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Abstract

We give transcendence measures for p-adic numbers ξ, having good rational (respectively, integer)
approximations, that force them to be either p-adic S-numbers or p-adic T-numbers.

2010 Mathematics subject classification: primary 11J61; secondary 11J82.

Keywords and phrases: Mahler’s classification of p-adic numbers, p-adic S-number, p-adic T-number,
transcendence measure.

1. Introduction

In 1955, Roth [12] proved that irrational real algebraic numbers cannot be
approximable by rational numbers at an order greater than 2.

Theorem 1.1 (Roth [12], 1955). Let ξ be a real number and ε be a positive real
number. Suppose that there exists a sequence (pn/qn)∞n=1 of rational numbers such
that 2 ≤ q1 < q2 < · · · and

0 <
∣∣∣∣ξ − pn

qn

∣∣∣∣ < q−2−ε
n (n = 1, 2, . . .).

Then ξ is transcendental.

In 1964, under an additional assumption on the growth of the sequence (qn)n≥1
in Theorem 1.1, Baker [2] obtained a more precise conclusion than the simple
transcendence of ξ. Before stating his result, we shall recall the classifications of
transcendental real numbers defined by Mahler [9] in 1932 and by Koksma [7] in
1939. Let d be a positive rational integer and ξ a real number. Then wd(ξ) is
defined as the supremum of the real numbers wd for which there exist infinitely many
polynomials P(X) with rational integral coefficients and of degree at most d satisfying
the inequalities

0 < |P(ξ)| ≤ H(P)−wd ,

This work is supported by the Scientific Research Projects Coordination Unit of Istanbul University,
project number IRP-52249.
c© 2018 Australian Mathematical Publishing Association Inc.

203

https://doi.org/10.1017/S0004972718000515 Published online by Cambridge University Press

http://orcid.org/0000-0002-8621-5699
http://orcid.org/0000-0001-5805-7710
https://doi.org/10.1017/S0004972718000515


204 Y. Bugeaud and G. Kekeç [2]

where H(P) denotes the height of the polynomial P(X), that is, H(P) is the maximum
of the absolute values of the coefficients of P(X). On the other hand, w∗d(ξ) is defined
as the supremum of the real numbers w∗d for which there exist infinitely many real
algebraic numbers α of degree at most d satisfying the inequalities

0 < |ξ − α| ≤ H(α)−w∗d−1,

where H(α) denotes the height of α, that is, H(α) is the height of the minimal
polynomial of α over Z. Setting w(ξ) = lim supd→∞(wd(ξ)/d), Mahler [9] called ξ:

• an S -number if 0 < w(ξ) <∞;
• a T-number if w(ξ) =∞ and wd(ξ) <∞ for all positive rational integers d;
• a U-number if w(ξ) =∞ and wd(ξ) =∞ from some d onward.

Exactly in the same manner, setting w∗(ξ) = lim supd→∞
(
w∗d(ξ)/d

)
, and using w∗(ξ)

and w∗d(ξ) instead of w(ξ) and wd(ξ), Koksma [7] defined the classes of S ∗-, T ∗-
and U∗-numbers and proved that they coincide with those of S -, T- and U-numbers,
respectively. Thus, the real transcendental numbers are divided into three disjoint
classes. (See Bugeaud [3] for details of the classifications of Mahler and Koksma.)
Now we can state the result of Baker.

Theorem 1.2 (Baker [2], 1964). Let ξ be a real number and ε be a positive real
number. Suppose that there exists a sequence (pn/qn)∞n=1 of rational numbers with
gcd(pn, qn) = 1 (n = 1, 2, . . .) such that 2 ≤ q1 < q2 < · · · and

0 <
∣∣∣∣ξ − pn

qn

∣∣∣∣ < q−2−ε
n (n = 1, 2, . . .).

If

lim sup
n→∞

log qn+1

log qn
<∞,

then there exists a real number c, depending only on ξ and ε, such that

w∗d(ξ) ≤ exp exp{cd2} (d = 1, 2, . . .).

