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Abstract

Asymptotic properties of random graph sequences, like the occurrence of a giant com-
ponent or full connectivity in Erdös–Rényi graphs, are usually derived with very specific
choices for the defining parameters. The question arises as to what extent those parame-
ter choices may be perturbed without losing the asymptotic property. For two sequences
of graph distributions, asymptotic equivalence (convergence in total variation) and con-
tiguity have been considered by Janson (2010) and others; here we use so-called remote
contiguity to show that connectivity properties are preserved in more heavily perturbed
Erdös–Rényi graphs. The techniques we demonstrate here with random graphs also
extend to general asymptotic properties, e.g. in more complex large-graph limits, scaling
limits, large-sample limits, etc.
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1. Asymptotic properties of random graphs

Most asymptotic properties of random graph sequences are derived in a highly regular set-
ting, based on certain precise choices for the defining parameters. This specificity raises the
question of to what extent perturbations of parameters leave said properties intact. For pertur-
bations of the Erdös–Rényi (ER) graph (e.g. [2]), Janson’s seminal paper [6] discusses how
an asymptotic property of one ER graph sequence can be related to that of another, based on
asymptotic equivalence (convergence in total variation) and contiguity [4, 8, 9, 12].

In this paper we propose a more general form of asymptotic congruence called remote con-
tiguity, introduced in [7]. While the conditions inducing asymptotic equivalence or contiguity
can sometimes be too stringent, remote contiguity is applicable more widely. To demonstrate
this, we consider two sequences of random graphs (Xn) and (Yn), with distributions denoted
by (Pn) and (Qn) respectively. The subscript n denotes the number of vertices in the graph:
we look at graphs that grow to infinite size and study conditions under which some or all of
the asymptotic properties of (Xn) also apply to (Yn), based on uniform tightness of rescaled
log-likelihood ratios of (Qn) with respect to (Pn).
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2 B. J. K. KLEIJN AND S. RIZZELLI

By an asymptotic graph property we mean any sort of limit in probability: the property is
expressed in the form Pn(An) → 0, with some sequence of n-vertex graph events (An). In the
case at hand we consider well-known connectivity properties of ER graphs with asymptotically
bounded expected degrees, such as the occurrence of a giant component in the supercrit-
ical regime and O( log (n))-fragmentation in the subcritical regime, as well as asymptotic
connectedness in the less sparse regime of ER graphs with expected degrees that diverge
logarithmically. We also consider the so-called critical window, in which the largest compo-
nent displays asymptotic growth of order O(n2/3). (For an extensive review of random graph
asymptotics and asymptotic properties of ER graphs in particular, see [13]).

1.1. Perturbations of graph sequences

To find laws Qn for random graphs Yn that share asymptotic properties with the Xn ∼ Pn, we
can impose the (sufficient) condition that the Hellinger (or total variational) distance between
Pn and Qn goes to zero in the limit (asymptotic equivalence, see [6, Definition 1.1]); then
any property of (Xn) is shared by the graph sequence (Yn) in the sense that, for any sequence
of n-vertex graph events (An), Pn(An) − Qn(An) → 0. Asymptotic equivalence occurs if and
only if there exists a coupling of Xn and Yn such that P(Xn �= Yn) tends to zero as n → ∞ [6,
Theorem 4.2].

Janson argues that asymptotic equivalence is too strong as a condition for the sharing of
asymptotic properties: for example, the giant component occurs in a large family of inho-
mogeneous versions of the ER graph [1], much larger than the subset of all asymptotically
equivalent graphs. Le Cam’s notion of contiguity [8, 9, 10] is a weaker, more appropriate
condition for the sharing of asymptotic properties: (Qn) is said to be contiguous with respect
to (Pn) (notation Qn � Pn) if Pn(An) = o(1) ⇒ Qn(An) = o(1) for any sequence of n-vertex
events (An). Janson applies contiguity to sequences of perturbed ER graphs and demonstrates
its wider applicability. (We discuss Janson’s condition for contiguity of inhomogeneous ER
graphs in Section 3.)

The main point of this paper is that contiguity is still too strong if the Pn(An) are known to
converge to zero faster than a certain rate (an) (rather than just being o(1)). Given a sequence
an ↓ 0, we say that (Qn) is an-remotely contiguous with respect to (Pn) (notation Qn � a−1

n Pn)
if

Pn(An) = o(an) ⇒ Qn(An) = o(1) (1)

for any sequence of n-vertex events (An). Remote contiguity was introduced in [7] for the
frequentist analysis of Bayesian, posterior-based limits, and argued to offer generalization of
contiguity-based statistical arguments, which typically apply in smooth-parametric (e.g. local-
asymptotically normal, see [8]) models, to a much more general (e.g. non-parametric) setting;
see [7, Subsection 3.3]. [3] and [11] use remote contiguity to generalize a consistency conclu-
sion reached for an idealized sequence of data distributions to the general class of sequences
that are realistic for the data in the problem.

To use remote contiguity with sequences of random graphs, we look for sequential models
(Pn) for n-vertex graphs with asymptotic properties (An) and known (an), as in (1), and analyse
the family of those sequential graph distributions (Qn) that satisfy Qn � a−1

n Pn to conclude
that random graphs distributed according to (Qn) share the asymptotic property reflected by
the events (An). It is noted that for many asymptotic graph properties, sharp rates (an) are
known (see, e.g., [13]).

In Section 2 we briefly review ER random graphs to fix the notation, and we recall Janson’s
condition for contiguity of ER graph sequences. In Section 3 we apply remote contiguity to
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Remotely contiguous random graphs 3

sequences of inhomogeneous ER graphs, compare with Janson’s condition, and formulate a
weaker, Lindeberg-type condition that involves the rate sequence (an) (which, in most cases,
is not only sufficient but also necessary). In Section 4 we define so-called remotely contiguous
domains of attraction for all the aforementioned asymptotic connectivity properties of ER
graphs. Section 5 summarizes conclusions and discusses possible directions of further research.
Details on remote contiguity are discussed in [7] and summarized in Appendix A.

The ultimate goal of this paper is to convince the reader that remote contiguity provides
a meaningful generalization of the notion of contiguity, applicable to a much wider range
of problems. We remark that, like asymptotic equivalence and contiguity, remote contiguity
compares any pair of sequences of probability distributions, including (but not limited to) the
comparison of ER graph distributions.

