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ON THE ACOUSTIC SCATTERING AMPLITUDE FOR A
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Abstract

We consider the boundary-value problems corresponding to the scattering of a time-
harmonic acoustic plane wave by a multi-layered obstacle with a sound-soft, hard or
penetrable core. Firstly, we construct in closed forms the normalized scattering amplitudes
and prove the classical reciprocity and scattering theorems for these problems. These res-
ults are then used to study the spectrum of the scattering amplitude operator. The scattering
cross-section is expressed in terms of the forward value of the corresponding normalized
scattering amplitude. Finally, we develop a more general theory for scattering relations.

1. Introduction

This paper is concerned with the reciprocity principle and the general scattering
theorem for the normalized scattering amplitude corresponding to the scattering of
time-harmonic acoustic plane waves by a multi-layered scatterer. A scatterer of this
type is a nested body consisting of a finite number of homogeneous layers. On
the surfaces that describe this tessellation are imposed transmission conditions, that
physically express the continuity of the medium and the equilibrium of the forces
acting on it. In the interior of the scatterer there exists a sound-soft, hard or penetrable
core.

An integrated and systematic theory for the scattering of acoustic waves was presen-
. ted by Kleinman and Senior in [15]. Twersky in [19] proved reciprocity and scattering
theorems for both soft and hard obstacles, and using low frequency expansions, he
obtained the leading-term approximation of the real part of the scattering amplitude
by direct application of the scattering theorem. Dassios developed the low-frequency
theory for acoustic scattering by a soft body [9] and by a penetrable body with either
a soft or a rigid core [10]. For existence and uniqueness of solutions of acoustic
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scattering problems we refer to the books by Colton and Kress [6], [7] and Jones [13].
The unique-solvability of the transmission problem of acoustics was studied in [16]
by Kress and Roach and in [14] by Kleinman and Martin, using the boundary integral
equations method. The well-posedness of the resistive and conductive problems for
the Helmholtz equation was proved in [1]. A simple proof of the normality of the far
field operator is given in [8].

Reciprocity relations and general scattering theorems connecting the three normal-
ized spherical scattering amplitudes of the elastic theory of scattering, were proved by
Dassios, Kiriaki and Polyzos in [11]. Twersky in [20] proved reciprocity, scattering
and optical theorems for electromagnetic waves.

Acoustic scattering by a multi-layered scatterer has been studied by Sabatier in [ 18].
He constructed a Green's function for the "mixed potential-impedance" equation, us-
ing the boundary integral equations method. Multi-layered scatterers were used in [2]
and [12] for scattering of elecromagnetic waves. A nested scatterer with an infinite
number of layers was described in [5]. In this case, using a generalized solutions
approach, existence and uniqueness of solutions were proved. Multi-layered ellips-
oidal scatterers with sound-soft and -hard core were used in [4] and [3], respectively,
where, working in ellipsoidal geometry, the first three low-frequency coefficients were
obtained.

In Section 2 we formulate the three scattering problems for which the normalized
scattering amplitudes will be studied. In Section 3, using an integral representation
of the scattered field, we construct the scattering amplitude for each problem. The
main results of the paper, that is, reciprocity and scattering theorems are included in
Section 4. Also, Herglotz wave functions are used as incident fields and the scattering
amplitude operator is studied. In Section 5, we state the optical theorem, that is a
connection of the scattering amplitude to the cross-section. Furthermore we discuss
problems with resistive and conductive boundary conditions on the surface of the core.

Finally, in Section 6 we consider a general boundary-value problem and develop a
more general theory for scattering relations.

2. Acoustic scattering by a multi-layered scatterer

Let £2 be a bounded and closed subset of K3 and a C2-boundary So. We consider £2
to be a nested body, consisting of annuli-like regions Qj, divided by means of closed
and C2-surfaces S,, j = 1,2,..., \x. Each 5, surrounds Sj+] and S, n S, = 0, for
any i ^ j . The region £2M+i, within which lies the origin, is the core of the scatterer.
The core may be a sound-soft, a -hard or a -penetrable body, that is, on the surface
of the core Dirichlet, Neumann or transmission boundary conditions are satisfied,
respectively. The physics of the problem is determined by the values of the mass
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density pj associated with the velocity field, and the compressibility y, associated
with the pressure field in each layer Qj. The exterior of the scatterer, £20, is an infinite
homogeneous isotropic medium with mass density p0 and compressibility y0. There
is one normal unit vector n(r) at each point r of any surface 5, pointing into £2,. The
wave number kj in Qj is a positive real number and it is expressed in terms of the
wave number k0 of the exterior space £20> as

