i<j<n,and
n.ij <1 B An,z:/)
n n

_ Mon,ij (1 + )\n,ij - Mn,ij) <l _ Mon,ij (1 + )\n,ij - Mn,ij))
n Mn, ij n /J'}’l,l'j

= £od (1 B4 0 ).

Qn,ij(l - Qn,ij) =

\_/

As a consequence of these two displays, we have

Sn= Z kﬁ,iﬂn,ij(l ~ 4qnij)

i<j

A — N\ 2 1
_ Z ( n,ij Mn,l]) < +0( n)) Mn, Hn,ij <1 Mn, Hn,ij T 0(}”,1)>
— Hon,ij 1 — wn,ij/n n

i<j

=2M(1+(1 “’“’)0( n)) (14 0(r))
i<j /in,ij(n - Mn,ij)

Anij — ni'2
(4ot Y G ZHna)

Mn,ij(n - Mn,ij)

i<j

Condition (7) is then satisfied for any a, such that lim sup,,_, ., R —1 . log (a,) < —1. It remains
to verify condition (6). To that end, consider, for any €, § > 0,

2
Z]EQn n, lj qu,ij) l{kn,tj|yg*qn,lj|>55n})

" i<j

8 246
s > Eg, lkn i P 1Y] = guil*t

l<J

oy 2_,’_5 Z &, lj| CIn (1 — qn, l])((l — qn, l])1+8 +qy11J,r18)

i<j
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1 2
=< 68S—2+5 ||kn||800,n Z kn,ijqn,ij(l = qn,ij)
n

i<j

1 [ Nkalloon \° o\’
:6_5< . SO W —)0,
n Rn

implying that condition (6) is satisfied. All the assumptions of Lemma 2 are thus fulfilled and
an application of the latter, along with Lemma 3, yields the first result.
If we replace the hypothesis R, — oo with R,, = O(1), we have

dp,
—Eo, 1 Y =O(R,) =0(1).
0, log 5 (") = OR,) = O(1)
The hypothesis R, = O(1) also implies that s% = (14 o0(1))R, =0O(1) and, in turn, uniform
tightness of the sequence ij kn,,‘j(Yg — qn,ij), 80 that O, < P, O

Remark 2. The uniform convergence assumption r,, — 0 in (9) is not strictly necessary to have
a,ijn > O, for all rate sequences a, = o( exp (— Ry)). At the cost of a more involved proof,
the results of Lemma 5 can be extended to more general cases such as where 7, is suitably
bounded from above but not necessarily decaying to 0. However, assuming r, — 0 does not
appear overly restrictive, since it does not preclude, for example, increasing variance of log-
likelihood ratios log (dP,/dQ,) (unlike (3)) and diverging L, distances ||i, — Anlln,p, With
1 <p<oo.

The following results give examples of applications of the previous lemma to inhomoge-
neous and homogeneous perturbations of a homogeneous ER graph.

Corollary 1. (Homogeneous perturbation of the ER graph.) Choose qy,ij = Au/n, ppij=A/n
withQ <A, <n, 1 <i,j<n, and define P, = P(pn,ij),m 0,= P(qn.ij),,,for all n > 1. Assume that
An = A Ifn(h — Ap)? — o0, then Q, < a;lP,, if and only if

n 2
an :0<exp (—ﬁ(kn —A) ))

If instead n(A, — 1)*> = O(1), then Q,, <1 P,,.

Proof. We have r,, = |A,, — A|/X and, as n — o0,

NOYE R (g — 1)
Rn—<2>m—§(l+0(n ))T.

