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We construct large Salem sets avoiding patterns, complementing previous
constructions of pattern avoiding sets with large Hausdorff dimension. For a
(possibly uncountable) family of uniformly Lipschitz functions {f; : (T%)*~2 — T4},
we obtain a Salem subset of T¢ with dimension d/(n — 1) avoiding nontrivial
solutions to the equation =y, — xp—1 = fi(1,...,2n—2). For a countable family of
smooth functions {f; : (T4)"~1 — T9} satisfying a modest geometric condition, we
obtain a Salem subset of T¢ with dimension d/(n — 3/4) avoiding nontrivial solutions
to the equation xp, = f(x1,...,Zn_1). For a set Z C T9" which is the countable union
of a family of sets, each with lower Minkowski dimension s, we obtain a Salem subset
of T¢ of dimension (dn — s)/(n — 1/2) whose Cartesian product does not intersect Z
except at points with non-distinct coordinates.
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1. Introduction

Geometric measure theory explores the relationship between the geometry of sub-
sets of ']I‘d, and analytic properties of Borel measures supported on those subsets.
From the perspective of harmonic analysis, it is interesting to explore what geo-
metric information can be gathered from the Fourier analytic properties of these
measures, in particular, their Fourier decay. Some results show that the support of
measures with Fourier decay must contain certain arrangements of points, such as
arithmetic progressions [1, 6, 16]. In this paper, we work in the opposite direction,
showing that most sets supporting measures with a certain type of Fourier decay
do not contain certain configurations. More precisely, for certain sets Z C (Td)",
and s > 0, we show that a ‘generic’ compact set E C T? supporting a measure
w such that [7(€)| < [€°7%/2 for any € > 0 also awvoids the pattern defined by Z,
in the sense that for any distinct points x1,...,2, € E, (x1,...,2,) € Z. As an
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example, one might have Z = {(z1,...,2,) € T . 2, = flz1,...;2p_1)}, In
which case a set E avoids Z precisely when, for any distinct points z1,...,2, € E,
Ty # f(x1,...,2n-1), i.e. E does not contain nontrivial solutions to the equation
Tn = (X1, Tp1).

A useful statistic associated with any Borel set E C T is its Fourier dimension;
given a finite Borel measure p, its Fourier dimension dimg(y) is the supremum
of all s € [0,d] such that supgcza [71(€)]|€]*/? < o0o. The Fourier dimension of a
compact Borel set E is then the supremum of dimp(u), where u ranges over all
Borel probability measures pu with supp(p) C E. A particularly tractable family
of sets in this scheme are Salem sets, sets whose Fourier dimension agrees with
their Hausdorff dimension. Often constructions in the pattern avoidance literature
focus on constructing sets with large Hausdorff dimension which avoid patterns [3,
5, 11], but it is not necessarily possible to use the same techniques to construct
large Salem sets avoiding patterns, or even to construct sets with positive Fourier
dimension, since having large Fourier dimension is often a much stronger property
than having large Hausdorff dimension. Nonetheless, in this paper we are able to
provide techniques proving the existence of large Salem pattern avoiding sets.

One heuristic reason why Fourier decay can guarantee patterns where other
notions of dimension is that the existence of a given pattern can often be detected
via understanding a ‘blending’ of p with itself (e.g. for linear patterns, this opera-
tion is convolution). Such blending operations often magnify Fourier decay, which
acts as a kind of ‘uniform measure of smoothness at all frequency scales’. Such mag-
nification is not necessarily true without the assumption of uniform Fourier decay.
For instance, if supp(p) is contained in the middle thirds Cantor set (with Hausdorff
dimension log;(2)), the convolution g # p1* 4%y must be singular, concentrated near
numbers with particular ternary expansions (reflecting the fact that 7i(3™) cannot
tend to zero as n — oo), whereas for a measure p with |f(€)| < [£]71983(2)/2 the
convolution p * p % p % p is always a continuous function, guaranteeing this lack of
concentration. Nonetheless, the distinction between Hausdorff and Fourier dimen-
sion in pattern avoidance can be subtle, and this is especially so when studying
non-linear patterns.

Our paper is part of a growing body of literature on pattern avoidance problems:
given a set Z C ’]I‘d", the pattern avoidance problem for Z asks to construct a
pattern avoiding set E C ’]I'd7 a set such that for any distinct x1,...,x, € E,
(x1,...,2,) € Z, which is as large as possible with respect to some particular
statistic relevant to the problem, such as the Hausdorff or Fourier dimension. The
main inspiration for the results of this paper were the results of [3] on ‘rough’
patterns, which constructed, for any set Z C T¢" formed from the countable union
of closed sets with lower Minkowski dimension at most «, a set E avoiding Z with

dimg (E) = min (d"a,d). (1.1)
n—1

While the sets E constructed using this method are not guaranteed to be Salem,

the techniques in the method (an iterative random selection procedure) seemed

amenable to produce Salem sets, since random methods are often very useful for

constructing Salem sets (randomly constructed functions are often uncorrelated
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with oscillation at any particular frequency, and thus tend to have good Fourier
decay properties). Our goal was thus to modify the construction of [3] in order to
ensure the resulting sets constructed were Salem.

CONJECTURE 1.1. For any set Z C T which is the countable union of closed sets
of lower Minkowski dimension «, there exists a set E C T with

. . [(dn—«
dimp(E) = mm( — ,d) ,

such that for any distinct x1,...,2, € E, (x1,...,2n) € Z.

Theorem 38 of [2] provides a baseline for this conjecture, constructing a Salem
set E avoiding Z with

dimp(E) = min (d”n_ a,d) . (1.2)

In this paper, we are only able to prove Conjecture 1.1 when Z exhibits a weak
translation symmetry, as detailed in Theorem 1.4 of this paper. But even for more
general sets, we are able to improve upon the dimension given by (1.2), as detailed
in Theorems 1.2 and 1.3.

The assumption in Conjecture 1.1 that Z is formed from sets with a given lower
Minkowski dimension is not the only way one might measure the ‘dimension’ of
a pattern. For instance, one might instead use the Hausdorff dimension of Z (a
weaker assumption than lower Minkowski dimension) or perhaps even the Fourier
dimension of Z itself (a stronger assumption). But lower Minkowski dimension
provides the most effective way of discretizing the pattern at each scale in our
arguments. We are unsure whether changing these assumptions changes the Fourier
dimension of the set E constructed in Conjecture 1.1.

The methods in this paper are generic, in the sense of the Baire category theorem;
we define a complete metric space X for each 8 € (0, d], which consists of all pairs
(E, u), where E is a compact set, and p is a Borel probability measure supported on
E with dimp(p) > 8. We then show that for an appropriate choice of 8, the family
of all pairs (E, u) € X such that E is Salem and avoids a pattern is comeager, or
generic in X (the complement of a set of first category). In particular, the Baire
category theorem then guarantees that there exists many sets £ with dimg(FE) = 8
which avoid a given pattern.

Many other approaches [3, 5, 9] to the pattern avoidance problem construct
large pattern avoiding sets explicitly, exchanging nonconstructive Baire category
type methods for various constructive queuing techniques. The approaches in this
paper can be modified to give a constructive queuing argument for the existence
of sets with the properties guaranteed in Theorems 1.2, 1.3, and 1.4. But using
Baire category techniques allows us to avoid the technical numerology that goes
into these constructions, so that we can focus on the more novel aspects of our
analysis. See Remark 4.3 for a brief outline of how one might obtain such a queuing
construction.

Let us now introduce the three primary results of this paper. Theorem 1.2 has
the weakest conclusions and its proof relies on a small modifications of previous
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techniques that exist in the literature, e.g. in [7]. But the theorem works for the
most general family of patterns, and its proof acts as a good foundation on which
to build the more novel and powerful theorems in this paper.