2. Homogeneous and inhomogeneous ER graphs

Let Gn = ([n], En) denote the complete graph with n vertices, with vertex labels from
[n] := {1, 2, . . . , n} and edge set En (which does not include self-loops; the edge between
vertices i and j is denoted (ij)). Denote the space of all subgraphs of Gn by Xn. The homo-
geneous ER random graph with edge probability 0< p< 1, a random element of Xn denoted
Xn, is ([n], E′

n) where E′
n contains any e ∈ En independently with probability p. The presence

or absence of an edge e = (ij) from En in the graph Xn is expressed in terms of (independent)
random variables, Xn

ij = 1 or Xn
ij = 0 respectively. The degree of vertex i is denoted by Di(Xn).

We denote the distribution of Xn with edge probability p by Pp,n. When we speak of an ‘ER
graph (with edge probability p)’, we refer to the sequence of distributions (Pp,n) as an element
of
∏

n M1(Xn), and we denote the class of all ER graphs as E. We generalize from E in two
stages: we distinguish the class H ⊂∏

n M1(Xn) of all homogeneous ER graphs, containing
all sequences (Qn) of the form Qn = Ppn,n, for some n-dependent 0 ≤ pn ≤ 1; we generalize
further by considering the class I ⊂∏

n M1(Xn) of all inhomogeneous ER graphs, in which
the probability for occurrence of an edge may depend on the vertices it connects (see below).

The n-dependence of the (pn) plays a central role for the asymptotic properties of homo-
geneous ER graphs: a prime example is the sequence of ER graphs with edge probabilities
pn = λ/n (λ< 1, λ= 1 and λ> 1 characterize the so-called subcritical, critical, and supercrit-
ical regimes). With a slight abuse of notation, we denote the distributions of these graphs with
Pλ,n. In some cases we also leave room for further n-dependence, e.g. ER graphs Yn ∼ Pλn,n.

The inhomogeneous ER random graph with edge probabilities 0< pn,ij < 1 for 1 ≤ i< j ≤
n is ([n], Fn), where Fn contains any e = (ij) ∈ En independently with probabilities pn,ij; we
denote the distribution of the inhomogeneous ER graph Yn with edge probabilities (pn,ij : 1 ≤
i< j ≤ n) by P(pn,ij),n. The presence or absence of an edge e = (ij) from En in Fn is expressed
in terms of (independent) random variables, Yn

ij = 1 or Yn
ij = 0 respectively; write Yn

ij ∼ Pp,n,ij

and P(pn,ij),n =∏
i<j Pp,n,ij. Of foremost interest to this work are edge probabilities of the form

pn,ij =μn,ij/n, for which it is assumed throughout that

lim
n→∞ sup

i<j

μn,ij

n
< 1, (2)

i.e. that edge probabilities are uniformly bounded away from 1 (compare with the bound pij,n <

0.9 in Janson’s theorem, see Theorem 1). For later reference, we define the parameter spaces
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4 B. J. K. KLEIJN AND S. RIZZELLI

�n =R
n(n−1)/2 for all n ≥ 1, with inner product norm

‖λn −μn‖2
2,n =

∑
i<j

(λn,ij −μn,ij)
2.

In what follows, we examine to what extent known properties of ER graphs, like the occur-
rence of a giant component or a critical window, are shared in the classes of homogeneous
and inhomogeneous ER graphs (like the stochastic block model that is central in network the-
ory). For a general review, see [1]; for more in relation to contiguity, see [6, Examples 3.1, 3.5
and 3.6]; for other possibilities, see [6, Remark 1.6] and [5]. For the following theorem and
lemma, consider two inhomogeneous ER graphs distributed according to Pn = P(pn,ij),n and
Qn = P(qn,ij),n. Restricted to contiguity and transcribed into our notation, Janson’s Corollary
2.12 says the following.

Theorem 1. ([6]) Assume that supi<j pn,ij < 0.9. If

∑
i,j

(pn,ij − qn,ij)2

pn,ij
= O(1), (3)

then Qn � Pn.

(Janson’s Corollary 2.12 also specifies that Pn and Qn are asymptotically equivalent if the
sum in (3) is o(1) rather than O(1), but that fact plays no role in what follows.)

3. Remote contiguity of inhomogeneous ER graphs

The application of remote contiguity to the ER graph involves sufficient conditions
(considered in Subsection 3.1) and necessary conditions (considered in Subsection 3.2).

3.1. Sufficient conditions for remote contiguity of ER graphs

To extend the results of [6] to remotely contiguous random graphs, consider the likelihood
ratio with observation Yn, which is that of 1

2 n(n − 1) independent Bernoulli experiments:

dPn

dQn
(Yn) =

∏
1≤i<j≤n

(
pn,ij

qn,ij

)Yn
ij
(

1 − pn,ij

1 − qn,ij

)1−Yn
ij

=
∏

1≤i<j≤n

(
pn,ij

1 − pn,ij

1 − qn,ij

qn,ij

)Yn
ij
(

1 − pn,ij

1 − qn,ij

)

= exp

(
−
∑
i<j

(
kn,ijY

n
ij + ln,ij

))
, (4)

where

kn,ij = log

(
qn,ij(1 − pn,ij)

pn,ij(1 − qn,ij)

)
, ln,ij = log

(
1 − qn,ij

1 − pn,ij

)
.

Before stating the lemma, we note that the Kullback–Leibler divergences of Pn with respect to
Qn equal

−EQn log
dPn

dQn
=
∑
i<j

(
kn,ijqn,ij + ln,ij

)≥ 0.
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Lemma 1. If we write �n = −EQn log (dPn/dQn) + log (an), and for every ε > 0 there is an
M > 0 such that, for large enough n,

Qn

(∑
i<j

kn,ij(Y
n
ij − qn,ij)> log (M) −�n

)
< ε, (5)

then Qn � a−1
n Pn.

Proof. Consider the application of Lemma 8(ii) to the likelihood ratios (4), with Yn ∼ Qn.
For given ε > 0, let M > 0 be as in (5); then

Qn

(∑
i<j

(
kn,ijY

n
ij + ln,ij

)+ log (an)> log (M)

)
< ε,

which we may rewrite as Qn(an((dPn/dQn)(Yn))−1 >M)< ε for large enough n ≥ 1. �

Clearly, of primary concern is the connection with [6]: the following proposition illustrates
how Janson’s Corollary 2.12 (represented in abridged form in Theorem 1) relates to remote
contiguity.

Proposition 1. Assume that supi<j pn,ij <C/(1 + C) for some C> 0, and that Janson’s condi-

tion (3) holds. Then Qn � a−1
n Pn for any an → 0.

Remark 1. The assertion of Proposition 1, Qn � a−1
n Pn for any rate an, is equivalent to

contiguity, Qn � Pn, the assertion of Theorem 1.