^ (1)
1 YjPo

(see [4]). The set £2 described above, is a multi-layered scatterer with a core. We
assume that a time-harmonic acoustic plane wave u' is incident upon the obstacle £2.
The total acoustic field w; in QJt satisfies the Helmholtz equation

Auj+k]itj=0 infy. (2)

Furthermore the total exterior field u0 is given by

u0 = u' + us in Qo, (3)

where us is the scattered field satisfying the Sommerfeld radiation condition

r • grad wJ(r) - ikous(r) = ol-\ , r - > o o (4)

uniformly in all directions f e S2, where S2 is the unit sphere.
On the surface 5, we have the transmission conditions

Uj = U
j+l

dn pj+\ dn

(5)

According to the boundary conditions on the surface of the core, we have the following
three problems.

Problem (PD) : Determineu, e C2(fl;)nC'(fi;), j = 0, \,..., fi, satisfying (2)
to (5) and

M^ = 0 on S^. (6)

Problem (PN) : Determineu} € C2(Qj)nC\Qj), j = 0, 1 , . . . , fj., satisfying (2)
to (5) and

4an
on 5M. (7)
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Problem (Pr) : Determine Uj € C2(fi;) n C1 (fi,), j = 0, 1, . . . , /x + 1, satisfy-
ing (2) to (5) and

on 5M. (8)

3n pM+1 3n

The proof of the well-posedness of these boundary value problems, based on prov-
ing existence and uniqueness for the solution of the corresponding integral equation
formulation of the problems, is discussed in [5] and [18].

Our aim on the present work is to prove the reciprocity principle and the scattering
theorem for the above three problems.

3. Construction of the scattering amplitudes

It is well known [7] that the scattered field, as a radiating solution of the Helmholtz
equation, has the integral representation

where

^ ^ (9,

<hdr,r>)=±-?-l— r^r' ( 1 0 )
47T \r-?\

is the fundamental solution of (2) in Qo. Closely related to the scattered field is the
normalized scattering amplitude g, which is defined by the relation

oo, (11)

where h(x) = e'x/ ix is the zeroth-order spherical Hankel function of the first kind.
In order to express g in closed form we work as follows.

Inserting us = u0 — «' in (9) and taking into account that u' is an entire solution of
the Helmholtz equation in Qo we obtain

r € SV (12)

Now, applying successively Green's first theorem on «;(r'), <f>o(r, r1) in Qj and taking
into account that Uj(r7), <po(j, r7) are solutions of (2) in £2, and fi0 respectively, and in-
troducing the transmission conditions (5) and boundary conditions (6) for (PD) , (7) for
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(PN) and transmission conditions (8) for (PT), we derive the following representations
of the scattered fields

ii* (r) = V<">(r) + W(M)(r) + FD(r), r € Qo, (13)

us
N(r) = V(">(r) + Ww(r) + Fw(r), r e Sl0, (14)

, r e Qo. (15)

for the problems (PD)> (PN) and (/Y) respectively, where

V(m)(r) = 0̂
2 f" f - - l ) /" ";(r')^o(r, rVv(r'), r e S20, (16)

~ - ) f §r a d";( r ' )-gr a d^ *>(«•.r ')rfu(r ')' r e «o,
p / (17)

form = ix, ix + 1,

FD(r) = -&- [ <po(r, r ' ) ^ ^ ^ ( r ' ) , r € ft0, (18)

Jsu dn(r
FN(r)= f ull(i')

d4*ir'r)dsp), r€fi0- (19)
J dn(r')

The functions V(m)(r) and W(m)(r) are dependent on the physical parameters of the
body and express the contribution of the layers to the scattered field. The surface
integrals (18) and (19) represent the effect of the core on the scattered field.