THEOREM 1.2. Fiz 0 < a < dn, and let Z C T be a compact set with lower
Minkowski dimension at most . Set

. [(dn—a
ﬁo = min <’n]—1/27d) .

Then there exists a compact Salem set E C T with dimp(E) = By, such that for
any distinct points x1,...,x, € E, (z1,...,2,) € Z. Moreover, if 8 < By, then
the family of all pairs (E,u) € Xg such that E is Salem and avoids the pattern
generated by Z is comeager.

The remaining two results give a more novel analysis, improving upon the result
of Theorem 1.2 when the pattern Z satisfies additional regularity conditions. In
these latter theorems, we focus on patterns specified by equations of the form

Tn = f(irlv e 7x’n71)7

i.e. where Z = {(x1,...,2p) : ¢, = f(x1,...,2n-1)}, and our assumptions will
be on structure of the function f. Under the assumption that f is smooth, and
satisfies a regularity condition geometrically equivalent to the graph of f being
transverse to any axis-oriented (n — 2) x d dimensional plane in (R%)"~!, we are
able to improve the Fourier dimension bound obtained using previous construction
techniques, though not quite enough to match the Hausdorff dimension bound
obtained in [5], except in the fairly trivial case where n = 2 (though see the fourth
remark below).

THEOREM 1.3. Consider a smooth function f : V — T%, where V is an open subset
of TV such that for each k € {1,...,n— 1}, the matriz

_ ofi
Do f(1,- s wna) = (a(wk)j)1<ij<d

is invertible whenever x1, ... ,x,_1 are distinct and (x1,...,2,-1) € V.. Then there
exists a compact Salem set E C T with dimension

d in =2
Bo =
d/(n—3/4) :n>3
such that for any distinct points x1,...,x, € E, with x1,...,xp_1 €V,

T 7{ f(xla cee 7xn—1)-

Moreover, if B < Bo, then the family of pairs (E,u) € Xg such that E is Salem and
does not contain any solutions to the equation x, = f(x1,...,%n—1) is comeager.
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Finally, we consider patterns defined by equations which feature some translation
invariance. Here we can construct Salem sets with dimension exactly matching the
Hausdorff dimension results obtained in [3]. The simplest example of such a pattern
is that specified by a family of equations of the form myxy +- - -+ myx, = s, where
at least two of the integers mq,...,m, € Z is nonzero, and s ranges over a low
dimension set in T¢. But we can also consider more nonlinear patterns, such as
those formed by solutions to an equation

Tp — aTp—1 = f(x1,...,Tn_2),

for a non-zero rational number a, and a locally Lipschitz function f. Even in the
case where f is linear, this theorem gives new results.

THEOREM 1.4. Fiz d(n—1) < a < dn, a non-zero rational number a, and a locally
Lipschitz function f :' V. — R, where V is an open subset of T4=2), Suppose
F C R is a compact set with lower Minkowski dimension at most « —d(n —1). Set

7dn—a

Bo =

n—1"

Then there exists a compact Salem set E C T¢ with dimp(E) = By such that for
any distinct points x1,...,x, € E, with (z1,...,2,-2) €V,

Tp —aTp—1 — f(x1,...,Tp_2) & F.

Moreover, if B < By, then the family of all pairs (E, 1) € X such that E is Salem
and does not contain distinct points satisfying the equation above is comeager in
Xjs.

Under the assumptions of Theorem 1.4, the set
Z ={(x1,...,zn) € T : 2, — azp_1 — f(z1,...,xn_2) € F}

has lower Minkowski dimension at most «. Observing the value §y in that Theorem,
we see that in this setting, we see we have verified Conjecture 1.1 for such patterns.

THEOREM

(1) Because we are using Baire category techniques, the results we obtain remain
true when, instead of avoiding a single pattern, we avoid a countable family
of patterns. This is because the countable union of sets of first category is
a set of first category. As an example of this property, we note that the
conclusion of Theorem 1.2 holds when Z is replaced by a countable union
of compact sets, each with lower Minkowski dimension at most . Similar
generalizations apply to Theorems 1.3 and 1.4.

(2) It is quite surprising that we are able to generically improve the bound (1.2)
in the sense of the Baire category theorem. In [14], for each B, a natural
probability measure, the fractal percolation, is constructed on the space of
all B-dimensional subsets of T¢, and the question of for which 8 a fractal
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percolation almost surely contains a given pattern is studied. Such fractal
percolations will almost surely be Salem sets, which connects such questions
to our problem. The patterns they study in their paper are slightly different
from the regimes of this paper under which sharper results are obtained,
i.e. as gwen in Theorems 1.3 and 1.4. But even using the more general
result of Theorem 1.2 we see that the parameters under which a random 3
dimensional set almost surely contains a pattern behave quite differently to
the parameters under which a generic 8 dimensional set in X3 contains a
pattern.

More precisely, consider the set Z C T defined to be the family of all
translations and dilations of a fized tuple of points (y1,...,yn) € T, Then
Z has dimension d + 1, which we will label a. Theorem 1.1 of [14] implies
that for any B > (dn — a)/n, a random fractal percolation E C T% will
almost surely contain points xi,...,T, € E such that (z1,...,2,) € Z.
On the other hand, Theorem 1.2 of this paper implies that for any 5 <
(dn—a)/(n—1/2), a generic element of X3 does not contain any instances
of the pattern specified by Z. Thus the theorems in this paper imply that
generic pattern avoidance in a Baire category sense differs from generic
pattern avoidance in a probabilistic sense, at least in the range (dn—a)/n <
B < (dn—a)/(n—1/2).

(3) If Z C T is a compact set with lower Minkowski dimension a with 0 < o <
d, then for any 1 < i < d, the set T¢ —7i(Z) has full Hausdor(f dimension
d, where m; : T™ — T% is given by m;(21,...,2n) = x;. Thus the pattern
avoidance problem is trivial in this case for Hausdorff dimension. This is
no longer true when studying Fourier dimension, since T¢ —7i(Z) need not
be a Salem set, nor even have particularly large Fourier dimension, making
the results of this paper still interesting in this range.

That this is true is hinted at in Example 8 of [4], where it is shown that
there exists a set X C T which is the countable union of compact sets { Xy},
with supy, dimy(Xy) < 3/4, such that dimp(T —X) < 3/4. Thus T—X is
not a Salem set, since T has Hausdorff dimension one. The pattern

n—1
7 — U Ql % X x anifl,
1=0

18 a countable union of compact sets, each with Minkowski dimension at
most 3/4. On the other hand, for each i € {1,...,n}, we find that

Thus the trivial solution obtained by removing a projection of Z onto a par-
ticular coordinate axis does not necessarily give a pattern avoiding set with
optimal Fourier dimension in this setting. Applying Theorem 1.2 naively
to the pattern Z shows that a generic Salem set E C T of dimension
(n—3/4)/(n — 1/2) avoids Z, which exceeds the dimension of the trivial
construction for allm > 1. In fact, a generic Salem set E C T of dimension
1 will avoid Z, since any subset of T—X will avoid Z, and Theorem 1.2
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applied with Z = X implies that a generic Salem set E of dimension 1 will
be contained in T —X.

(4) If n = 2, the problem of constructing a set which avoids solutions to the
equation y = f(x) for a continuous function f : V — T s essentially
trivial. If there exists v € T such that f(x) # x, there there exists an open
set U around x such that UN f(U) = 0. Then U has full Fourier dimension,
and avoids solutions to the equationy = f(x). On the other hand, if f(z) =
for all z, then there are no distinct © and y in [0,1] such that y = f(x),
and so the problem is also trivial. But it is a less trivial to argue that a
generic set with full Fourier dimension avoids this pattern, which is proved
in Theorem 1.3, so we still obtain nontrivial information in this case.