Then the result follows immediately from Lemma 5. U

Corollary 2. (Inhomogeneous perturbation of the ER graph.) Choose qy jj = Ap,ij/N, Pn,ij =
A/mwithQ <A, <n, 1 <i,j<n, and define P, = P(pn,ij);n’ 0,= P(q,l,,-j),nfO" all n > 1. Assume
that ||y — Mloc,n = o(1). If also n= || A, — A3, — oo, then Q, < ay 'P, if and only if

( ( 1A —kllin»
ap =o0| exp ——)\‘ .
n

If instead n™" (|3, — All3,,, = O(1), then O, <\ Py.
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Proof. The result follows immediately from Lemma 5 when we note that r, =||A, —
Alln.co/A and that

I2n = 213, l2n = 2113
Ri=— =" —(14+0mn ) ——2"  asn— .
n A —2) (I+0m 7)) P n O

4. Connectivity properties of ER graphs

In this section we collect several well-known properties of ER graphs and examine their
so-called remotely contiguous domains of attraction, the families of perturbed homogeneous
and inhomogeneous ER graphs that maintain connectivity properties like the occurrence of a
giant component, n%/3-scaling of the giant component at criticality, O( log (n))-fragmentation,
or full asymptotic connectedness through remote contiguity.

4.1. The giant component in the supercritical ER graph

As was first shown in [2], every supercritical ER graph contains a giant component, i.e. a
sequence of connected components in X" containing a non-vanishing fraction of all vertices,
with probability growing to 1. More precisely, we have the following theorem.

Theorem 2. For every A > 1, v € (%, 1) there is a §(A, v) > 0 such that
Pyn(||%max| — &an| > n*) = O(n=**), (10)

where §), is the survival probability of a Poisson branching process with mean offspring .

For a proof of this classical result (and the specific way in which §(A, v) depends on A and v)
see, for example, [13, Theorem 4.8].

To generalize the occurrence of a giant component, we set conditions for sequences of laws
(Qn) of ER graphs such that, for some 0 < § < §(x, v),

0y <A1’ Py . (11)

Let 2(A, ) denote the collection of all sequences (Q,) in [ [, M L) satisfying (11). In all
those cases, a giant component containing an asymptotic fraction ¢ of all vertices occurs (to
within order n"” vertices). For given A > 1 and v € (%, l), the sequences (Q,,) for which (11)
holds for some 0 <& < 8(%, v) is the union 2(x, v) = J{2(X, §):0 < § < (%, v)} and, for
given A > 1, the union over all v contains the cases in which a giant component containing
a fraction ¢, occurs (to within some negligible n"-fraction of the vertices). We call 2(1) =
U{Q(A, v):ve (%, 1)} the remotely contiguous domain of attraction for the occurrence of a
glant component containing ¢ n vertices. Ultimately, the union 2 = U{Z2()A): A > 1} forms a
class in which a giant component (containing some asymptotically non-vanishing fraction of
all vertices) will form with probability growing to 1. We refer to that class as the remotely
contiguous domain of attraction for the occurrence of a giant component.

Example 1. (Homogeneous perturbation of supercritical ER graphs.) For some A > 1 choose
P, =P, and Q, =P, ,, with A, — A. For any choice % <v<l,let0<d <68(A,v) asin
Theorem 2 be given.

As we have seen in Corollary 1, R, = %nk‘l (14 0(n~HY)(n, — M2, so to render the rate ay,
in definition (1) high enough to cover the probabilities for occurrence of a giant component,
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cf. Theorem 2, we choose

A = (1 + %log(”)y, (12)

n

so that R, =(1+ O ")8log(n). Then n(x, —1)> — oo and n°*Y) =o(exp (— Ry)).
Therefore, by Corollary 1, we can conclude that, for all homogeneous X,-perturbations of
the ER graph sequence of the form (12), a giant component containing an asymptotic fraction
g, of the vertices occurs to within order-n" vertices, Pkn,11(| |G max| — {,\ni > n”) =o(1), since
(10) ensures the occurrence of such a giant component at A > 1. We may therefore characterize
the class of homogeneous ER graphs in the remotely contiguous domain of attraction for the
occurrence of a giant component containing ) n vertices as

an20= | {(Pw) € A (hy —1)* <21 8(x, v)
ve(l/2,1)

log (n) a1
n 9 p— 9

and the class of homogeneous ER graphs in the remotely contiguous domain of attraction for
the occurrence of a giant component as J#N 2 = | J{oN 2(1): 1 > 1}.