In particular, ξ is either an S-number or a T-number.

Recently, in 2010, Adamczewski and Bugeaud [1, Théorème 3.1] gave a new proof
of Theorem 1.2, based on a new application (Théorème EL in [1]) of a quantitative
version of Theorem 1.1 obtained by Evertse [6] and Locher [8]. Moreover, the result
of Adamczewski and Bugeaud [1, Théorème 3.1] improves the transcendence measure
given by Theorem 1.2. In Theorem 1.4, we give a p-adic analogue of Theorem 1.2 by
following the method of proof of Théorème 3.1 in [1]. Before stating our new result,
we recall the classifications of p-adic numbers in analogy with the classifications of
Mahler and Koksma of real numbers.

Throughout the present paper, p denotes a fixed prime number and | · |p denotes
the p-adic absolute value on the field Q of rational numbers, normalised such that
|p|p = p−1. We also denote the unique extension of | · |p to the field Qp of p-adic
numbers, the completion of Q with respect to | · |p, by the same notation | · |p.
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In 1958, Ridout [11] proved the p-adic analogue of Theorem 1.1. For coprime
nonzero integers x, y, write |x, y| for the maximum of |x| and |y|, that is, for the height
of the rational number x/y.

Theorem 1.3 (Ridout [11], 1958). Let ξ be a p-adic number and ε be a positive real
number. Suppose that there exists a sequence (xn/yn)∞n=1 of rational numbers with
gcd(xn, yn) = 1 (n = 1, 2, . . .) such that 2 ≤ |x1, y1| < |x2, y2| < · · · and

0 <
∣∣∣∣ξ − xn

yn

∣∣∣∣
p
< |xn, yn|

−2−ε (n = 1, 2, . . .).

Then ξ is transcendental.

Unlike the real case, we cannot replace |xn, yn| by |yn| in the statement of
Theorem 1.3 since, for any irrational p-adic number ξ and any positive real number ε,
there exists an integer x such that |ξ − x/y|p is less than ε.

Mahler [10], in 1935, proposed a classification of transcendental p-adic numbers in
analogy with his classification of transcendental real numbers. Let d be a positive
rational integer and ξ be a transcendental p-adic number. Then wd(ξ) is defined
as the upper limit of the real numbers wd for which there exist infinitely many
polynomials P(X) with rational integral coefficients and of degree at most d satisfying
the inequalities

0 < |P(ξ)|p ≤ H(P)−wd−1.

Setting w(ξ) = lim supd→∞
(
wd(ξ)/d

)
, we then call ξ:

• a p-adic S -number if 0 < w(ξ) <∞;
• a p-adic T-number if w(ξ) =∞ and wd(ξ) <∞ for all positive rational integers d;
• a p-adic U-number if w(ξ) =∞ and wd(ξ) =∞ from some d onward.

The p-adic transcendental numbers are divided into the three disjoint classes S , T and
U. (See Bugeaud [3] for more information about Mahler’s classification in Qp.) On
the other hand, in analogy with Koksma’s classification of real numbers, we define
w∗d(ξ) as the upper limit of the real numbers w∗d for which there exist infinitely many
p-adic algebraic numbers α of degree at most d satisfying the inequalities

0 < |ξ − α|p ≤ H(α)−w∗d−1.

Setting w∗(ξ) = lim supd→∞
(
w∗d(ξ)/d

)
, we define the p-adic S ∗-numbers, T ∗-numbers

and U∗-numbers, respectively, exactly as in the real case. Again, the classes S , T
and U are the same as the classes S ∗, T ∗ and U∗, respectively. (See Bugeaud [3] and
Schlickewei [13].)

A first goal of the present paper is to establish the following p-adic analogue of
Baker’s Theorem 1.2.