(5) Working on patterns on R is not significantly different from working over
T, For our purposes, the latter domain has several notational advantages,
which is why in this paper we have chosen to work with the pattern avoidance
pattern in this setting. But there is no theoretical obstacle in applying the
techniques described here to prove the existence of pattern avoiding sets in
RY. Let us briefly describe how this can be done. Given a finite Borel measure
W on RY, we define the Fourier dimension dimp(u) of p to be the supremum
of all s € [0,d] such that supgcga I(6)|€]*/? < o0, and define dimg(E) for
a Borel set E C R? to be the supremum of the quantities dimy(p), taken
over finite Borel measures p supported on E. It is a simple consequence
of the Poisson summation formula that if p is a compactly supported finite
measure on RY, and we consider the periodization pu* of u, i.e. the finite
Borel measure on T such that for any f € C’(Td),

/ f(2) dp* (z) = / f() du(z), (1.3)
Td R

then dimp(p*) = dimp(p). A proof is given in Lemma 39 of [2]. Since p
is compactly supported, it is also simple to see that dimg(p*) = dimg(p).
It follows that if E is a compact subset of [0,1)%, and 7 : [0,1)¢ — T% is
the natural projection map, then dimp(E) = dimp(7(E)) and dimg(E) =
dimg(7w(FE)). These results therefore imply we can reduce the study of pat-
terns on R™ to patterns on T™, and thus obtain analogous results to
Theorems 1.2, 1.3, and 1.4 for the construction of Salem sets avoiding pat-
terns in R, where every instance of T in the statement of those theorems is
replaced by [0, 1].

2. Notation

e Given a metric space X, a point x € X, and a positive number € > 0, we
let B.(x) denote the open ball of radius e around z. For z € X, we let ¢,
denote the Dirac delta measure at x. For a set £ C X and ¢ > 0, we let
N(E,e) = U,cp B:(7) denote the e-neighborhood of the set E. For two sets
Fq, By C X, we let

d(Ey, E2) = inf{d(x1,22) : 1 € E1, 22 € Eq},
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and then define the Hausdorff distance

du(FE1, Es) = max( sup d(z1, Es), sup d(El,m2)> .

r1€E, z2€E>

If dg(Ey1,FE2) < e, then Ey C N(Es,e) and E; C N(Ep,¢), and the
Hausdorff distance can be described as the infimum of such .

e A subset of a metric space X is of first category, or meager in X if it is
a subset of the countable union of closed sets with empty interior, and is
comeager if it is the complement of such a set (it contains a countable
intersection of open, dense sets). We say a property holds quasi-always, or a
property is gemeric in X, or quasi-all elements of X have a property, if the
set of points in X satisfying that property is comeager. The Baire category
theorem then states precisely that any comeager set in a complete metric
space is dense.

e We let TY = R?/Z%. Given z € T, we let |z| denote the minimal absolute
value of an element of R lying in the coset of z. For z € T¢, we let |z| =
VI]z1[2+ - 4 |24]2. The canonical metric on T is then given by d(z,y) =

| — yl, for z,y € T
For an axis-oriented cube @ in T?, and some ¢ > 0, we let {Q be the
axis-oriented cube in T¢ with the same centre and ¢ times the sidelength.
We say a family of subsets A of T is downward closed if, whenever E € A,
any subset of F is also an element of A. The quintessential downward closed
family for our purposes, given a set Z C Td”, is the collection of all sets
E c T that avoid the pattern Z, i.e. such that for any distinct points
X1y, 2n €E, (21,...,2,) & Z.
e For o € [0,d] and 6 > 0, the (a,d) Hausdorff content of a Borel set E C T%
is

H§(E) —inf{ng B C U B, (zx) and 0 < g < ¢ for all k > 1}.
k=1 k=1

The « dimensional Hausdorff measure of E is equal to

H*(E) = lim H§(E).
6—0

The Hausdorff dimension dimy(E) of a Borel set E is then the supremum
over all s € [0,d] such that H*(F) = oo, or equivalently, the infimum over
all s € [0,d] with H*(E) = 0.

For a measurable set E C T, we let |E| denote its Lebesgue measure.
We define the lower Minkowski dimension of a compact Borel set E C T¢
as

dimy (E) = liminf d — log,. |[N(E, r)|.
r—0
Thus dimy;(E) is the largest number such that for a < dimy,(FE), there

exists a decreasing sequence {r;} with lim; o, 7; = 0 and |N(E, ;)| < ri~®
for each i.
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e At several points in this paper we will need to employ probabilistic con-
centration bounds. In particular, we use McDiarmid’s inequality. Let S
be a set, let {X1,...,Xn} be an independent family of S-valued ran-
dom variables, and consider a function f : SN — C. Suppose that for
each i € {1,..., N}, there exists a constant A; > 0 such that for any
Tlyen oy Tim1,Tit1,. .., &N € 5, and for each z;, 2} € S,

|f(:1c1,...,33i7...,3:N)—f(xl,...,:c;7...7xN)| SAz

Then McDiarmid’s inequality guarantees that for all ¢ > 0,

o2
P(f(X1, . Xn) — B(f(X1,..., Xn))| > £) < dexp (M) .

Proofs of McDiarmid’s inequality for real-valued functions are given in many
probability texts, for instance, in Theorem 3.11 of [15], but can be triv-
ially extended to the complex-valued case by taking a union bound to the
inequality for real and imaginary values of f.

A special case of McDiarmid’s inequality is Hoeffding’s Inequality.
Hoeffding’s inequality is often stated in slightly different ways depending on
the context; In this paper we use the following formulation: if {X7,..., Xy}
is a family of independent random variables, such that for each i, there exists
a constant A; > 0 such that |X;| < A; almost surely, then for each ¢ > 0,

P([(X14 - +Xn)—E(X1+-+Xn)| > 1)

—¢2
§4exp< )
2(AT + - + AR)

3. Applications of our results

3.1. Arithmetic patterns

An important problem in current research on pattern avoidance is to construct sets
FE which avoid linear patterns, i.e. sets E which avoid solutions to equations of the
form

miry+---+mpz, =0 (3.1)

for distinct points x1,...,x, € E. This is one scenario in which we know upper
bounds on the Fourier dimension of pattern avoiding sets. It is simple to prove
that if £ c T¢, dimp(E) > 2d/n, and mq,...,m, are non-zero integers, then
mi1E+---+m,FE is an open subset of T?. This is obtained by a simple modification
of the argument of [12, Proposition 3.14]. Thus there exists some choice of integers

maq,...,m, and distinct points xy,...,x, € F such that mixy + --- + m,x, = 0.
Recently, under the same assumptions, Liang and Pramanik [10] have shown that
for d = 1, one can choose these integers mq,...,m, to satisfy m; +--- 4+ m, = 0.

These results drastically contrasts the Hausdorff dimension setting, where there
exists sets £ C T with dimg(F) = d which are linearly independent over the
rational numbers, and thus avoid nontrivial solutions to integer equations of an
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arbitrary size (see [9] for a discussion of the case where d = 1, whose proof can be
adapted to higher dimensions).

If dimp(F) > d/n, and mq,...,m, # 0, then the set m1E + --- + m,E has
positive Lebesgue measure [12, Proposition 3.14]. This does not necessarily mean
that F will contain solutions to the equation miz1 + - - - +m,x, = 0, but indicates
why it might be difficult to push past the current Fourier dimension estimates
obtained in (1.2), which construct sets with Fourier dimension d/n avoiding such
patterns. The first success in pushing past this barrier was the main result of [8],
which showed that for each n > 0, there exists a set £ C T with Fourier dimension
1/(n — 1) such that for any integers myq, ..., m, € Z, not all zero, and any distinct
Tlyeeoy Ty € ’]Td, mixy + -+ + mpx, # 0. The technique used to control Fourier
decay in that paper (bounding first derivatives of distribution functions associated
with the construction of a random family of pattern avoiding sets) relies heavily on
the one dimensional nature of the problem, which makes it difficult to generalize
the proof technique to higher dimensions. The results of this paper imply a more
robust d-dimensional generalization of the result of [8].