From the asymptotic form

|r — r'| = r - r r + o ( - j , r -> oo (20)

we derive [7]

r') = ^A(*or)e-'w"'+ O r ^ V r -> oo, (21)

(22,
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Substituting (21) and (22) into (16)-(19) we take the asymptotic forms, for r ->• oo

V«">(r) = h(kor) [ ^ £ ( f - l) Jn "J«)e-lkt" dv(r')\ + O ( i

= h (kor) v£"> (r) + O (^ V (23)

W<">(r) = MV) | ^ E ( l " ^gradu,(r ' )grad^ e " ' ^ rfw(r') 1 + O f i

(J^ (24)

L 47Z7v4 9" J Vr2/

^ y (25)

(26)

Consequently, for a = D, N, T, we have

<(r) = A(V)g«(f) + O ^ y r^oo, (27)

where the fields

go(X) = V£>(r) + W^(r) + F^r), (28)

8N (r) = V ^ (r) + H^> (f) + FN^ (f), (29)

gr(r) = V^+1)(f) + ^ + l ) ( r ) , (30)

are the scattering amplitudes for the problems (PD), (PN) and (PT), respectively. This
argument establishes the following theorem.

THEOREM 1. The normalized scattering amplitudes for the problems (PD), (PN) and
(PT) are the functions go, gN ana> gr, respectively, defined on the unit sphere S2 and
given by (28), (29) and (30).

4. Reciprocity and scattering theorems

In what follows, for an incident time-harmonic plane wave u' (r; k) = e\p(ikok • r)
we will denote the total field in Qj, the scattered field and the normalized scattering

ft

https://doi.org/10.1017/S0334270000007736 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007736


[7] On the acoustic scattering amplitude for a multi-layered scatterer 437

amplitude for the problem (Pa), a = D, N, T by writing, respectively, uaJ(r; k),
us

a(r; k) and ga(r; k) indicating the dependence on the incident direction k. Also in
the sequel we shall make use Twersky's notation [19]

We consider two incident plane waves u' (r; p) = exp(ikop • r) and u' (r; q) =
fcoq • r), propagating in the directions p and q respectively. Then we may state

and prove the following three lemmas.

LEMMA 1. For the scattering problem (Pa), a = D, N,T we have

Ko(-;p),«a,o(-;q)}5o = o, (32)

for all p, q e S2.

PROOF. Applying successively Green's second theorem on «fl,;(r; p) and uaj(r; q) in
Qj, using the transmission conditions (5) and taking into account that

/ [uaJ(r; p)AuaJ(r; q) - uaJ(r; q)AuaJ(r; p ) ] dv{r) = 0, j = 1,2, ... , n + 1,
Jn> (33)

since both uaJ(r; p) and uaJ(r; q) satisfy (3), we conclude that

t i fid i i

|«a,o(-; p), «a,o(-; q)}^ = — |HO,^(-; P ) , «0,M(-; q)}Sw. (34)

For a = D, N the lemma is proved by introducing the boundary conditions (6) and
(7), respectively, into (34). Inserting the transmission conditions (8) in (34), applying
again Green's second theorem in £2M+i and using the relation (33) for j = \i + 1 we
prove the lemma for a = T.

LEMMA 2. For the scattering problem (Pa), a — D, N', T we have

, for all p, q € S2.

PROOF. From (3), the bilinearity of {•, -J^ and using Lemma 1 we take

+ {«'(•; p), us
a(-, q)}^ + {«'(•; p), «'(•; q)}^ = 0. (36)

https://doi.org/10.1017/S0334270000007736 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007736


438 Christodoulos Athanasiadis [8]

In view of Green's second theorem, the Helmholtz equation for the incident and the
scattered wave and the radiation condition for the scattered wave we have

{«'(•; p),M'(-;q)}So=O, (37) .

{«*(•; p), <(•; q)}5o = 0 . (38)

Therefore, (36), (37) and (38) yield (35).

Furthermore we prove the following lemma, where U denotes the complex conjugate
off/.

LEMMA 3. For the scattering problem (Pa), a = D, N,T we have

(39)l
So

for all p, q e S2.

PROOF. Let M*(p; q), a = D, N, T be the scattered field corresponding to the in-
cident wave w'(p; q) = exp(j£op • q)- Then, as in Theorem 1, we use the integral
representation

{ } 5 o , pe f io . (40)

Letting p - • oo and using the asymptotic forms (21) and (22) we conclude that

<(P: 4) = l-^h(koP) {<(•; q), «'(-, p)l +o(^-), p^oo. (41)
47T I I So \P /

The formula (39) comes out of direct comparison of (41) with (27).

We are now in a position to prove the reciprocity principle.