Example 2. (Inhomogeneous perturbation of supercritical ER graphs.) Denote by Zo the
class of inhomogeneous ER graphs obtained via uniform perturbations of a homogeneous ER
graph Py ,, with A > 0, i.e. the class of ER graphs with edge probabilities g, ;; = A, ;j/n satis-
fying sup;_; [An,;j — 2| — 0 for some A > 0. In an analogous fashion, resorting to Corollary 2,
we can characterize the class of uniformly perturbed inhomogeneous ER graphs in 2(1), with
A>1,as

IuN200= | {Pu,pn) €It Y =2 <28, v)nlog(n), n>1¢,
ve(l/2,1) i<j

and the class of uniformly perturbed inhomogeneous ER graphs in the remotely contiguous
domain of attraction for the occurrence of a giant component as

TN 2= {Fecn20): 2> 1}.

4.2. Fragmentation in subcritical ER graphs
Define I, = A — 1 —log (A) for 0 < A < 1, that is, for the subcritical regime of the ER graph.

Theorem 3. For given 0 < A <1 and every a > I, there exists a § =8(a, ) > 0 such that
Px,n(|%max| >alog (n)) = 0(n~?%). Moreover, for any a < I_l, there exists an n =n(a, A) >0
such that P,\,n(|<€max| <alog (n)) =0m™ ).

For a proof of Theorem 3, see, for example, [13, Theorems 4.4 and 4.5]. To prove that the
largest connected component in other random graph sequences has cardinality lying between
two multiples of log (n), we again require (11) for some 0 <§ < min (8(a, 1), n(d’, 1)) =:
{(h,a,d)and0<a<I, ' < &'. We thus define the remotely contiguous domain of attraction
for fragmentation into clusters of maximal cardinality /, ! log (n):

20, a.d)=|J {20, 8): 0<5 < (. a,a)}.
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The union over all 0 < 2 < 1 and 0 < a < I;-a’ < oo forms the remotely contiguous domain of
attraction for fragmentation into clusters of maximal cardinality of order log (n):

f:U{Q(k,a,a/):0<k<l, 0<a<1;1<a’<oo}.

Example 3. (Homogeneous perturbation of subcritical ER graphs.) Following reasoning
similar to Example 1 and applying Corollary 1, we characterize the class of ER graphs
with maximal connected component of order log (n), which are obtained by homogeneous
perturbations of a subcritical graphs with 0 < A < 1, as

ﬂ)»):U{(Pkn,n)G%: O<a<I'<d <o,

Gon = 12 <202 Chsa, ) 28D s 1}.

n 9
And we define the homogeneous part of the remotely contiguous domain of attraction for
fragmentation into clusters of maximal cardinality of order log (n) by -ZN 5= Ug<) <1-ZAN).

Remark 3. Example 3 can be extended to inhomogeneous perturbations by application of
Corollary 2. We leave the details to the reader.

4.3. Maximal connected components in the critical ER graph

It is well known that the largest connected components in a sequence of ER graphs at
criticality (A = 1) have cardinalities of order O(n*/3). In fact, there exists a so-called critical
window of O(n~'/3) homogeneous perturbations around A = 1 for which this critical behaviour
of the largest connected component remains valid.

Theorem 4. For some 0 € R, everyn> 1, and all 1 <i <j <n, define A, ;j=x, =1+ on~1/3,
There exists a constant b = b(0) such that P,\mn(a 13 < |Gnax| <a™! n2/3) >1—ba for all
a< 1.

For a proof, see, for example, [13, Theorem 5.1].

We now examine to what extent the remotely contiguous domain of attraction for occurrence
of a maximal connected component of order (approximating) n*/3 around the critical point A =
1 coincides with the perturbations of order n~!/3 in the parameter A that Theorem 4 guarantees.

To reformulate the question: for some %, — 1, define the homogeneous ER graphs Y, dis-
tributed according to Q, = Py, n. Pn = P1., and analyse the requirement Q, < w,P, for any
rate a, = 1/wy.