THEOREM 3.1. Suppose F' C T? is the countable union of a family of compact sets,
each with lower Minkowski dimension . Then there exists a Salem set E C T% of
dimension (d—a)/(n—1) such that for any x € F, any distinct x1,...,2, € E, and
any integers my, ..., my € Z, mix1+- -+ mpx, # x. Moreover, if Bo = d/(n—1),
then for any B < By, and for a generic set (E, 1) € Xg, the set E has this property.

Proof. It will suffice to show that a generic set (E, u) € Xp is Salem and avoids
solutions to equations of the form

Ty — Up_1Tp_1 = T+ agrz + -+ + a4pTy, (3.2)

with ag,...,a, € Q, x € F, and where either a,,_1 #0,0r ag = a3 =---=a, = 0.
Without loss of generality, we may assume F' is compact and has lower Minkowski
dimension «. If a,,_1 # 0, then Theorem 1.4 applies directly to the equation

Ty — Ap1Tp—1 — f(@1,...,Tpn_2) € F, (3.3)

where f(z1,...,2n-2) = a121+ -+ ap—_2%,—2. Applying Theorem 1.4, we conclude
that the set of (E,u) € X such that E is Salem and avoids solutions to (3.3) is
comeager. On the other hand, if as = a3 = --- = a,, = 0, then the equation we
must avoid is precisely

xr1 € S, (34)

and it follows from Theorem 1.2 with Z = S and n = 1 that the set of (E, ) € X3
such that E is Salem and avoids solutions to (3.4) is comeager. Taking countable

unions ranging over the choices of coefficients as, ..., a, shows that the set of all
(E,p) € Xp such that E is Salem and avoids all n-variable linear equations is
comeager, which completes the proof. O

REMARK 3.2. For particular linear patterns, it is certainly possible to improve the
result of Theorem 3.1. For instance, Shmerkin [13] constructed a set E C T with
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dimp(E) = 1 which contains no three numbers forming an arithmetic progressions,
i.e. solutions to the linear equation

(l‘3 - .1?2) — (xg — 1‘1) =0.
This equation can also be written as
xr3 — 2x1 + 21 = 0.

Liang and Pramanik [10] generalized this technique by constructing, for any finite
family of translation-invariant linear functions {f;}, a set E C T with dimp(E) = 1
such that for distinct z1,...,z, € F, and any index i, f;(z1,...,2,) # 0. This
same paper even constructs a set with Fourier dimension close to one avoiding an
uncountable family of translation-invariant linear functions, though only those that
are of a very special form. The advantage of Theorem 3.1 is that it applies to a very
general family of uncountably many linear equations, though one does not obtain
as high a Fourier dimension bound as those obtained in [10] and [13]. Nonetheless,
though we construct sets of dimension d/(n — 1), we still remain quite far away
from the best known upper bound 2d/n of the Fourier dimension of a set avoiding
general integer linear equations.

The arguments in this paper are heavily inspired by the techniques of [8], but
augmented with some more robust probabilistic concentration inequalities and oscil-
latory integral techniques, which enables us to push the results of [8] to a much
more general family of patterns. In particular, Theorem 1.4 shows that the results
of that paper do not depend on the rich arithmetic structure of the equation
mix1 + -+ + mpx, = 0, but rather only on a very weak translation invariance
property of the pattern. We are unable to close the gap between the upper bound
2d/n of sets avoiding n-variable linear equations for n > 3, which would seem to
require utilizing the full linear nature of the equations involved much more heavily
than the very weak linearity assumption that Theorem 3.1 requires.

3.2. Isosceles triangles on curves, and other nonlinear patterns

Theorems 1.2, 1.3, and 1.4 can be applied to find sets avoiding linear patterns, but
the main power of these results that they can be applied to ‘nonlinear’ patterns
which cannot be analysed quite as easily via the Fourier transform. As a result,
relatively few results exist showing that sets with large Fourier dimension avoid
patterns, though some partial results are given in [6] for a slightly different regime
than that considered here; we do not even know if sets £ C T with Fourier dimen-
sion one contain one of the simplest nonlinear patterns {z,v, 2,z + (y — x)?}, and
results like that of [13] show that even in the linear setting it is difficult to conjec-
ture what might be optimal in this setting. However, Theorem 1.4 applies to this
pattern, since the pattern is specified by the equation z — x = (y — w)?, obtaining
a Salem set £ C T of dimension 1/3 avoiding this pattern, the first proof of the
existence of a set with positive Fourier dimension avoiding isosceles triangles in the
literature.

In this section, we consider a more geometric example of a non-linear pattern,
finding subsets of curves which do not contain isosceles triangles; given a simple
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segment of a curve given by a smooth map v : [0,1] — Rd, we say a set E C
[0,1] awvoids isosceles triangles on ~ if for any distinct values tq,t2,t3 € [0,1],
|v(t1) =~ (t2)| # |v(t2) —7y(t3)], i-e. if v(F) does not contain any three points forming
the vertices of an isosceles triangle. In [5], methods are provided to construct sets

C [0,1] with dimg(E) = logs;2 =~ 0.63 such that y(E) does not contain any
isosceles triangles, but E is not guaranteed to be Salem. Using the results of this
paper, we can now construct Salem sets E C [0,1] with dimp(E) = 4/9 ~ 0.44,
such that v(E) does not contain any isosceles triangles.

THEOREM 3.3. For any smooth map v : [0,1] — R with ~/(t) # 0 for all t € [0,1],
there exists a Salem set E C [0,1] with dimp(E) = 4/9 which avoids isosceles
triangles on 7.

Proof. Assume without loss of generality (working on a smaller portion of the curve
if necessary and then rescaling) that there exists a constant C' > 1 such that for
any t,s € [0,1],

() = (s) = (t = )7 (0)] < C(t - )%, (3.5)
/O <Y<, (3.6)

and
' (t) =+ (s)] < CJt — s]. (3.7)

Let e = 1/2C3, and let

F(t1,ta,t3) = |y(t1) = 7(t2)|* = [7(t2) —v(ta)[*. (3.8)
A simple calculation using (3.5) and (3.6) reveals that for 0 < t1,t2 < ¢,

oF

o, | = 2 [(Y(t1) = (t2)) -7 (t1)] = (2/C)[t2 — ta| = 20tz — t1]* = (1/C)[t2 — ta].
(3.9)

This means that OF/0t; # 0 unless t; = t5. Thus the implicit function theorem

implies that there exists a countable family of smooth functions {f; : U; — [0, 1]},

where U; C [0,¢]? for each i and f;(t2,t3) # t3 for any (t2,t3) € U, such that if

F(t1,t2,t3) = 0 for distinct points t1, ts,t3 € [0, ], then there exists an index ¢ with

(tg,tg) cU; and t1 = fi(tg,t;),).

Differentiating both sides of the equation

(it t3)) — 7 (t2)* = [(t2) — ~(t) (3.10)
in 9 and t3 shows that
8fl ( (fz(t27t3)) _7(t3)) ( )
9t ) = Gl )] - 1)) - VUil 13)) (8.11)
and
o7, ~(y(t2) — (t2)) ' (ts)
9t ") = Gl ) — 7(t2) 7 il ts)) (3.12)
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In order to apply Theorem 1.3, we must show that the partial derivatives in 3.11
and 3.12 are both non-vanishing for t,t3 € [0,¢]. We calculate using (3.5), (3.6)
and (3.7) that

|(V(filt2, t3)) — v(t3)) -7 (t2)] > [(v(filtas t3)) — v(t3)) - (t3)]
+ [(v(fi(ta, t3)) — v(t3)) - (7' (t2) — ' (t3))]
> (1/O)|filta, ts) — ts| — C%|fi(ta, ts) — ts|[ta — t3
> (1/C = C%)|fi(ta, t3) — ts]
> (1/2)|fi(t2, ts) — ta].
(3.13)

Since fi(te,t3) # ts for all (t2,t3) € U, it follows from (3.11) and (3.13) that if
(tg,tg) € U; with tq 75 ts,
ofi
Oty
A similar calculation to (3.9) shows that for to,t5 € [0,¢],

(ta,t3) # 0. (3.14)

[(¥(t2) = (ts)) -7/ (ts)] = (1/C)Jt2 — t3]. (3.15)
Combining (3.12) with (3.15) shows that for to # t3 with (t2,t3) € Uj,
Ofi
O 12,15) £, (3.16)

verifying the partial derivatives are non-vanishing.