Proof. According to (5), remote contiguity revolves around the control of tail probabilities
for the sequence

∑
i<j kn,ij(Yn

ij − qn,ij). A sufficient condition for uniform tightness is

EQn

(∑
i<j

kn,ij(Y
n
ij − qn,ij)

)2

= O(1),

which we prove below. Note that EQn

(∑
i<j kn,ij(Yn

ij − qn,ij)
)2 =∑

i<j k2
n,ijqn,ij(1 − qn,ij), and

that

k2
n,ij ≤ 4 max

{∣∣∣∣ log

(
qn,ij

pn,ij

)∣∣∣∣,
∣∣∣∣ log

(
1 − qn,ij

1 − pn,ij

)∣∣∣∣
}2

≤ 4

(
log

(
qn,ij

pn,ij

))2

+ 4

(
log

(
1 − qn,ij

1 − pn,ij

))2

;

using the inequality ( log (y))2 ≤ (y − 1)2/y for y> 0 either with y = qn,ij/pn,ij or with y =
(1 − qn,ij)/(1 − pn,ij), we obtain

k2
n,ij ≤ 4

(
qn,ij

pn,ij
− 1

)2 pn,ij

qn,ij
+ 4

(
1 − qn,ij

1 − pn,ij
− 1

)2 1 − pn,ij

1 − qn,ij

= 4
(pn,ij − qn,ij)2

pn,ij

1

qn,ij
+ 4

(pn,ij − qn,ij)2

1 − pn,ij

1

1 − qn,ij
.
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Substituting and using that supi<j pn,ij <C/(1 + C), we find

∑
i<j

k2
n,ijqn,ij(1 − qn,ij) ≤ 4

∑
i<j

(pn,ij − qn,ij)2

pn,ij
(1 − qn,ij) + 4

∑
i<j

(pn,ij − qn,ij)2

1 − pn,ij
qn,ij

≤ 4(1 + C)
∑
i<j

(pn,ij − qn,ij)2

pn,ij
,

and under Janson’s condition (3) the term on the right-hand side is O(1). In addition, in view
of the inequality log (y) ≤ (y − 1) for y> 0, we have

−EQn log
dPn

dQn
=
∑
i<j

log

(
qn,ij

pn,ij

)
qn,ij +

∑
i<j

log

(
1 − qn,ij

1 − pn,ij

)
(1 − qn,ij)

≤
∑
i<j

(
qn,ij

pn,ij
− 1

)
qn,ij +

∑
i<j

(
1 − qn,ij

1 − pn,ij
− 1

)
(1 − qn,ij)

=
∑
i<j

(qn,ij − pn,ij)2

pn,ij(1 − pn,ij)
≤ (1 + C)

∑
i<j

(qn,ij − pn,ij)2

pn,ij
.

Under Janson’s condition (3) the term on the right-hand side is O(1). Consequently, −�n → ∞
for any an → 0. Together with the uniform tightness of the sequence of sums

∑
i<j (kn,ijYn

ij +
ln,ij), this leads to remote contiguity Qn � a−1

n Pn for any an → 0. �

This contiguity proof, however, does not exploit the presence of a sum of independent com-
ponents to the full extent. To sharpen the argument, we normalize the sums appropriately and
impose sufficient conditions for remote contiguity. In this case the contributions to sums are
independent, and the appropriate normalization constants are

s2
n =

∑
i<j

k2
n,ijqn,ij(1 − qn,ij)

for all n ≥ 1, as per Lindeberg’s theorem. To illustrate how conditions for remote contigu-
ity weaken those for contiguity, we note that Janson’s condition (3) implies that s2

n remains
bounded, whereas in Lemma 2 s2

n may diverge.

Lemma 2. Assume that sn <∞ for every n ≥ 1, and sn → ∞. Suppose that, for every ε > 0,

1

s2
n

∑
i<j

EQn

(
k2

n,ij(Y
n
ij − qn,ij)

21{kn,ij|Yn
ij−qn,ij|>εsn}

)→ 0. (6)

Then Qn � a−1
n Pn for any (an), an ↓ 0, such that

1

sn

(∑
i<j

(
kn,ijqn,ij + ln,ij

)+ log (an)

)
→ −∞. (7)

Proof. Apply the Lindeberg–Feller condition of Theorem 5 to (5), sn-normalized sums con-
verge weakly to the standard normal distribution if (6) holds. Note that, under condition (7), we
have −�n/sn → ∞, and we conclude that, for every ε > 0 and any choice for M> 0, condition
(5) holds for large enough n. �
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3.2. Necessary conditions for remote contiguity of ER graphs

Next, we argue that, when (6) holds and sn → ∞, then (7) is also a necessary condition for
remote contiguity at rate an.

Lemma 3. Assume that sn <∞ for every n ≥ 1 and that sn → ∞, and suppose that (6) is
satisfied for every ε > 0. Then (7) is necessary for Qn � a−1

n Pn to hold.

Proof. For every n ≥ 1, let νn be a measure that dominates both Pn and Qn (e.g. νn = (Pn +
Qn)/2) and define pn = dPn/dνn and qn = dQn/dνn. Let (an), (bn) be such that an, bn > 0,
an, bn ↓ 0, and s−1

n log (bn) → 0. Define Cn = {yn ∈ Xn : qn(yn)> pn(yn)/(anbn)}. It is imme-
diate that Pn(Cn) ≤ ∫Cn

anbnqn(yn) dνn(yn) ≤ anbnQn(Cn) = o(an). For any η > 0 and n large
enough, we find

Qn(Cn) = Qn

(
anbn

(
dPn

dQn
(Yn)

)−1

> 1

)

= Qn

(∑
i<j kn,ij(Yn

ij − qn,ij)

sn
>

− log (bn)

sn
− �n

sn

)

≥ Qn

(∑
i<j kn,ij(Yn

ij − qn,ij)

sn
>η− �n

sn

)
,

since − log (bn)/sn → 0. If (7) does not hold, limn→∞ �n/sn >−∞, so that, for some M> 0
and all n large enough,

Qn(Cn) ≥ Qn

(∑
i<j kn,ij(Yn

ij − qn,ij)

sn
>η+ M

)
.

By Theorem 5,
∑

i<j kn,ij(Yn
ij − qn,ij)/sn converges weakly to a standard normal distribution.