Theorem 1.4. Let ξ be a p-adic number and ε be a positive real number. Suppose
that there exists a sequence (xn/yn)∞n=1 of rational numbers with gcd(xn, yn) = 1 (for
n = 1, 2, . . .) such that 2 ≤ |x1, y1| < |x2, y2| < · · · and

0 <
∣∣∣∣ξ − xn

yn

∣∣∣∣
p
< |xn, yn|

−2−ε (n = 1, 2, . . .). (1.1)
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If

lim sup
n→∞

log |xn+1, yn+1|

log |xn, yn|
<∞, (1.2)

then ξ is transcendental and there exists a real number c, depending only on ξ and ε,
such that

w∗d(ξ) ≤ (2d)c log log 3d (d = 1, 2, . . .).

In particular, ξ is either a p-adic S-number or a p-adic T-number.

We point out that the bound on w∗d(ξ) in Theorem 1.4 does not depend on p. It has
the same shape as the bound obtained in the real case in [1, Theorem 3.1]. The same
remarks hold for our next result.

Theorem 1.5. Let ξ be a p-adic number and let ξ =
∑

k≥−k0
ak pk =

∑
j≥1 an j p

n j denote
its Hensel expansion, where k0 ≥ 0, a−k0 , 0 if k0 > 0, (n j) j≥1 is strictly increasing and
an j is in {1, . . . , p − 1} for j ≥ 1. Let ε be a positive real number. Suppose that there
exists an increasing sequenceJ = ( jk)k≥1 of positive integers such that n j+1 ≥ (1 + ε)n j
for j in J and

lim sup
k→∞

jk+1

jk
<∞.

Then ξ is transcendental and there exists a real number c, depending only on ξ and ε,
such that

w∗d(ξ) ≤ (2d)c log log 3d (d = 1, 2, . . .).

In particular, ξ is either a p-adic S-number or a p-adic T-number.

We display a straightforward application of Theorem 1.5.

Corollary 1.6. For any real number c > 1, the p-adic number
∑+∞

i=0 pbc
ic is either an

S-number or a T-number.

The proofs of Theorems 1.4 and 1.5 follow a method introduced in [1] and depend
on a quantitative version of Ridout’s theorem given in Theorem 2.1 in the next section.

We take this opportunity to give, in addition, an application of Theorem 2.1 to
the number of digit changes in the Hensel expansion of irrational algebraic p-adic
numbers, thereby improving [4, Theorem 2].

Let ξ be a p-adic number and denote by

ξ =

+∞∑
k=−k0

ak pk (ak ∈ {0, 1, . . . , p − 1}, k0 ≥ 0, a−k0 , 0 if k0 > 0)

its Hensel expansion. For a positive integer n, set

nbdc(n, ξ, p) = Card{1 ≤ k ≤ n : ak , ak+1}

and

S(n, ξ, p) =

n∑
k=1

ak.
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Theorem 1.7. Let p be a prime number. Let ξ be an algebraic irrational number in
Qp. For any positive real number δ with δ < 1/2 and any sufficiently large integer n,

nbdc(n, ξ, p) ≥ (log n)1+δ,

there are at least (log n)1+δ nonzero digits among the first n digits of the Hensel
expansion of ξ and, moreover,

(log n)1+δ ≤ S(n, ξ, p) ≤ n(p − 1) − (log n)1+δ.

The proof of Theorem 1.7 follows the same lines as that of [5, Theorem 3.1]. We
omit the details. The good approximations to ξ are obtained by truncating its Hensel
expansion and repeating the last digit. They are rational numbers, whose denominators
divide p − 1, and we apply Theorem 2.1 to (p − 1)ξ.

Corollary 1.8. For all real numbers c > 1 and η > 2/3, the p-adic number∑
j≥1

pbc
jη c

is transcendental.

2. Auxiliary result

The following theorem is a consequence of [5, Proposition A.1] and is the key point
in the proof of Theorems 1.4 and 1.5. It can be regarded as a p-adic analogue of
Théorème EL in [1].