Now (3.14) and (3.16) imply that each function in the family {f;} satisfy the
hypothesis of Theorem 1.3. Thus that theorem implies that for 8 = 4/9, each index
i, and a generic element of (E, u) € AXjp, the set E is Salem and for any distinct
t1,ta,t3 € EN|0,¢], fi(t1,t2,t3) # 0. This means precisely that |y(t1) — v(t2)| #
|v(t2) —y(t3)| for any distinct t1,ta,t3 € E. Thus we conclude we can find a Salem
set E C [0,e] with dimp(F) = 4/9 such that v(F) does not contain the vertices of
any isosceles triangles. O

Theorem 1.2 can also be used to construct sets with a slightly smaller dimension
avoiding isosceles triangles on a rougher family of curves. If we consider a Lipschitz
function ~ : [0, 1] — R%™!, where there exists M < 1 with |y(t) — v(s)| < M|t — s]
for each ¢, s € [0, 1], then Theorem 3 of [3] guarantees that the set

Z = {(x1,x2,x3) c[0,1]%: (w1,7(71)), (w2, 7(72)), (73, 7(73)) }

form the vertices of an isosceles triangle.

has lower Minkowski dimension at most two. Thus Theorem 1.2 guarantees that
there exists a Salem set E C [0,1] with dimp(E) = 2/5 = 0.4 such that vy(E)
avoids all isosceles triangles. The main result of [5] constructs a set E C [0, 1] with
dimg(E) = 0.5 such that (E) avoids all isosceles triangles, but this set is not
guaranteed to be Salem.
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4. A metric space controlling Fourier dimension

In order to work with a Baire category type argument, we must construct an appro-
priate metric space appropriate for our task, and establish a set of tools for obtaining
convergence in this metric space. In later sections we will fix a specific choice of
8 to avoid a particular pattern. But in this section we let § be an arbitrary fixed
number in (0, d]. Our approach in this section is heavily influenced by [8]. However,
we employ a Fréchet space construction instead of the Banach space construction
used in [8], which enables us to use softer estimates in our arguments, with the
disadvantage that we can obtain only Fourier dimension bounds in Theorems 1.2,
1.3, and 1.4 at the endpoint dimensions 8y considered in the theorems, rather than
the explicit decay estimates as is obtained, for instance, in Theorem 2.4 of [8]:

e We let € denote the family of all compact subsets of T%. If we consider the
Hausdorff distance dy between sets, then (€,dy) forms a complete metric
space.

e We let M, () consist of all finite Borel measures z on T such that for each
Ae(0,8),

Il areny = sup |E(E)]1€1M2
ezl

is finite. Then || - [|a7(x) is a seminorm on M, (3) for each X € [0,3), and
the collection of all such seminorms gives M, (8) the structure of a Frechét
space (most importantly, this means M, (8) is a complete metric space).
Under this topology, a sequence of probability measures {ur} converges
to a probability measure p in M,(B) if and only if for any A € [0, ),
limpg o0 [l — sl az(x) = 0.

We now let Xz be the collection of all pairs (E,u) € € x M,(8), where u is a
probability measure such that supp(p) C E. Then Xjp is a closed subset of £ x M.,.(5)
under the product metric, and thus a complete metrizable space. We remark that
for any A € [0,8) and (E, pu) € Xg,

lim [7(€)[[¢[** = 0. (4.1)
[€]—o00
Thus dimp(E) > dimgp(p) > B for each (E,u) € X. This means that Xz can
be thought of as a space of compact sets, augmented with a measure providing a
certification guaranteeing the set’s Fourier dimension is at least f.

Lemma 4.1 allows us to reduce the proof of density arguments in Xz to the
construction of large discrete subsets in T? with well-behaved Fourier analytic prop-
erties. We recall that a family A of subsets of T? is downward closed if, whenever
E C A, any subset of FE is also contained in A.

LEMMA 4.1. Let A be a downward closed family of subsets of T®. Fiz 8 > 0,
k > 0, and a large constant C > 0. Suppose that for all small 6 > 0, and all
A € 10,0), there are arbitrarily large integers N > 0 for which there exists a finite

set S ={x1,...,xN}, positive numbers {a1,...,an} such that Zivzl ar = N, and
a quantity r > (2N)_1/’\ such that the following properties hold:
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(1) N(S,r) € A.
(2) For each & € Z* —{0} with €| < (1/r)'+",

1 N
2mi€-xy
|N D e
k=1

Then {(E,u) € Xg : E € A} is dense in Xp.

< CN~Y21og(N) + 6)¢| 7?2

Because the proof of Lemma 4.1 is somewhat technical, we relegate it to an
appendix found at the end of this paper. In the remainder of this section, we use
Lemma 4.1, together with a probabilistic argument to argue some general results
about X3 which will be useful in the proofs of Theorems 1.2, 1.3, and 1.4.

REMARK 4.2. We will be able to take § = 0 for the applications of Lemma 4.1 in
Theorems 1.2 and 1.4 by applying purely probabilistic arguments which give rise
to square root cancellation in the number of random variables involved. We only
need to take 0 > 0 when applying this result to Theorem 1.3, because we must
apply some oscillatory integral bounds which give an additional decaying factor as
& — .

Let us comment on the intuition underlying Lemma 4.1. Consider a large integer
N, and suppose there is a discrete family of N points S = {x1,..., 2N} such that
N(S,r) does not contain any incidences of a particular pattern. Then N(S,r) is
a union of N balls of radius r, so if N ~ r—#, and these balls do not overlap too
much, we might expect N(S,r) to behave like an r-thickening of a S-dimensional
set. The Fourier analytic properties of S can be understood by taking exponential
sums, i.e. considering quantities of the form

1 N
E 2mi€-xy
N ke ’
k=1

where a1, ...,axN are non-negative and sum to one as in Lemma 4.1. For any set S,
taking in absolute values gives a trivial bound on the exponential sum

1

- Z a(xk)e%i&'x’“
N k

=1

<1, (4.2)

and this bound can be tight for general sets 9, for instance, if S behaves like an
arithmetic progression with a frequency &, as happens for

S:{kéQ:lSkSN}.

If one can significantly improve upon this bound, one therefore thinks of S as having
additional regularity from the perspective of Fourier analysis. The best case we can
hope to hold for a ‘generic’ choice of S is a square root cancellation bound of the
form
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1 N
27T’l:£~.’16k
- E are
k=1

<CN7V2, (4.3)

which, roughly speaking, holds if the points {x} } are not significantly periodic at the
frequency £. If k > 0 is fixed, and equation (4.3) holds for all |¢] < (1/r)1T*, then
one might therefore think of N(S,r) as behaving like an r-thickening of a Salem
set with dimension . Note that, up to a logarithmic constant, and a negligible
term which decays as |£| — oo, Lemma 4.1 obtains such a square root cancellation
bound. Since the assumptions of Lemma 4.1 guarantee that we can construct such
sets at arbitrarily small scales r, it makes sense that one should be able to use such
assumptions to construct Salem sets avoiding patterns.