Then lim infn→∞ Qn(Cn)> 0 and (Qn) is not an-remotely contiguous with respect to (Pn). We
conclude that (7) is necessary for remote contiguity at rate (an). �

To estimate whether sequential data (Yn), Yn ∈ Xn, was generated by (Pn) or by (Qn),
statisticians use (randomized tests based on) test functions φn : Xn → [0, 1]. A test function is
considered (minimax-)optimal if it minimizes the sum of type-I and type-II errors:

πn(φn) =EPnφn(Yn) +EQn (1 − φn(Yn)).

As it turns out, there is a general upper bound for πn in terms of the Hellinger affinity α(Pn,Qn)
between Pn and Qn:

inf
φ
πn(φ) ≤

∫
Xn

√
pn(yn)qn(yn) dνn(yn) ( =: α(Pn,Qn)),

and the likelihood ratio test function minimizes πn (see also [9, Section 16.4]). Clearly, if there
exists a sequence (φn) such that πn(φn) = o(1), then (Pn) and (Qn) are not contiguous.

To reason likewise regarding an-remote contiguity, consider an an-weighted version of πn,
π ′

n(φn) = a−1
n EPnφn(Yn) +EQn (1 − φn(Yn)). Reasoning the same as in the contiguous case, we

find the following correspondence between testability and remote contiguity.

Lemma 4. If there exists a sequence (φn) such that π ′
n(φn) = o(1), then the sequences (Pn) and

(Qn) are not an-remotely contiguous. This is the case whenever α(Pn,Qn) = o(a1/2
n ).
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Proof. For every n ≥ 1, the likelihood ratio test function, defined for all yn ∈ Xn byψn(yn) =
1{qn>an pn}(yn), minimizes π ′

n. Suppose that there exists a sequence (φn) such that π ′
n(φn) =

o(1). Then π ′
n(ψn) = o(1), so there are events An = {yn : qn(yn)> an pn(yn)} such that Pn(An) =

o(an), but Qn(An) → 1, showing that (Pn) and (Qn) are not an-remotely contiguous. We note
the following upper bound for π ′

n:

π ′
n(ψn) = inf

φ
π ′

n(φ) =
∫

{qn>an pn}
pn(yn) dνn(yn) +

∫
{qn≤an pn}

qn(yn) dνn(yn)

≤
∫

{qn>an pn}

√
a−1

n pn(yn)qn(yn) dνn(yn)

+
∫

{qn≤an pn}

√
an pn(yn)qn(yn) dνn(yn) ≤ a−1/2

n α(Pn,Qn),

where the last bound holds for large enough n. �

In the proof of Lemma 3 we change the argument of Lemma 4 slightly (through the inclu-
sion of a separate sequence bn ↓ 0), but the essence is the same: the existence of certain test
sequences precludes remote contiguity.

In the case of n-vertex ER graph distributions, the Hellinger affinity is equal to the prod-
uct of the Hellinger affinities for each of the independent, Bernoulli-distributed random
variables Yn

ij :

α(Pn,Qn) =
∏
i<j

(√
pn,ij qn,ij +

√
(1 − pn,ij)(1 − qn,ij)

)
. (8)

3.3. Perturbations of ER graphs

Lemma 2 formulates a condition that delimits the range of applicability for remote con-
tiguity in terms of a Lindeberg-type condition involving the sequence of Kullback–Leibler
divergences. In this section we simplify that condition with sufficient conditions formulated
directly in terms of the defining parameters of the ER graphs.

Lemma 5. Choose qn,ij = λn,ij/n, pn,ij =μn,ij/n with 0 ≤ λn,ij, μn,ij ≤ n, and define Pn =
P(pn,ij),n, Qn = P(qn,ij),n for all n ≥ 1 and all 1 ≤ i, j ≤ n. Assume that

rn := sup
i<j

|μn,ij − λn,ij|
μn,ij

→ 0, Rn :=
∑
i<j

(λn,ij −μn,ij)2

μn,ij(n −μn,ij)
→ ∞. (9)

Then Qn � a−1
n Pn if and only if an = o( exp (− Rn)). If, instead, Rn = O(1), then Qn � Pn.

Proof. Let n ≥ 1 be given. Using the inequality log (1 + x) ≤ x, valid for any x>−1, we
estimate the Kullback–Leibler divergence as follows:

−EQn log
dPn

dQn
(Yn) =

∑
i<j

log
(qn,ij

pn,ij

)
qn,ij +

∑
i<j

log

(
1 − qn,ij

1 − pn,ij

)
(1 − qn,ij)

=
∑
i<j

[
λn,ij

n
log

(
1 + λn,ij −μn,ij

μn,ij

)

+
∑
i<j

log

(
1 − (λn,ij −μn,ij)/n

1 −μn,ij/n

)(
1 − λn,ij

n

)]
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≤
∑
i<j

λn,ij −μn,ij

n

(
λn,ij

μn,ij
− 1 − λn,ij/n

1 −μn,ij/n

)

=
∑
i<j

(
1 + μn,ij/n

1 −μn,ij/n

)
(λn,ij −μn,ij)2

nμn,ij
=
∑
i<j

(λn,ij −μn,ij)2

μn,ij(n −μn,ij)
.

Note that, by (2), (9), and the expansion log (1 + x) = x + O(x2) (x → 0), we have

k2
n,ij =

(
log

(
λn,ij

μn,ij

1 −μn,ij/n

1 − λn,ij/n

))2

=
(

log

(
1 + λn,ij −μn,ij

μn,ij

)
− log

(
1 − (λn,ij −μn,ij)/n

1 −μn,ij/n

))2

=
(
λn,ij −μn,ij

μn,ij

)2( 1

1 −μn,ij/n
+ O(rn)

)2

for all 1 ≤ i< j ≤ n, and

qn,ij(1 − qn,ij) = λn,ij

n

(
1 − λn,ij

n

)

= μn,ij

n

(
1 + λn,ij −μn,ij

μn,ij

)(
1 − μn,ij

n

(
1 + λn,ij −μn,ij

μn,ij

))

= μn,ij

n

(
1 − μn,ij

n
+ O(rn)

)
.

As a consequence of these two displays, we have

s2
n =

∑
i<j

k2
n,ijqn,ij(1 − qn,ij)

=
∑
i<j

(
λn,ij −μn,ij

μn,ij

)2( 1

1 −μn,ij/n
+ O(rn)

)2μn,ij

n

(
1 − μn,ij

n
+ O(rn)

)

=
∑
i<j

(λn,ij −μn,ij)2

μn,ij(n −μn,ij)

(
1 +

(
1 − μn,ij

n

)
O(rn)

)2

(1 + O(rn))

= (1 + o(1))
∑
i<j

(λn,ij −μn,ij)2

μn,ij(n −μn,ij)
.