Theorem 2.1 (Bugeaud and Evertse [5], 2008). Let α be a p-adic algebraic number of
degree d and height H, and let ε be a positive real number. Then the inequality∣∣∣∣α − x

y

∣∣∣∣
p
≤ |x, y|−2−ε

has at most
226(1 + 2/ε)3 log(2d + 4) log((1 + 2/ε) log(2d + 4))

solutions (x, y) ∈ Z2 with gcd(x, y) = 1 and

|x, y| ≥ max
((

2
√

d + 1H
)1/((d+1)(d+2))

, 42/ε).
Likewise, the inequality

|α − x|p ≤ |x|−1−ε

has at most
226(1 + 1/ε)3 log(2d + 4) log((1 + 1/ε) log(2d + 4))

solutions x ∈ Z with

|x| ≥ max
((

2
√

d + 1H
)1/((d+1)(d+2))

, 41/ε).
Theorem 2.1 follows from [5, Proposition A.1] in the same way as [5, Corollary

5.2] eventually follows from [5, Proposition A.1]. We omit the details.
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3. Proof of Theorem 1.4
Let all the hypotheses of Theorem 1.4 be satisfied. It follows from Theorem 1.3 that

ξ is a p-adic transcendental number. By (1.2), there exists a real number c > 1 such
that

|xn, yn| < |xn+1, yn+1| ≤ |xn, yn|
c (n = 1, 2, . . .). (3.1)

Let d be a positive rational integer and α be a p-adic algebraic number of degree d.
We choose α with sufficiently large height H(α) so that

|x1, y1| ≤
(
2
√

d + 1H(α)
)1/((d+1)(d+2))

is satisfied. Let j ≥ 2 be the unique integer satisfying

|x j−1, y j−1| ≤
(
2
√

d + 1H(α)
)1/((d+1)(d+2))

< |x j, y j|. (3.2)

We suppose that we choose α with sufficiently large height H(α) so that the inequality

|x j, y j| > max(42/ε, 4c(d + 1)c) (3.3)

is satisfied. Let χ be the real number defined by

|ξ − α|p = H(α)−χ.

We suppose that χ > 1 and we will bound χ from above.
Let K be the largest of the positive integers h satisfying |x j+h, y j+h|

2+ε < H(α)χ. Then

|ξ − α|p = H(α)−χ < |x j+h, y j+h|
−2−ε (h = 1, 2, . . . ,K). (3.4)

By (1.1) and (3.4),∣∣∣∣∣α − x j+h

y j+h

∣∣∣∣∣
p
≤ max

(∣∣∣∣∣ξ − x j+h

y j+h

∣∣∣∣∣
p
, |ξ − α|p

)
< |x j+h, y j+h|

−2−ε

for h = 1, 2, . . . ,K. As a result, the inequality∣∣∣∣α − x
y

∣∣∣∣
p
< |x, y|−2−ε

has at least K rational solutions x/y with gcd(x, y) = 1 and |x, y| > |x j, y j|. Hence, by
(3.2), (3.3) and Theorem 2.1,

K ≤ 226(1 + 2/ε)3 log(2d + 4) log((1 + 2/ε) log(2d + 4)). (3.5)

On the other hand, by χ > 1 and the choice of K, the inequalities (3.1), (3.2) and
(3.3) imply that

|x j, y j|
(2+ε)cK+1

≥ |x j+K+1, y j+K+1|
2+ε ≥ H(α)χ ≥ 2−χ(d + 1)−χ/2|x j, y j|

χ/c ≥ |x j, y j|
χ/(2c)

and so
χ ≤ 2(2 + ε)cK+2. (3.6)

It follows from (3.5) and (3.6) that there exists a real number c′, depending only on ξ
and ε, such that

w∗d(ξ) ≤ (2d)c′ log log 3d (d = 1, 2, . . .).