Lemma 4.1 not only guarantees that we can construct Salem sets avoiding pat-
terns, but also guarantees that such pattern avoiding sets are generic among all
Salem sets. The reason such a result is possible given the assumptions of Lemma 4.1
is that the points in the discrete set S are not significantly periodic at any fre-
quency &, which heuristically (& la Weyl’s equidistribution theorem) implies such
points are evenly distributed in T?. We do not need equidistribution here, but we
are able to obtain in Lemma A.4 that for any € > 0, if N is taken appropriately
large, then the set S guaranteed by the assumptions of Lemma 4.1 is e-dense in
T, jie. T = N (S,¢e). This will allow us to approximate an arbitrary compact set
of dimension 3 by subsets of .S, and thus approximate an arbitrary element of X
by an element which is pattern avoiding, thus guaranteeing that sets containing
patterns are of first category.

REMARK 4.3. In each of Theorems 1.2, 1.3, and 1.4 we will prove that quasi-all sets
in X3 avoid a particular pattern by constructing a countable family {Ay : k > 1}
of downward closed sets, each of which being open in X, such that all sets in () Ay
avoid a particular pattern. By verifying that the hypotheses of Lemma 4.1 hold for
each set Ay, we obtain density of A in X3, so that their intersection is comeager
in Xﬁ.

Each such argument can be converted into an explicit ‘queuing construction’ of
a pattern avoiding set via a method we very briefly outline. In particular, one can
obtain a nested family of sets {Ey}, and a family of non-negative measures {py},
with uy supported on Ej and with uk(']I‘d) uniformly bounded from below in k, so
that E = () Ej is pattern avoiding, has Hausdorff dimension at most 8, and any
weak limit of the measures (which necessarily must be supported on E) has Fourier
decay [£]*=#/2 for all € > 0, which will justify that E is Salem of dimension §.

To obtain {E)} and {ug}, we choose {A;} converging rapidly to 8 from below,
{0} and {ki} converging rapidly to zero, and {Ny} converging rapidly to infinity.
We set Fy = ']I‘d, and let g = Ita. For k > 0, we use the hypotheses of Lemma 4.1
to find a set Sy, coefficients aj : S, — [0,00), such that if r, = (2Ng)~ 1/ *,
then N(Si,71) € A and the exponential sums Y ay,(z)e?™ ' satisfy the square
root cancellation bounds above for [£] < (1/r4) %+, We then define Ej, = Ej,_1 N
N(Sk, i) and let g = (A* ¢y )pr—1, where A =3 a(x)d,, and ¢, is a smooth
bump function supported in a r neighborhood of the origin. If §, and N, are
sufficiently small, then a Plancherel argument a la the methods of Lemma A.4
can be used to guarantee that u(T%) > (1 — 27%)up_1(T%). And one can also
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recursively justify that there is C. > 0 for each € > 0 so that, uniformly in k,
16 ()] < CL|€)°8/2, so that any weak limit 4 of the measures yy, satisfies |fi(€)] <
C.|€]5=8/2 for each & > 0. Since one also has u(T%) > [](1—27%) > e~2 this proves
F has Fourier dimension at least 3. Moreover, E is covered by Nj balls of radius
(2N;,)~'/** for each k, so that E has lower Minkowski dimension at most 3, and
thus has Hausdorff dimension at most 8, which justifies that E is a Salem set of
dimension S.

It is a useful heuristic that in a metric space whose elements are sets, and with
distance defined in terms of the Hausdorff distance, quasi-all elements are as ‘thin
as possible’ (by quasi-all we mean in a Baire category sense, i.e. the family of
all sets which fail to be as thin as possible is contained in a countable union of
closed sets with non-empty interior). In particular, we should expect the Hausdorff
dimension and Fourier dimension of a generic element of Xz to be as low as possible.
For each (E, ) € Ajp, the condition that p € M, (8) implies that dimg(y) > 3, so
dimg (EF) > dimp(E) > B. Since the Fourier dimension and Hausdorff dimension are
lower bounded by 8, and this bound is tight, our heuristic thus leads us to believe
that for quasi-all (E,u) € M.(B), the set E has both Hausdorff dimension and
Fourier dimension equal to 3, i.e. E is a Salem set of dimension . We will finish this
section with a proof of this fact. This will also give some more elementary variants
of the kinds of probabilistic arguments we will later use to prove Theorems 1.2, 1.3,
and 1.4, which will allow us to become more comfortable with these techniques in
preparation for the proofs of these theorems.

LEMMA 4.4. Fiz a positive integer N, and k > 0. Let Xy,..., XN be independent
random variables on T?, such that for each & € Z¢ —{0},

N

D R (e2mEN) = 0. (4.4)

k=1

Then there exists a constant C depending on d and k such that

1 .
P sup  |— e2mie Xk
<|5|<N1+~ N kz

=1
REMARK 4.5. In particular, the assumptions of Lemma 4.4 hold if the random
variables { X1, ..., Xy} are uniformly distributed on T%, since then E(e?7%¢Xk) =0
for all ¢ € Z¢ —{0} and 1 < k < N.

>CN~1/2 10g(N)1/2> < 1/10.

Proof. For each £ € Z% and k € {1,..., N}, consider the random variable
Y (&, k) = N™temie X,

Then for each ¢ € Z%,

N 1 N
S Y(E k) = N > ermie e, (4.5)
k=1

k=1
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We also note that for each € € Z% and k € {1,..., N},

Y (& k) =N (4.6)
Moreover,
N
D E(Y (&, k) =0. (47)
k=1

} is independent for a fixed &, we can

Since the family of random variables {Y (¢, k)
(4.5) and (4.6) to conclude that for all

apply Hoeffding’s inequality together with

t>0,
P(

Taking a union bound obtained by applying (4.8) over all || < N'** gives the
existence of a constant C' > 10 depending on d and k such that

N

1 2mig- X,
e
k=1

> t> < 2e N/2, (4.8)

1 & SN2
P sup | — e2mEXe| > ¢ ] < exp (C’ log(N) — > . 4.9
But then setting t = CN~/21og(N)'/? in (4.9) completes the proof. O

LEMMA 4.6. For quasi-all (E, ) € X3, E is a Salem set of dimension (3.

Proof. We shall assume 8 < d in the proof, since when 5 = d, F is a Salem set for
any (E, 1) € Xg, and thus the result is trivial. Since the Hausdorff dimension of a
measure is an upper bound for the Fourier dimension, it suffices to show that for
quasi-all (E, n) € X, E has Hausdorff dimension at most 8. For each @ > § and
9,5 > 0, we let

A(a,8,5) = {E cCT%: HX(E) < s}.
and set
Al d,s) ={(E,p) € Xg: E € A, 0,9)}.
Then A(a,d, s) is an open subset of X, and
M

n=1

ﬁ A(B+1/n,1/m,1/k), (4.10)

=1

Y

B

1

is precisely the family of (E, ) € A such that E has Hausdorff dimension at
most (. Thus it suffices to show that A(a,d,s) is dense in X3 for all & > 3, all
d > 0, and all s > 0. Since A(q,d,s) is a downward closed family of subsets of
T?, we may apply Lemma 4.1. Fix a large integer N, and set r = N~/ so that
N > (1/2)r=* satisfies the condition for Lemma 4.1 to apply to these quantities.

https://doi.org/10.1017/prm.2025.10097 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10097

Large Salem sets avoiding nonlinear configurations 19

Lemma 4.4 shows that there exists a constant C' depending on S and d, as well as
N points S = {z1,...,zx} C T? such that for each |¢| < N1+,

N
1 )
NE e2miE Tl < ONTY2 1og(N)Y2, (4.11)

k=1

Now N(S,r) is a union of N balls of radius r, and thus if r <4,
HZ(N(S,r)) < Nr® = N1/, (4.12)
Since o > (3, taking N appropriately large gives a set N(S,r) with
Hg(N(S,r)) < s. (4.13)

Thus N(S,r) € A(a, d, s) for sufficiently large integers N. But together with (4.11),
this justifies that the hypothesis of Lemma 4.1 applies to this scenario. Thus that
lemma implies that A(c,d, s) is dense in X, completing the proof. O

This concludes the setup to the proof of Theorems 1.2, 1.3, and 1.4. All that
remains is to show that quasi-all elements of X avoid the given set Z for a suitable
parameter 3; it then follows from Lemma 4.6 that quasi-all elements of Xz are
Salem and avoid the given set Z (since the intersection of two generic subsets of
X3 is also generic). The advantage of Lemma 4.1, combined with a Baire category
argument, is that we can now reduce our calculations to finding suitable finite
families of points with nice Fourier analytic properties.