Condition (7) is then satisfied for any an such that lim supn→∞ R−1
n log (an)<−1. It remains

to verify condition (6). To that end, consider, for any ε, δ > 0,

1

s2
n

∑
i<j

EQn

(
k2

n,ij(Y
n
ij − qn,ij)

21{kn,ij|Yn
ij−qn,ij|>εsn}

)

≤ 1

εδs2+δ
n

∑
i<j

EQn |kn,ij|2+δ|Yn
ij − qn,ij|2+δ

= 1

εδs2+δ
n

∑
i<j

|kn,ij|2+δqn,ij(1 − qn,ij)
(
(1 − qn,ij)

1+δ + q1+δ
n,ij

)
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≤ 1

εδs2+δ
n

‖kn‖δ∞,n

∑
i<j

k2
n,ijqn,ij(1 − qn,ij)

= 1

εδ

(‖kn‖∞,n

sn

)δ
≤ O

(
rn

R1/2
n

)δ
→ 0,

implying that condition (6) is satisfied. All the assumptions of Lemma 2 are thus fulfilled and
an application of the latter, along with Lemma 3, yields the first result.

If we replace the hypothesis Rn → ∞ with Rn = O(1), we have

−EQn log
dPn

dQn
(Yn) = O(Rn) = O(1).

The hypothesis Rn = O(1) also implies that s2
n = (1 + o(1))Rn = O(1) and, in turn, uniform

tightness of the sequence
∑

i<j kn,ij(Yn
ij − qn,ij), so that Qn � Pn. �

Remark 2. The uniform convergence assumption rn → 0 in (9) is not strictly necessary to have
a−1

n Pn � Qn for all rate sequences an = o( exp (− Rn)). At the cost of a more involved proof,
the results of Lemma 5 can be extended to more general cases such as where rn is suitably
bounded from above but not necessarily decaying to 0. However, assuming rn → 0 does not
appear overly restrictive, since it does not preclude, for example, increasing variance of log-
likelihood ratios log (dPn/dQn) (unlike (3)) and diverging Lp distances ‖μn − λn‖n,p, with
1 ≤ p<∞.

The following results give examples of applications of the previous lemma to inhomoge-
neous and homogeneous perturbations of a homogeneous ER graph.

Corollary 1. (Homogeneous perturbation of the ER graph.) Choose qn,ij = λn/n, pn,ij = λ/n
with 0 ≤ λn ≤ n, 1 ≤ i, j ≤ n, and define Pn = P(pn,ij),n, Qn = P(qn,ij),n for all n ≥ 1. Assume that
λn → λ. If n(λ− λn)2 → ∞, then Qn � a−1

n Pn if and only if

an = o

(
exp

(
− n

2λ
(λn − λ)2

))
.

If instead n(λn − λ)2 = O(1), then Qn � Pn.

Proof. We have rn = |λn − λ|/λ and, as n → ∞,

Rn =
(

n

2

)
(λn − λ)2

λ(n − λ)
= 1

2
(1 + O(n−1))

n(λn − λ)2

λ
.

Then the result follows immediately from Lemma 5. �

Corollary 2. (Inhomogeneous perturbation of the ER graph.) Choose qn,ij = λn,ij/n, pn,ij =
λ/n with 0 ≤ λn ≤ n, 1 ≤ i, j ≤ n, and define Pn = P(pn,ij),n, Qn = P(qn,ij),n for all n ≥ 1. Assume
that ‖λn − λ‖∞,n = o(1). If also n−1‖λn − λ‖2

2,n → ∞, then Qn � a−1
n Pn if and only if

an = o

(
exp

(
−‖λn − λ‖2

2,n

nλ

))
.

If instead n−1‖λn − λ‖2
2,n = O(1), then Qn � Pn.
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Proof. The result follows immediately from Lemma 5 when we note that rn = ‖λn −
λ‖n,∞/λ and that

Rn = ‖λn − λ‖2
2,n

λ(n − λ)
= (1 + O(n−1))

‖λn − λ‖2
2,n

nλ
as n → ∞. �

4. Connectivity properties of ER graphs

In this section we collect several well-known properties of ER graphs and examine their
so-called remotely contiguous domains of attraction, the families of perturbed homogeneous
and inhomogeneous ER graphs that maintain connectivity properties like the occurrence of a
giant component, n2/3-scaling of the giant component at criticality, O( log (n))-fragmentation,
or full asymptotic connectedness through remote contiguity.

4.1. The giant component in the supercritical ER graph

As was first shown in [2], every supercritical ER graph contains a giant component, i.e. a
sequence of connected components in Xn containing a non-vanishing fraction of all vertices,
with probability growing to 1. More precisely, we have the following theorem.

Theorem 2. For every λ> 1, ν ∈ ( 1
2 , 1

)
there is a δ(λ, ν)> 0 such that

Pλ,n
(∣∣|Cmax| − ζλn

∣∣> nν
)= O

(
n−δ(λ,ν)), (10)

where ζλ is the survival probability of a Poisson branching process with mean offspring λ.

For a proof of this classical result (and the specific way in which δ(λ, ν) depends on λ and ν)
see, for example, [13, Theorem 4.8].

To generalize the occurrence of a giant component, we set conditions for sequences of laws
(Qn) of ER graphs such that, for some 0< δ < δ(λ, ν),

Qn � nδPλ,n. (11)

Let Q(λ, δ) denote the collection of all sequences (Qn) in
∏

n M1(Xn) satisfying (11). In all
those cases, a giant component containing an asymptotic fraction ζλ of all vertices occurs (to
within order nν vertices). For given λ> 1 and ν ∈ ( 1

2 , 1
)
, the sequences (Qn) for which (11)

holds for some 0< δ < δ(λ, ν) is the union Q(λ, ν) =⋃{Q(λ, δ):0< δ < δ(λ, ν)} and, for
given λ> 1, the union over all ν contains the cases in which a giant component containing
a fraction ζλ occurs (to within some negligible nν-fraction of the vertices). We call Q(λ) =
∪{Q(λ, ν) : ν ∈ ( 1

2 , 1
)}

the remotely contiguous domain of attraction for the occurrence of a
giant component containing ζλn vertices. Ultimately, the union Q = ∪{Q(λ) : λ> 1} forms a
class in which a giant component (containing some asymptotically non-vanishing fraction of
all vertices) will form with probability growing to 1. We refer to that class as the remotely
contiguous domain of attraction for the occurrence of a giant component.