To render the assertion of Theorem 4 at A = 1 amenable to extension by remote contiguity,
we have to make a choice for a sequence a, — 0: applied to A = 1, Theorem 4 guarantees that
there exists a constant b = b(0) > 0 such that

Pl,n(|‘€max| < aun®? or |G max| > an_lnzﬂ) <bay. (13)

We examine the family of perturbed ER graphs that displays the same a,-adjusted critical
maximal cluster size of order n%/3.
The choice for (a,) is of great influence on the maximal permitted perturbation |1, — 1|.

Lemma 6. Let A, — 1 as n — 0o, such that A, — 1 = O(n~'/3); then there exists a constant
A > 0 such that a(Py,, n, P1,n) =Aexp (—%n(kn — 1)2) + o(1).
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Proof. For Q), = P, n, Pn = P15, the Hellinger affinity (cf. (8)) is given by

' 1 ) 172\ ®)
a(PnaQn)=< " +<1—;()\n+1)—|—;) )

_ 12 G
=<1+(1+<An ) _xn+1+0(n_2)>
n 2n
1+ 10m -1 =10, —1)? 2
=(1+ LA —*”;1+o<n—1<xn—1)3>+o<n—2))

—1)2 6]
- (1 B o - 1) + O(n—2>) 2
8n
=exp (—%n(kn — 1?4+ 00 — D)+ 0(1))
_ 1 2
=Aexp <—En(kn -1 > + o(1)

for some constant A > 0. O

A slightly more detailed version of this proof shows that, whenever A, — 1 = o(n~!/?), the
representation of a(Py,, », P1,,) in Lemma 6 holds with A =1 and therefore P;, 1 < Pj ,, in
which case remote contiguity applies with any a, decaying to 0. For example, for some small
€ > 0 and the choice a, =n~¢, we find that

Pryn(1%max] < 1?7 or [ax| > n*37€) — 0. (14)

On the other hand, in light of Lemma 3, if n|), — 1|2 goes to oo fast enough, that is,
if a,(Py,.1, P1,n) = o(a,ll/z), (P;,,) is not a,-remotely contiguous with respect to (P1 ,). For
example, for some small € > 0 and the choice a, =n~¢, we find that if

g — 1)
lim inf ——
n— 00 log (n)

> 8¢

then (P,,,) is not n~€-remotely contiguous with respect to (P1,). An application of
Corollary 1 allows us to further refine the requirement by imposing a, = o(exp (— n(x, —
1)2/2)). For example, if we choose a, to decrease as log (n)~!, then the above shows that
remote contiguity limits the perturbation to be of smaller order than +/log (log (n))/n.

Unfortunately, remotely contiguous domains of attraction for near-critical maximal cluster
sizes (for example, those intended in (14)) have an extent of order (n! log (n))'/ 2 not the order
n~1/3 that occurs in Theorem 4. So remote contiguity does not cover the entire range of possi-
ble perturbations that preserve near-critical maximal cluster sizes. If we impose perturbations
proportional to n~'/3, requiring remote contiguity leads to exponential rates a, ~ exp (— n'/3),
which overwhelms the polynomial factor in assertion (13).

This illustrates a limitation that is important to point out: remote contiguity makes no dis-
tinction between asymptotic assertions, other than by rate: as long as the probabilities P,(A,)
converge to zero fast enough, cf. (1), remote contiguity asserts Q,(A,) = o(1) without regard
for the further details involved in the definition of the events A,,. In the case at hand, when we
ask questions regarding the size of the maximal cluster, there are properties very specific to
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homogeneous ER graphs at criticality that enable n~!/3-proportionality of the critical window.

Lemmas 4 and 6 demonstrate that there are other asymptotic assertions (B,,) with probabilities
P1.n(By) of order o(ay,) but with probabilities P, o,-1/3) ,(Bx) that do not go to zero.

4.4. Asymptotic connectedness in ER graphs

Recall that any homogeneous ER graph with edge probability A,/n is disconnected with
high probability if limsup,_, ., A, <oo (see, e.g. [13, Section 5.3]). The results of this
subsection apply to ER graphs with diverging (1,), typically of O(log (n)).