5. Random avoiding sets for rough patterns

We begin by proving Theorem 1.2, which requires simpler calculations than
Theorem 1.3 and Theorem 1.4. In the last section, our results held for an arbitrary
B € (0,d]. But in this section, we assume

dn — «
< mi _—
ﬂmln(d,n_1/2>,

where o and n are as in the statement of Theorem 1.2. Then f is small enough to
show that the pattern Z described in Theorem 1.2 is avoided by a generic element
of X3. The construction here is very similar to the construction in [3], albeit in a
Baire category setting, and with modified parameters to ensure a Fourier dimension
bound rather than just a Hausdorff dimension bound.

LEMMA 5.1. Let Z C T be a compact set with lower Minkowski dimension at

most «. Then for quasi-all (E,p) € Xg, for any distinct points x1,...,x, € E,
(xl,...,xn) ¢Z
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Proof. For any s > 0, consider the set
B(Zs) = EcT?: for all xl,...?xn ‘GEsuchthat 7
|z; — ;| > sfori#j, (x1,...,20) € Z

and
B(Z,5) = {(E.1) € X5 : E € B(Z,5)}.
Then B(Z,s) is open in Xjp, and

~ B(Z,1/k) (5.1)
k=1

consists of the family of sets (E,u) such that for distinct z1,...,z, € E,
(x1,...,2n) € Z. Now for each k, the set B(Z,1/k) is a downward closed fam-
ily, which means that, after we verify the appropriate hypotheses, we can apply
Lemma 4.1 to prove B(Z,s) is dense in X3 for each s > 0, which would complete
the proof. Thus we must construct a set S = {z1,...,zy} for N which can be
made arbitrarily large, such that N(S,r) € B(Z,s) and associate with the set an
exponential sum satisfying a square root cancellation bound.

Let ¢ = 2n'/2. Since Z has lower Minkowski dimension at most «, for any
v € (e, dn], we can find arbitrarily small r € (0, 1) such that

IN(Z,cr)| < rin=7, (5.2)
Pick A € [0, (dn — 7)/(n — 1/2)), and suppose that we can find an integer M > 10
with

A M <r 41 (5.3)
Let X4,..., X be independent and uniformly distributed on T?. For each distinct

set of indices k1,...,k, € {1,..., M}, the random vector X = (Xg,,..., Xk, ) i8
uniformly distributed on T, and so (5.2) and (5.3) imply that

dn—~

P(d(Xy, Z) < er) < [N(Z,er)| < rin=7 < M~ < M—(71/2) (5.4)

If My denotes the number of indices k such that d(Xy, Z) < cr, then by linearity of
expectation, since there are at most M"™ such indices, we conclude from (5.4) that
there is a constant C' > 0 such that

E(M) < (C/10) M2, (5.5)

Applying Markov’s inequality to (5.5), we conclude that
P(M, > CM*'?) < 1/10. (5.6)
Fix some small x > 0. Taking a union bound to (5.6) and the results of

Lemma 4.4, we conclude that if M is sufficiently large, there exists M distinct points
z1,...,zy € T? and a constant C' > 0 such that the following two statements hold:
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(1) Let I be the set of indices k,, € {1, ..., M} with the property that we can find
distinet indices ki, ..., kn—1 € {1,..., M} such that if X = (Xp,,..., Xz, ),
then d(X,Z) < er. Then #(I) < CM/2.

(2) For 0 < |¢] < M+,

M

% Z e27r1'§~xk

k=1

< CM~Y2log(M)V2.

‘We now use this information to construct the set S required to verify the hypotheses
of Lemma 4.1.
Now set S = {zx : k ¢ I} and let N = #(S). Then Property (1) implies that

N>M—#()>M-CMY2 (5.7)

Thus for M > 4C?,
N > (1/2)M > (1/2)r~ >, (5.8)

Property (1) and (2) imply that for 0 < |¢| < N1#,

<

% Z e2ﬂ'i§-xk

N
i Ze2ﬂi£»wk
N

k=1 kel
< 20M Y2 log(M)Y? + #(I)/N (5.9)
5 N_1/2 10g(N)1/2 +N_1/2
< N™Y210g(N)Y2,

% Z e27ri§-w

zeS

+

As long as we can show that N(S,r) € B(Z,s), then (5.8) and (5.9) allows us
to apply Lemma 4.1, completing the proof that B(Z,s) is dense. To check this,
consider n points y1,...,y, € N(S,r), with |y; — y;| > s for any two indices i # j.
Provided that s > 10r, we can therefore find distinct indices kq,...,k, € I such
that for each ¢ € {1,...,n}, |xg, —y;| < r, which means if we set © = (zg,,...,Tk,)
and y = (y1,...,Yn), then

|z —y| < er/2. (5.10)

Since k,, &€ I, d(x,Z) > cr, which combined with (5.10) implies
dy, Z) > d(z, Z) — |z —y| = er/2. (5.11)
Thus in particular, we conclude y ¢ Z. But this means we have proved precisely

that N(S,r) € B(Z,s). Thus Lemma 4.1 implies that B(Z,s) is dense in X} for
each s > 0, completing the proof. O

The Baire category theorem, applied to the result of Lemma 5.1, shows that a
pattern avoiding set exists in X3, completing the proof of Theorem 1.2. Before we
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move onto the proof of Theorem 1.3, let us discuss the main obstacle which prevents
us from finding Salem sets with dimension

dn — «
ﬁ, (5.12)

avoiding the pattern Z, instead only obtaining Salem sets with dimension at most

dn — «
_ 5.13
n—1/2 (5:13)
We begin by noting that the quantity (5.12) is the maximum dimension one can
obtain using the randomized selection method used in Lemma 5.1 to choose the set

dn—a

S, since if one alters the parameters used in the proof so that M 2 r~ »=1 | then the
expectation bounds used in the proof above to control My cannot even guarantee
that S is non-empty with positive probability. More precisely, for general parame-
ters M and r, one can guarantee with high probability that #(I) < M"ri—2, For
M > 7’7%, one also expects to have #(I) > M, and in this situation we will
have S = (3, so the construction above does not work at all. In this proof however,

—a dn—a

dn
we were forced to choose M much smaller than »~ =1 , i.e. we chose M =~ r~ »=1/2
so that we could guarantee that #(I) < N'/2. The importance of this is that the
trivial bound

Z o2& Xk)

kel

< #(I), (5.14)

obtained by the triangle inequality was then enough to obtain the square root
cancellation bound in equation (5.9). On the other hand, if we were able to show
that the set I itself satisfied a square root cancellation bound of the form

,S #(1)1/27 (5'15)

3 ezt

kel

—a

then there would be no barrier to choosing M = rf%, which would allow us
to prove the existence of a pattern avoiding set with Fourier dimension matching
the quantity in equation (5.13), matching that of the Hausdorff dimension bound
obtained in [3]. Under stronger assumptions on the pattern we are trying to avoid,
which form the hypotheses of Theorem 1.3, we are able to justify that some kind of
square root cancellation, like that of (5.15) takes place, though with an additional
term that we are only able to bound appropriately for n > 2 using an inclusion-

exclusion argument combined with some oscillatory integrals if we set N ~ .S
Under the hypothesis of Theorem 1.4, we are able to make this additional term
vanish completely, which will enable us to set N = ridﬁ%la, thus obtaining sets
with Fourier dimension matching the quantity in equation (5.13), and completely
recovering the dimension bound of [3] in the setting of Salem sets.
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6. Concentration bounds for smooth surfaces

In this section we prove Theorem 1.3 using some more robust probability concen-
tration calculations, which allow us to justify the kinds of square root cancellation
alluded to at the end of the last section. We set

d n=2

B < :
d/(n—3/4) :n>3

For such 3, we now prove that elements of the space Ag will generically avoid pat-
terns given by an equation x,, = f(z1,...,2,—1), where f satisfies the hypotheses
of Theorem 1.3.