Example 1. (Homogeneous perturbation of supercritical ER graphs.) For some λ> 1 choose
Pn = Pλ,n and Qn = Pλn,n, with λn → λ. For any choice 1

2 < ν < 1, let 0< δ < δ(λ, ν) as in
Theorem 2 be given.

As we have seen in Corollary 1, Rn = 1
2 nλ−1(1 + O(n−1))(λn − λ)2, so to render the rate an

in definition (1) high enough to cover the probabilities for occurrence of a giant component,
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cf. Theorem 2, we choose

λn =
(

1 +
√

2δ

λ

log (n)

n

)
λ, (12)

so that Rn = (1 + O(n−1))δ log (n). Then n(λn − λ)2 → ∞ and n−δ(λ,ν) = o( exp (− Rn)).
Therefore, by Corollary 1, we can conclude that, for all homogeneous λn-perturbations of
the ER graph sequence of the form (12), a giant component containing an asymptotic fraction
ζλ of the vertices occurs to within order-nν vertices, Pλn,n

(∣∣|Cmax| − ζλn
∣∣> nν

)= o(1), since
(10) ensures the occurrence of such a giant component at λ> 1. We may therefore characterize
the class of homogeneous ER graphs in the remotely contiguous domain of attraction for the
occurrence of a giant component containing ζλn vertices as

H ∩ Q(λ) =
⋃

ν∈(1/2,1)

{
(Pλn,n) ∈ H : (λn − λ)2 < 2λ δ(λ, ν)

log (n)

n
, n ≥ 1

}
,

and the class of homogeneous ER graphs in the remotely contiguous domain of attraction for
the occurrence of a giant component as H ∩ Q =⋃{H ∩ Q(λ) : λ> 1}.
Example 2. (Inhomogeneous perturbation of supercritical ER graphs.) Denote by I∞ the
class of inhomogeneous ER graphs obtained via uniform perturbations of a homogeneous ER
graph Pλ,n, with λ> 0, i.e. the class of ER graphs with edge probabilities qn,ij = λn,ij/n satis-
fying supi<j |λn,ij − λ| → 0 for some λ> 0. In an analogous fashion, resorting to Corollary 2,
we can characterize the class of uniformly perturbed inhomogeneous ER graphs in Q(λ), with
λ> 1, as

I∞ ∩ Q(λ) =
⋃

ν∈(1/2,1)

{
(P(λn,ij),n) ∈ I∞ :

∑
i<j

(λn,ij − λ)2 <λ δ(λ, ν) n log (n), n ≥ 1

}
,

and the class of uniformly perturbed inhomogeneous ER graphs in the remotely contiguous
domain of attraction for the occurrence of a giant component as

I∞ ∩ Q =
⋃{

I∞ ∩ Q(λ) : λ> 1
}
.

4.2. Fragmentation in subcritical ER graphs

Define Iλ = λ− 1 − log (λ) for 0<λ< 1, that is, for the subcritical regime of the ER graph.

Theorem 3. For given 0<λ< 1 and every a> I−1
λ , there exists a δ = δ(a, λ)> 0 such that

Pλ,n
(|Cmax| ≥ a log (n)

)= O(n−δ). Moreover, for any a< I−1
λ , there exists an η= η(a, λ)> 0

such that Pλ,n
(|Cmax| ≤ a log (n)

)= O(n−η).

For a proof of Theorem 3, see, for example, [13, Theorems 4.4 and 4.5]. To prove that the
largest connected component in other random graph sequences has cardinality lying between
two multiples of log (n), we again require (11) for some 0< δ <min (δ(a, λ), η(a′, λ)) =:
ζ (λ, a, a′) and 0< a< I−1

λ < a′. We thus define the remotely contiguous domain of attraction
for fragmentation into clusters of maximal cardinality I−1

λ log (n):

Q(λ, a, a′) =
⋃{

Q(λ, δ) : 0< δ < ζ (λ, a, a′)
}
.
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The union over all 0<λ< 1 and 0< a< I<λ a′ <∞ forms the remotely contiguous domain of
attraction for fragmentation into clusters of maximal cardinality of order log (n):

L =
⋃{

Q(λ, a, a′) : 0<λ< 1, 0< a< I−1
λ < a′ <∞}

.

Example 3. (Homogeneous perturbation of subcritical ER graphs.) Following reasoning
similar to Example 1 and applying Corollary 1, we characterize the class of ER graphs
with maximal connected component of order log (n), which are obtained by homogeneous
perturbations of a subcritical graphs with 0<λ< 1, as

L(λ) =
⋃{

(Pλn,n) ∈ H : 0< a< I−1
λ < a′ <∞,

(λn − λ)2 < 2λζ (λ, a, a′) log (n)

n
, n ≥ 1

}
.

And we define the homogeneous part of the remotely contiguous domain of attraction for
fragmentation into clusters of maximal cardinality of order log (n) by L ∩ H = ∪0<λ<1L(λ).

Remark 3. Example 3 can be extended to inhomogeneous perturbations by application of
Corollary 2. We leave the details to the reader.

4.3. Maximal connected components in the critical ER graph

It is well known that the largest connected components in a sequence of ER graphs at
criticality (λ= 1) have cardinalities of order O(n2/3). In fact, there exists a so-called critical
window of O(n−1/3) homogeneous perturbations around λ= 1 for which this critical behaviour
of the largest connected component remains valid.

Theorem 4. For some θ ∈R, every n ≥ 1, and all 1 ≤ i< j ≤ n, define λn,ij = λn = 1 + θn−1/3.
There exists a constant b = b(θ ) such that Pλn,n

(
a n2/3 ≤ |Cmax| ≤ a−1 n2/3

)≥ 1 − b a for all
a< 1.

For a proof, see, for example, [13, Theorem 5.1].
We now examine to what extent the remotely contiguous domain of attraction for occurrence

of a maximal connected component of order (approximating) n2/3 around the critical point λ=
1 coincides with the perturbations of order n−1/3 in the parameter λ that Theorem 4 guarantees.

To reformulate the question: for some λn → 1, define the homogeneous ER graphs Yn dis-
tributed according to Qn = Pλn,n, Pn = P1,n, and analyse the requirement Qn �ωnPn for any
rate an = 1/ωn.

To render the assertion of Theorem 4 at λ= 1 amenable to extension by remote contiguity,
we have to make a choice for a sequence an → 0: applied to λ= 1, Theorem 4 guarantees that
there exists a constant b = b(0)> 0 such that

P1,n
(|Cmax|< ann2/3 or |Cmax|> a−1

n n2/3)≤ b an. (13)

We examine the family of perturbed ER graphs that displays the same an-adjusted critical
maximal cluster size of order n2/3.