Lemma 7. Let A, — 00 as n— oo. If A, —log (n) - —oo, then P, ,(€max is connected) =
O\y/(n— Xy)) =0(1). If, instead, X\, —log(n)— oo, then P, ,(€max is disconnected) =
o174

Proof. The first result is a direct consequence of the first inequality in [13, Proposition 5.10,
(5.3.25), (5.3.26)]. As for the second result, with A = min (A,, 2 log (n)),

P;,, n(6max is disconnected) <1 — P;;;,n(%max is connected).

The conclusion follows by using [13, (5.3.14), (5.3.21)—(5.3.24), (5.3.27)] with A = A}. U

Example 4. (Connectivity in inhomogeneous ER graphs.) Consider an inhomogeneous ER
graph with edge probabilities g, ;; = ¢y ;j log (n)/n. A sufficient condition for such a graph
to be asymptotically connected is the existence of a suitable sequence (d,) with d,, > 0,
liminf,— 5 d,, > 1, and lim,,_, o d), log (n)/n < 1. To see this, also assume that

. 2
@£_4+Q tim sup 201 21— 1

sup;_;
pl<] dy n— o0 dn(l’l - IOg (n)) 4

Then the assumptions r, = o(1) and a,, = o(exp (— R;)) of Lemma 5 are satisfied, with p, ;; =
d, log (n) and a, =n"° for some 8§ < %. Hence, Q, < n®P,, where P, is the distribution of
the homogeneous ER graph with edge probability d,, log (n)/n. By Lemma 7, the latter has a
probability of not being connected of order O(n~'/#), thus entailing that

Q,(Gmax is disconnected) = o(1)
as n — 0o by remote contiguity.

5. Conclusions and discussion

We have attempted to highlight how remote contiguity can be used to generalize asymptotic
properties, much like asymptotic equivalence and contiguity, but with a wider range of appli-
cability. In particular, we have shown that remote contiguity can be applied to the connectivity
properties of ER graphs in various regimes of edge sparsity. Conditions are formulated for the
defining parameters of the random graph enabling remote contiguity and the generalization of
asymptotic properties.

It is expected that remote contiguity proves helpful for the generalization of other asymp-
totic random graph properties. For example, it is known that the degree sequence of ER graphs
distributed according to P;_,, for some A > 0 converges to a Poisson distribution. We now write

pe=e"*Ak/k!, k> 1, and P,((")(X”) =n"1 3" | 1p,cxm = for the empirical degree distribution.
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Proposition 2. For any . > 0 and ER graphs X" ~ Pj p,
P max IP{(X,) = pil > ) = O(1 /(ne ) (15)

as n — oo, for any &, | 0 such that ne;,, — o0.

Proof. The result in (15) follows immediately from the inequality

Z |EP)\.)1 (P](gn)(X”)) _Pk| < 28,1,
k>0

valid for all large n, and [13, (5.4.17)]. O
Application of remote contiguity enables the following generalization.

Corollary 3. For any ER graph Y" of law Qy = P, ;.0 satisfying sup;_; |An,ij — Al = o(1) and
g i — A% < nAd log (ne2) with0 < 8 < 1 as n— oo,

0n(max [P = pi| > 1) = o(1).

Proof. The result follows immediately from (15) and an application of Corollary 2. (]

More ambitious forms of generalization are conceivable. For example, we could consider
the so-called preferential attachment graph, which displays a degree distribution with heavy
tails asymptotically (see [13, Theorem 8.3]). Dependence of edges makes the analysis more
demanding technically, but the machinery of remote contiguity continues to apply. Thus we
can study the extent to which the model of [13, (8.2.1)] may be perturbed without influencing
the asymptotic tail behaviour of the degree distribution.

But the application of remote contiguity is not limited to random graphs; generalization of
any asymptotic property in any sequence of probabilistic models can be analysed with remote
contiguity. To illustrate this, we note that for two sequences (P,) and (Q,) on measurable
spaces (2, %), we have O, < a;; Lp, if for every € > 0 there exists a § > 0 such that

dpP,
Qn(dQn < 8an> <€

(or, equivalently, if every subsequence of (a,(dP,/dQ,)"!) has a weakly converging sub-
sequence). Lemma 8 gives a variety of general conditions to establish remote contiguity,
analogous to Le Cam’s First Lemma [9, Chapter 3, Section 3, Proposition 3]. Moreover, the
arguments of Subsection 3.2 are fully general, so there are also general conditions to exclude
remote contiguity, for example if the Hellinger affinity decreases to zero fast enough:

a(Py, On) = 0(a)/?).