Then ξ is either a p-adic S -number or a p-adic T-number. This completes the proof of
Theorem 1.4.
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4. Proof of Theorem 1.5

Let all the hypotheses of Theorem 1.5 be satisfied. It follows from Theorem 2.1 that
ξ is a p-adic transcendental number. For J ≥ 1, set ξJ :=

∑J
j=1 an j p

n j . By assumption,
there exists a real number c > 1 such that

ξ j < ξ j+1 ≤ ξ
c
j ( j = 1, 2, . . .). (4.1)

Without loss of generality, we assume that k0 = 0. Consequently,

1 ≤ ξ j < p1+n j ( j = 1, 2, . . .)

and there exists j0 such that

|ξ − ξ j|p = p−n j+1 < ξ
−n j+1/(1+n j)
j < ξ−1−ε/2

j ( j ≥ j0). (4.2)

Let d be a positive rational integer and α be a p-adic algebraic number of degree d.
We choose α with sufficiently large height H(α) so that

ξ1 ≤
(
2
√

d + 1H(α)
)1/((d+1)(d+2))

is satisfied. Let j ≥ 2 be the unique integer satisfying

ξ j−1 ≤
(
2
√

d + 1H(α)
)1/((d+1)(d+2))

< ξ j. (4.3)

We suppose that we choose α with sufficiently large height H(α) so that the inequality

ξ j > max(42/ε, 4c(d + 1)c) (4.4)

is satisfied. Let χ be the real number defined by

|ξ − α|p = H(α)−χ.

We suppose that χ > 1 and we will bound χ from above.
Let K be the largest of the positive integers h satisfying ξ1+ε/2

j+h < H(α)χ. Then

|ξ − α|p = H(α)−χ < ξ−1−ε/2
j+h (h = 1, 2, . . . ,K). (4.5)

By (4.2) and (4.5),

|α − ξ j+h|p ≤ max(|ξ − ξ j+h|p, |ξ − α|p) < ξ−1−ε/2
j+h

for h = 1, 2, . . . ,K. As a result, the inequality

|α − x|p < x−1−ε/2

has at least K solutions in positive integers x with x > ξ j. Hence, by (4.3), (4.4) and
Theorem 2.1,

K ≤ 226(1 + 2/ε)3 log(2d + 4) log((1 + 2/ε) log(2d + 4)). (4.6)

https://doi.org/10.1017/S0004972718000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000515


210 Y. Bugeaud and G. Kekeç [8]

On the other hand, by χ > 1 and the choice of K, the inequalities (4.1), (4.3) and
(4.4) imply that

ξ(1+ε/2)cK+1

j ≥ ξ1+ε/2
j+K+1 ≥ H(α)χ ≥ 2−χ(d + 1)−χ/2ξχ/cj ≥ ξ

χ/(2c)
j

and so
χ ≤ 2(1 + ε/2)cK+2. (4.7)

It follows from (4.6) and (4.7) that there exists a real number c′, depending only on ξ
and ε, such that

w∗d(ξ) ≤ (2d)c′ log log 3d (d = 1, 2, . . .).

Then ξ is either a p-adic S -number or a p-adic T-number. This completes the proof of
Theorem 1.5.
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de Thue–Siegel–Roth–Schmidt’, Proc. Lond. Math. Soc. 101 (2010), 1–26.
[2] A. Baker, ‘On Mahler’s classification of transcendental numbers’, Acta Math. 111 (1964), 97–120.
[3] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160

(Cambridge University Press, Cambridge, 2004).
[4] Y. Bugeaud, ‘On the b-ary expansion of an algebraic number’, Rend. Semin. Mat. Univ. Padova

118 (2007), 217–233.
[5] Y. Bugeaud and J.-H. Evertse, ‘On two notions of complexity of algebraic numbers’, Acta Arith.

133 (2008), 221–250.
[6] J.-H. Evertse, ‘The number of algebraic numbers of given degree approximating a given algebraic

number’, in: Analytic Number Theory (Kyoto, 1996), London Mathematical Society Lecture Note
Series, 247 (Cambridge University Press, Cambridge, 1997), 53–83.
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