The choice for (an) is of great influence on the maximal permitted perturbation |λn − 1|.
Lemma 6. Let λn → 1 as n → ∞, such that λn − 1 = O(n−1/3); then there exists a constant
A> 0 such that α(Pλn,n, P1,n) = A exp

(− 1
16 n(λn − 1)2

)+ o(1).
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Proof. For Qn = Pλn,n, Pn = P1,n, the Hellinger affinity (cf. (8)) is given by

α(Pn,Qn) =
(
λ

1/2
n

n
+
(

1 − 1

n
(λn + 1) + λn

n2

)1/2)(n
2)

=
(

1 + (1 + (λn − 1))1/2

n
− λn + 1

2n
+ O(n−2)

)(n
2)

=
(

1 + 1 + 1
2 (λn − 1) − 1

8 (λn − 1)2

n
− λn + 1

2n
+ O(n−1(λn − 1)3) + O(n−2)

)(n
2)

=
(

1 − (λn − 1)2

8n
+ O(n−1(λn − 1)3) + O(n−2)

)(n
2)

= exp

(
− 1

16
n(λn − 1)2 + O(n(λn − 1)3) + O(1)

)

= A exp

(
− 1

16
n(λn − 1)2

)
+ o(1)

for some constant A> 0. �

A slightly more detailed version of this proof shows that, whenever λn − 1 = o(n−1/2), the
representation of α(Pλn,n, P1,n) in Lemma 6 holds with A = 1 and therefore Pλn,1 � P1,n, in
which case remote contiguity applies with any an decaying to 0. For example, for some small
ε > 0 and the choice an = n−ε , we find that

Pλn,n
(|Cmax|< n2/3−ε or |Cmax|> n2/3+ε)→ 0. (14)

On the other hand, in light of Lemma 3, if n|λn − 1|2 goes to ∞ fast enough, that is,
if αn(Pλn,1, P1,n) = o(a1/2

n ), (Pλn ) is not an-remotely contiguous with respect to (P1,n). For
example, for some small ε > 0 and the choice an = n−ε , we find that if

lim inf
n→∞

n(λn − 1)2

log (n)
> 8ε

then (Pλn,n) is not n−ε-remotely contiguous with respect to (P1,n). An application of
Corollary 1 allows us to further refine the requirement by imposing an = o( exp (− n(λn −
1)2/2)). For example, if we choose an to decrease as log (n)−1, then the above shows that
remote contiguity limits the perturbation to be of smaller order than

√
log ( log (n))/n.

Unfortunately, remotely contiguous domains of attraction for near-critical maximal cluster
sizes (for example, those intended in (14)) have an extent of order (n−1 log (n))1/2, not the order
n−1/3 that occurs in Theorem 4. So remote contiguity does not cover the entire range of possi-
ble perturbations that preserve near-critical maximal cluster sizes. If we impose perturbations
proportional to n−1/3, requiring remote contiguity leads to exponential rates an ∼ exp (− n1/3),
which overwhelms the polynomial factor in assertion (13).

This illustrates a limitation that is important to point out: remote contiguity makes no dis-
tinction between asymptotic assertions, other than by rate: as long as the probabilities Pn(An)
converge to zero fast enough, cf. (1), remote contiguity asserts Qn(An) = o(1) without regard
for the further details involved in the definition of the events An. In the case at hand, when we
ask questions regarding the size of the maximal cluster, there are properties very specific to
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homogeneous ER graphs at criticality that enable n−1/3-proportionality of the critical window.
Lemmas 4 and 6 demonstrate that there are other asymptotic assertions (Bn) with probabilities
P1,n(Bn) of order o(an) but with probabilities P1+O(n−1/3),n(Bn) that do not go to zero.

4.4. Asymptotic connectedness in ER graphs

Recall that any homogeneous ER graph with edge probability λn/n is disconnected with
high probability if lim supn→∞ λn <∞ (see, e.g. [13, Section 5.3]). The results of this
subsection apply to ER graphs with diverging (λn), typically of O( log (n)).

Lemma 7. Let λn → ∞ as n → ∞. If λn − log (n) → −∞, then Pλn,n(Cmax is connected) =
O(λn/(n − λn)) = o(1). If, instead, λn − log (n) → ∞, then Pλn,n(Cmax is disconnected) =
O(n−1/4).

Proof. The first result is a direct consequence of the first inequality in [13, Proposition 5.10,
(5.3.25), (5.3.26)]. As for the second result, with λ∗

n = min (λn, 2 log (n)),

Pλn,n(Cmax is disconnected) ≤ 1 − Pλ∗
n,n(Cmax is connected).

The conclusion follows by using [13, (5.3.14), (5.3.21)–(5.3.24), (5.3.27)] with λ= λ∗
n. �

Example 4. (Connectivity in inhomogeneous ER graphs.) Consider an inhomogeneous ER
graph with edge probabilities qn,ij = cn,ij log (n)/n. A sufficient condition for such a graph
to be asymptotically connected is the existence of a suitable sequence (dn) with dn > 0,
lim infn→∞ dn > 1, and limn→∞ dn log (n)/n< 1. To see this, also assume that

supi<j

∣∣∣∣cn,ij

dn
− 1

∣∣∣∣→ 0, lim sup
n→∞

∑
i<j (cn,ij − dn)2

dn(n − log (n))
<

1

4
.

Then the assumptions rn = o(1) and an = o( exp (− Rn)) of Lemma 5 are satisfied, with μn,ij =
dn log (n) and an = n−δ for some δ < 1

4 . Hence, Qn � nδPn, where Pn is the distribution of
the homogeneous ER graph with edge probability dn log (n)/n. By Lemma 7, the latter has a
probability of not being connected of order O(n−1/4), thus entailing that

Qn(Cmax is disconnected) = o(1)

as n → ∞ by remote contiguity.

5. Conclusions and discussion

We have attempted to highlight how remote contiguity can be used to generalize asymptotic
properties, much like asymptotic equivalence and contiguity, but with a wider range of appli-
cability. In particular, we have shown that remote contiguity can be applied to the connectivity
properties of ER graphs in various regimes of edge sparsity. Conditions are formulated for the
defining parameters of the random graph enabling remote contiguity and the generalization of
asymptotic properties.