THEOREM 2. The normalized scattering amplitude ga of the problem (Pa), a =
D, N,T satisfies the reciprocity relation

&,(p;q) = &(-q; -p) , (42)

for all p, q € S2.
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PROOF. By Lemmas 2 and 3 we have

= -£{« ' ( • ; q>. «:<•;-*>}*
= - ^ («'(.; - q ) , <(•; - p ) ) ^ = * a ( -q ; - p ) , (43)

which proves the theorem.

We shall now prove the basic scattering theorem, for the above three problems.

THEOREM 3. The normalized scattering amplitude ga of the problem (Pa), a =
D, N,T satisfies the relation

1 f
&,(p; q) + &,(q; P) - - z - / ga(r; q)ga(r; q)ds(r), (44)

2n JS2
for all p, q e S2.

PROOF. Let «'(•; q) and «'(•; p) be incident waves with incident directions q and p,
respectively. Let also «*(•; q) and «*(•; p) be the corresponding scattered fields for
the problem (Pa),a = D,N,T. Then by the bilinearity of the form {•, }So and the
relation (3), we derive

« . , < > ( • ; P ) , « « . . ( > ( • ; q ) l ) ( ; p ) , ( ; q ) { ( ; p ) , < ( q ) l
J S b I J S o l I S o

{ ; ( ; p ) , ; ( ; q ) }
5o I J50

where uafi denotes the total field in £20 for the problem (Pa)-
By Lemma 1 we have

}
and from (37)

{«„.<>(•; P ) , ««.<>(•; q ) } = o ( 4 6 )

{«'(•; p), n'0; q)l = 0 . (47)
I J So
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Also, from Lemma 3 it follows that

=-^-ga(p;q), (48)
So I KQ

Now we consider a sphere Sfi, centred at the origin, with radius R large enough to
include the scatterer in its interior. Applying Green's second theorem on M* (•; p) and
w* (•; q) in the region exterior to So and interior to SK, in view of regularity of us

a we
take the relation

(49)

• (50)

Letting R -> oo, we pass to the radiation zone and thus we can use the asymptotic
form (27) for the scattered fields. So we have

= 2i*b

= ^ / ga(r;q)ga(r;p)ds(r). (51)

Substituting (46)-(49) and (51) into (45), relation (44) is derived and the scattering
theorem is proved.

We now assume that the incident field is a Herglotz wave function U'h, that is, an
entire solution of the Helmholtz equation AM + k^u = 0 of the form

U'h(jr) = I h(q)eik°r!ids(q), (52)
Jsi

where h e L2(S2) is the kernel of U'h. If us
ah, us

a<p are the scattered fields and gah,
gajp are the normalized scattering amplitudes corresponding to the problem (/>„),
a = D, N, T with incident waves U'h, U^, respectively, then we have the following
relations.

COROLLARY 1. For the problem (Pa),a = D,N,Twe have

, (53)
So IKo J$2

K - <*}& = T f gaAr)ga,H(r)ds(r). (54)
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PROOF. Applying (39) for gaip, multiplying by h(r) and integrating on S2 we get (53).
The relation (54) is a simple consequence of (51).

Let us now define the scattering amplitude operator Ga : L2(S2) -» L2(S2),
a = D, N,T corresponding to the scattering amplitude ga(r; q) by

(GaA)(r) = f ga(r; q)h(q)ds(q). (55)
Js>

We note that Gah is the scattering amplitude of the problem (Pa) corresponding to the
incident wave U'h, [7].

We assume that the incident fields in Theorem 3 are the Herglotz wave functions
U'h and U'v. Then, using the inner product on L2(S2), (•, •), and taking into account
the relations (53), (54), the basic scattering theorem takes the following form [8].

COROLLARY 2. The scattering amplitude operator Ga corresponding to the problem
(Pa), a = D, N,T satisfies the relation

(Gah, <p) + {h, Ga<p) = ~ — (Gah, GaV). (56)
2n

We shall now conclude this section by proving some properties of Ga.

COROLLARY 3. The scattering amplitude operator Ga, a = D, N,T has a countable
number of eigenvalues. All the eigenvalues X e C lie on the circle \X\2 + An Re A. = 0.