We therefore express the hope that remote contiguity can be applied in more general examples
besides random graphs, in a role that generalizes the role of contiguity.

Appendix A. Remote contiguity

Remote contiguity was introduced in [7] to demonstrate that asymptotic properties of
Bayesian posterior distributions can be lifted to frequentist statements of asymptotic con-
sistency, hypothesis testing, model selection, and uncertainty quantification. For another

https://doi.org/10.1017/jpr.2025.10029 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10029

Remotely contiguous random graphs 17

statistical example in the setting of extreme value theory, [3, 11] use remote contiguity to
prove consistency with respect to relatively complicated true data distributions by simpler,
approximating sequences of max-stable distributions.

Here and elsewhere, M'(.2) denotes the collection of all probability measures on a
measurable space (2, %).

Definition 1. Given measurable spaces (£, %,) with two sequences of probability measures
Pn, 0, eM'(Z;) forall n>1, and a sequence p, | 0, we say that Q, is p,-remotely con-
tiguous with respect to P, notation Q,, < ,o;an, if P, (X™) = 0(py) = Onpn(X™) = o(1) for
every sequence of %,-measurable ¢,: 2, — [0, 1].

Given two sequences (Py) and (Q,), contiguity P, <1 Q, is equivalent to remote contiguity
P,<a;'Q, foralla, | 0.

The following is the remotely contiguous analogue of Le Cam’s First Lemma [9, Section
3.3, Proposition 3].

Lemma 8. Let probability measures (Py,), (Qy) on measurable spaces (2, $By) and ay, |, 0 be
given. Then O, < a;an if any of the following hold:

(i) For any bounded, %,-msb T,,: %, — [0, 1], a;lT,, i) 0=T, 2"—) 0.

(ii) For any € > 0, there is a § > 0 such that Q,(dP,/dQ, < § a,) < € for large enough n.
(iii) There is a b > 0 such that lim inf, ba;an(dQn/dPn >b a;l) =1

(iv) For any € >0, there is a constant ¢ > 0 such that |Q, — O, A ¢ a;anH < € for large
enough n.

(v) Under Q,, every subsequence of (a,(dP, /dQn)’l) has a weakly convergent subse-
quence.

Remark 4. For any measurable space (.2, %), the definition of (dP/dQ)~!: 2 — (0, ool
x+— 1/(dP/dQ(x)) is Q,-almost sure: given a (sigma-finite) measure v that dominates both
P and Q (e.g. v=P+ Q), write dP/dv=p and dQ/dv =gq. Then the measurable map
p/q1lyg=0y: Z— [0, 00) is a v-almost everywhere version of dP/dQ, and g/p 1(40y: Z —
[0, o] defines (dP/dQ)’l Q-almost surely.

Characterization (v) provides the most insightful formulation, relating remote contiguity to
weak convergence of rescaled likelihood ratios, cf. [9]. In most applications, characterization
(ii) is the most practical to demonstrate remote contiguity.

Appendix B. The Lindeberg—Feller theorem

In its most basic form, the Lindeberg—Feller theorem formulates a condition for the conver-
gence of sums of independent (but not necessarily identically distributed) random variables to
a central limit. There exist versions for dependent random variables too. A triangular array
consists of a sequence (k(n)) that increases to infinity, and random variables X, x, where n > 1
and 1 <k <k(n).
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Theorem 5. For each n> 1, let X, , 1 < k < k(n), be independent, with expectations (i, x € R

and variances 0’12’ < 0. With s,% = ZZ(:"; 03’ © assume that, for every € > 0,

k(n)

2
2 Z E1 X0k — k711X, 4~ i > €50} = O-
n =1

Then s,-normalized, i, k-centred sums converge weakly to the standard normal distribution,

1 k(n)

—W.
- E X,k — Mn) —> N(O, 1).
" k=1
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