It is expected that remote contiguity proves helpful for the generalization of other asymp-
totic random graph properties. For example, it is known that the degree sequence of ER graphs
distributed according to Pλ,n, for some λ> 0 converges to a Poisson distribution. We now write
pk = e−λλk/k!, k ≥ 1, and P(n)

k (Xn) = n−1 ∑n
i=1 1Di(Xn)=k for the empirical degree distribution.
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Proposition 2. For any λ> 0 and ER graphs Xn ∼ Pλ,n,

Pλ,n
(

max
k≥1

|P(n)
k (Xn) − pk|> εn

)
= O(1/(nε2

n)) (15)

as n → ∞, for any εn ↓ 0 such that nεn → ∞.

Proof. The result in (15) follows immediately from the inequality∑
k≥0

∣∣EPλ,n

(
P(n)

k (Xn)
)− pk

∣∣< 2εn,

valid for all large n, and [13, (5.4.17)]. �

Application of remote contiguity enables the following generalization.

Corollary 3. For any ER graph Yn of law Qn = P(λn,ij),n satisfying supi<j |λn,ij − λ| = o(1) and∑
i<j |λn,ij − λ|2 < nλδ log (nε2

n) with 0< δ < 1 as n → ∞,

Qn

(
max
k≥1

∣∣P(n)
k (Yn) − pk

∣∣> εn

)
= o(1).

Proof. The result follows immediately from (15) and an application of Corollary 2. �

More ambitious forms of generalization are conceivable. For example, we could consider
the so-called preferential attachment graph, which displays a degree distribution with heavy
tails asymptotically (see [13, Theorem 8.3]). Dependence of edges makes the analysis more
demanding technically, but the machinery of remote contiguity continues to apply. Thus we
can study the extent to which the model of [13, (8.2.1)] may be perturbed without influencing
the asymptotic tail behaviour of the degree distribution.

But the application of remote contiguity is not limited to random graphs; generalization of
any asymptotic property in any sequence of probabilistic models can be analysed with remote
contiguity. To illustrate this, we note that for two sequences (Pn) and (Qn) on measurable
spaces (Xn,Bn), we have Qn � a−1

n Pn if for every ε > 0 there exists a δ > 0 such that

Qn

(
dPn

dQn
< δan

)
< ε

(or, equivalently, if every subsequence of (an(dPn/dQn)−1) has a weakly converging sub-
sequence). Lemma 8 gives a variety of general conditions to establish remote contiguity,
analogous to Le Cam’s First Lemma [9, Chapter 3, Section 3, Proposition 3]. Moreover, the
arguments of Subsection 3.2 are fully general, so there are also general conditions to exclude
remote contiguity, for example if the Hellinger affinity decreases to zero fast enough:

α(Pn,Qn) = o
(
a1/2

n

)
.

We therefore express the hope that remote contiguity can be applied in more general examples
besides random graphs, in a role that generalizes the role of contiguity.

Appendix A. Remote contiguity

Remote contiguity was introduced in [7] to demonstrate that asymptotic properties of
Bayesian posterior distributions can be lifted to frequentist statements of asymptotic con-
sistency, hypothesis testing, model selection, and uncertainty quantification. For another
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statistical example in the setting of extreme value theory, [3, 11] use remote contiguity to
prove consistency with respect to relatively complicated true data distributions by simpler,
approximating sequences of max-stable distributions.

Here and elsewhere, M1(X) denotes the collection of all probability measures on a
measurable space (X,B).

Definition 1. Given measurable spaces (Xn,Bn) with two sequences of probability measures
Pn,Qn ∈ M1(Xn) for all n ≥ 1, and a sequence ρn ↓ 0, we say that Qn is ρn-remotely con-
tiguous with respect to Pn, notation Qn � ρ−1

n Pn, if Pnφn(Xn) = o(ρn) ⇒ Qnφn(Xn) = o(1) for
every sequence of Bn-measurable φn : Xn → [0, 1].

Given two sequences (Pn) and (Qn), contiguity Pn � Qn is equivalent to remote contiguity
Pn � a−1

n Qn for all an ↓ 0.
The following is the remotely contiguous analogue of Le Cam’s First Lemma [9, Section

3.3, Proposition 3].

Lemma 8. Let probability measures (Pn), (Qn) on measurable spaces (Xn,Bn) and an ↓ 0 be
given. Then Qn � a−1

n Pn if any of the following hold:

(i) For any bounded, Bn-msb Tn : Xn → [0, 1], a−1
n Tn

Pn−−→ 0 ⇒ Tn
Qn−−→ 0.

(ii) For any ε > 0, there is a δ > 0 such that Qn(dPn/dQn < δ an)< ε for large enough n.

(iii) There is a b> 0 such that lim infn b a−1
n Pn(dQn/dPn > b a−1

n ) = 1.

(iv) For any ε > 0, there is a constant c> 0 such that ‖Qn − Qn ∧ c a−1
n Pn‖< ε for large

enough n.

(v) Under Qn, every subsequence of (an(dPn/dQn)−1) has a weakly convergent subse-
quence.

Remark 4. For any measurable space (X,B), the definition of (dP/dQ)−1 : X → (0,∞]:
x �→ 1/(dP/dQ(x)) is Qn-almost sure: given a (sigma-finite) measure ν that dominates both
P and Q (e.g. ν = P + Q), write dP/dν = p and dQ/dν = q. Then the measurable map
p/q 1{q>0} : X → [0,∞) is a ν-almost everywhere version of dP/dQ, and q/p 1{q>0} : X →
[0,∞] defines (dP/dQ)−1 Q-almost surely.

Characterization (v) provides the most insightful formulation, relating remote contiguity to
weak convergence of rescaled likelihood ratios, cf. [9]. In most applications, characterization
(ii) is the most practical to demonstrate remote contiguity.

Appendix B. The Lindeberg–Feller theorem

In its most basic form, the Lindeberg–Feller theorem formulates a condition for the conver-
gence of sums of independent (but not necessarily identically distributed) random variables to
a central limit. There exist versions for dependent random variables too. A triangular array
consists of a sequence (k(n)) that increases to infinity, and random variables Xn,k, where n ≥ 1
and 1 ≤ k ≤ k(n).
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Theorem 5. For each n ≥ 1, let Xn,k, 1 ≤ k ≤ k(n), be independent, with expectations μn,k ∈R

and variances σ 2
n,k <∞. With s2

n =∑k(n)
k=1 σ

2
n,k, assume that, for every ε > 0,

1

s2
n

k(n)∑
k=1

E‖Xn,k −μn,k‖21{‖Xn,k−μn,k‖>εsn} → 0.

Then sn-normalized, μn,k-centred sums converge weakly to the standard normal distribution,

1

sn

k(n)∑
k=1

(Xn,k −μn,k)
−w.−−→ N(0, 1).
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