PROOF. From Corollary 2 we have

(h, G*a<p) + (h, Ga<p) = ~^(h, G*aGa<p), (57)

for all h, cp € L2(S2), where G* is the L2 adjoint of Ga, given by

(G»(f) = / ga(p;r)h(p)ds(p). (58)
Js1

The relation (57) implies that

G* + Ga = G*Ga. (59)
In

Using the reciprocity Theorem 2 we take, [7, p. 57],

= (Ga<p)(-r), (60)
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where tp(p) = h(—p). So we can conclude that

Consequently

that is, Ga is normal and hence has a countable number of eigenvalues.
Let Gah = Xh, X e C. Then, applying Corollary 2 for h = <p ^ 0 we take

(62)

5. The scattering cross-section

The scattering cross-section is defined as the ratio of the time average rate (over a
period) at which energy is scattered by the multi-layered scatterer, to the corresponding
time average rate at which the energy of the incident wave crosses a unit area normal
to the direction of propagation. The scattering cross-section has the dimensions of
area and is a measure of the disturbance caused by the multi-layered scatterer to the
incident wave. It is proved, as in the case of a single scatterer [19], that the scattering
cross-section is connected to the scattering amplitude via the relation

r; P)\2P)\2ds(r), (63)

fora = D,N,T.
When the multi-layered scatterer has inversion symmetry, that is, when the scatter-

ing amplitude in invariant under an interchange of the direction of observation p and
the direction of incidence q, then the reciprocity and scattering theorems reduce to

&(p; q) = ga(q; P), (64)

Re ga (p; q) = - ^ - f ga (f; q)gfl(r; p)rf5 (f), (65)
4n Jsi

respectively. Applying the relation (65) for p = q and taking into account (63) we
conclude that

aa = - ^ R e s a ( p ; p ) . (66)

Formula (66) is the acoustic version of the well-known [20] optical theorem of elec-
tromagnetic waves.
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REMARK 1. When \x = 1, the multi-layered scatterer degenerates to a penetrable
scatterer with a core for which acoustic low-frequency theory was developed in [10].
On the other hand when p0 = p, = . . . = pM ^ p ^ , and y0 = Y\ = • • • = Yn # )Vn >
then the layers disappear and the multi-layered scatterer coincides with its core. In this
case problems (PD), (/*#) and (PT) reduce to Dirichlet, Neumann and transmission
boundary value problems, respectively. Hence reciprocity, scattering and optical
theorems for sound - soft [9], - hard [19] and penetrable [9] scatterers follow from the
corresponding results for the multi-layered scatterer. When p0 ^ px = p2 = . . . =
pM+i and Yo i=- Y\ = Yi = • • • = Yn+\< m e n scattering occurs on the surface So only,
and (Pa) becomes a transmission problem for a single scatterer.

REMARK 2. More general boundary conditions can be imposed on the surface of the
core. We consider either resistive-transmission conditions

Pn (67)

or conductive transmission conditions

dn

on SM, (68)

where the function r] is Holder continuous on S^ [1]. In this case, the construction of
the normalized scattering amplitude is done as in Theorem 1 and the basic Lemma 2
remains valid. Thus, all the previous results, that is, reciprocity, scattering and optical
theorems, hold for the problems corresponding to these boundary conditions.

6. A more general theory

From (34) it follows that the effect of the layers on the solutions of the scattering
problems (Pa), a = D, N, T is transferred on the core. Hence the derivation of the
previous scattering relations is largely independent of the composition of the obstacle.
This suggests to us to develop a more general theory for scattering relations, using a
more general boundary condition on 50, omitting the layers.

Let A be a linear operator acting on a space of functions defined on So. We denote
by A* the adjoint of A with respect to the pairing

((p,x//):= I <p\j/ds. (69)L
https://doi.org/10.1017/S0334270000007736 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007736


444 Christodoulos Athanasiadis [14]

We introduce the linear space F(Q0) of all complex-valued functions u e C2(£2O) H
C'(fio) for which AM on So is defined. We consider the following boundary value
problem (PA).

Determine a function u € F(Q0) which satisfies

AM + k2u = 0 in Qo, (70)
du
— = AM on So, (71)
dn

u = us + u' in fi0, (72)

where u' is an incident wave and us is the scattered field satisfying the Sommerfeld
radiation condition. We assume that the problem (PA) has a unique solution for each
given incident wave. For the solvability of boundary value problems of this type we
refer to [17]. We define the operator A on F(Sl0) x F(fi0) by

As in Section 4, for an incident wave u'(r; p) = exp(i£p • r) we will denote the
total field in £20 and the scattering field for the problem (PA) by writing, respectively,
u(r; p) and us(r; p).

LEMMA 4. For the boundary value problem (PA) we have

{«(•; p), «(•; q)}5o = A(u(-; p), «(•; q)), (74)

{«'(•; p), «'(•; q)}So + {«*(•; p), «'(•; q)}So = A(«(-; p), «(•; q)), (75)

/or a// p, q € S2.

PROOF. The proof of (74) follows immediately if we make use of the boundary
condition (71). From (72) and the bilinearity of the form {•; •}$, we have

{«(•; p), «(•; q)}So = [us(-, p), u'(-; q)}^ + {us(-; p), M'(-; q)}^

+ {«'•(•; p),«'(-;q)}s +{M'(;P),M'(-;q)}S o.
(76)

Taking into account, as in the proof of Lemma 2, that

{«'(•; p), «'(•; q)}So = {«'(•; p), «'(•; q)}So = 0 (77)

and using (74), we have (75).
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If a time-harmonic plane wave u' (p; q) = expO'fcq • p) is incident upon the obstacle
fi, the normalized scattering amplitude g is defined, as in (11), by the relation

\ ) , p - * oo. (78)

Using the fundamental solution of the Helmholtz equation (70) and working as in
Lemma 3 we conclude that

^ [ « ( ; q ) , « ( ; p ) l • (79)
47T I lSo

We can now prove a general reciprocity principle.

THEOREM 4. The normalized scattering amplitude of the problem (PA) satisfies the
relation

) = S(-q; -P) + ^-A(«(-; q), «(•; -p) ) , (80)

for all p, q e S2.

PROOF. Using (75) and (79) we take

= ^ {«'(•; p), «'(•; q)}5o + ^ ( « ( . ; q), «(•; -p))

= ^ {«'(•; -p), «'O;-q)J + ^A(u(-; q), «(•; -p))

= g(~q; -P) + —A(u{-\ q), M(-; -p)),
An

which proves the theorem.

The basic scattering theorem for the problem (PA) has the following general form.

THEOREM 5. The normalized scattering amplitude of the problem (PA) satisfies the
relation

^ ^ — _ _ i r
S(P; q) + g(q; P) = - = - / «(r; q)g(r; p)ds(r)

-^-A(«(-;p),«(.;q)), (81)
47T

for all p, q € S2.
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PROOF. We use the same procedure as in Theorem 3. For the problem (PA) equations
(45), (47)-(49) and (51) remain valid and (46), in view of (74) is replaced by

{ M (;p) ,«( ;q)) = A(u(- p), «(•; q)). (82)

Hence the theorem is proved.

We now assume that the incident fields are Herglotz wave functions. Let uh, uv be
the total fields in Qo, u

s
h, «* the scattered fields and gh, g^ the normalized scattering

amplitudes corresponding to the problem (PA) with incident waves, the Herglotz,
functions U'h, U'v, respectively. Then, as in Corollary 1, from (79) and (51) which
remains valid for (PA), we have

u*9,ul] =^r I gv{r)W)ds(x), (83)
Jib IK Js2

\K' OS. = T f 8^)8H(r)ds(r). (84)
K J s2

Moreover employing the scattering amplitude operator G, given by (55), and using
(83), (84), the relation (81) becomes

(Gh, (p) + (h, G(p) = -^-(Gh, Gcp) - ^ - A O v uh). (85)
In 4n

Let us now consider the case where the operator A is self-adjoint. Then, for all
, \jr € F(Q) we have

) . (86)

Clearly, the following is true.

LEMMA 5. If A is a self-adjoint linear operator, then

M<P, VO = 0, (87)

for all <p, f

Therefore, if we apply (87) in Lemma 4 and in Theorems 4, 5 we will see that all the
results of the Sections 4 and 5 are included in the scattering relations for the problem
(PA), provided that A is self-adjoint. In particular we have the following.

COROLLARY 4. If A is a self-adjoint linear operator, then the normalized scatter-
ing amplitude of the problem (PA) satisfies the classical reciprocity relation, basic
scattering theorem and the optical theorem.

https://doi.org/10.1017/S0334270000007736 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007736


[17] On the acoustic scattering amplitude for a multi-layered scatterer 447

Furthermore, in view of (87) the relation (85) takes the form (56). Hence, for the
operator G the following holds.

COROLLARY 5. If A is a self-adjoint linear operator, then the scattering amplitude
operator G corresponding to the problem (PA) has a countable number of eigenvalues.
All the eigenvalues X € C lie on the circle \k\2 + 4n ReX = 0.
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