LEMMA 6.1. Suppose f : V — T¢ satisfy the hypothesis of Theorem 1.3. Then
for quasi-all (E,pn) € Xg, and for any distinct points xz1,...,x, € E, x, #
f(iL’l, N ,anfl).

Proof. Given any family of disjoint, closed cubes Ry, ..., R, C T such that (Ry %
-+ X Rp,) NV is a closed set, we let

H(Ry,...,Ry) ={E C T : for all z; € R; N E, zn, # f(x1,...,2n-1)},

and let
H(Rl,...,Rn) = {(E,/},) S Xﬁ B e H(Rl,,Rn)}

Then H(Ry,...,R,) is an open subset of Xz. For the purpose of a Baire category
argument, this proof will follow by showing H(Ry,...,R,) is dense in X3 for any

family of disjoint cubes {Ry, ..., R,}, each having common sidelength s for some
s > 0, such that if Q; = 2R, for each 4, then Q2 x---x @, C V, and d(R;, R;) > 10s
for each ¢ # j. Since H(R1,...,R,) is a downward closed family of sets, we will

prove this result by applying Lemma 4.1. Thus for a suitable choice of r > 0, we
must construct a large discrete set S such that N(S,r) € H(Ry,..., R,) and whose
exponential sums exhibit square root cancellation.

Since f is smooth, we can fix a constant L > 0 such that for any z,y € Q1 X

e X anh

|f(z) = f(y)] < Llz —yl. (6.1)
Fix a family of non-negative bump functions g, 11,...,%, € C“(Td), such that
fori € {1,...,n}, ¥i(x) =1 for x € 1.5 Q;, ¥;i(z) = 0 for x € R;, and vo(z) +
by (x) =1 for x € T For i € {0,...,n}, let A; = [;(z) dz denote the total
mass of 1;. Now fix a large integer M > 0, and consider a family of independent
random variables

{Xi(k):0<i<n,1<k< M},
where the random variable X;(k) is chosen with respect to the probability density
function A;li/Ji. Fix A € [0,3), and set 7 = M~Y*, ie. so that M = r*. Let

c = 2n'/2(L + 1), and define I to be the set of all indices k, € {1,..., M} such
that there are indices k1,...,k,—1 € {1,..., M} with the property that
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|Xn(k7l) _f(Xl(kl)a"'aanl(knfl)M <cr. (62)

Now (6.2) implies that if k,, & I, then for any k1,...,k,—1 € {1,..., M},

| X (kn) = f(X1 (k). Xoa (Bn1))| > cr (6.3)

We now use these points to construct a set .S verifying the hypotheses of Lemma 4.1.
Set

S={X;(k):0<i<n—1,1<k<M}U{X,(k):k¢&I}

Then we claim that N(S,r) € H(Ry,...,R,) for suitably small r; to see this,
suppose there were distinct y,...,y, € N(S,r) such that y; € Ry,...,yn € Ry,
and y, = f(y1,...,Yn—1). We may pick z1,...,x, € S such that |z; — y;| < r
for each i. Since d(R;, R;) = 10s for i # j, if r < s, then it cannot be true that
x; = X;(k) for some j € {1,...,n} and k € {1,..., M}. Since ¢;(x) = 1 on 1.5R;,
if » < 0.5s, we have d(supp(¢p), R;) > 0.5s and so it also cannot be true that
x; = Xo(k) for some k € {1,...,M}. Thus there must be k; € {1,..., M} such
that x; = X;(k;). But by assumption k,, & I, so we have

| X (k) = f(X1(R1), - o Xnoa(kn1))] > cr. (6.4)

Thus (6.1) and (6.4) imply that
0=1lyn — f(y1,-- - yn)| = cr >0, (6.5)
which gives a contradiction, proving that N(S,r) € H(R1,...,Ry). The remainder
of the proof focuses on bounding exponential sums associated with S, so that we

may apply Lemma 4.1 and thus prove the conclusion of the theorem.
Consider the random exponential sums

F(f) _ Z ﬁ/[:Aie%rig»Xi(k) +2An62ﬂi€'xn(k).

i€{0,...,n—1} k=1 kgl

Controlling |F(£)| with high probability will justify an application of Lemma 4.1.
To analyze F', introduce the auxiliary exponential sums

Ai62ﬂ'i£‘X¢(k)

M=

=0

el
I
—_

and
A 627715 Xn (k:
n

kel

Then F(&) = G(§) — H(€).
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Obtaining a bound on G(§) is simple since it is a sum of (n+ 1) - M independent
random variables. For non-zero & € 7,

E(G(E) = > MA; / (64() /A5 276 da
i=0

= Mzn:/wi(:c)e%ig'z dx (6.6)
i=0

=M [ ¥ dy = 0.
T

Applying Lemma 4.4, we conclude that for any fixed x > 0, there is C > 0 such
that

IP’( sup  |G(€)| > CM/? 10g(M)1/2> < 1/10, (6.7)

[E|SNTHe

This bound guarantees G is sufficiently small with high probability.
Analyzing H () requires a more subtle concentration bound, which we delegate
to a series of lemmas following this proof:

e In Lemma 6.2, we will employ some concentration bounds to show that
P ( sup |H(E) —E(H(€))| > CMY? log(M)1/2> < 1/10. (6.8)
|| <N+

e In Lemma 6.3 we will show that for any § > 0, there exists r; > 0 such that
for < ry and any nonzero & € Z¢,

|E(H ()] < SMIE|772 + O(M'?). (6.9)

These bounds together guarantee that H is sufficiently small with high probability.
Analogous to equation (5.4) in Lemma 5.1, for any indices ki,...,k, €
{1,..., M}, we have

P (|Xn(k:n) — F(Xalk1)s s Xy (Bn1))| < 20V (L +1) -r) <pprd < MY,
(6.10)

Thus if My denotes the number of tuples of indices (ki,...,k,) such that (6.2)
holds, then (6.10) implies that

E(My) < M™=4/*, (6.11)

Applying Markov’s inequality to (6.11), we conclude that there exists a constant
C > 0 such that

P(My > CMYA=m) < 1/10. (6.12)

Taking a union bound to (6.7), (6.8), and (6.12), and then applying (6.9), we
conclude that there exists C' > 0 and a particular instantiation of the random
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variables {X;(k)} such that for any 0 < |£] < M1T#%,

G(&)] < M log(M)'/?, (6.13)

and
|H(£)] < CMY?log(M)Y? 4 sM|¢|~P/2, (6.14)

And
#(I) < CMYA—, (6.15)

Since A < By < d/(n — 1), the inequality d/\ —n < 1 holds. Thus (6.15) implies
that for sufficiently large M > 0, if N = #(5), then

N >M—CM¥" > (1/2)M > (1/2)r . (6.16)
Putting (6.9), (6.13), (6.14), and the fact that F(§) = G(§) + H(€) together, if we
set a(X;(k)) = A; for each i and k, then

1 )
~ > a(x)e’™ | S CNV log(N)2 + s1¢| P72, (6.17)

zeS

Since ) ga(z) > N, if we set
a(z)
a(r) =N =——=—,
2res @(2)

then (6.17), (6.16) and the fact that N(S,r) € H(R1, ..., Ry) imply that the sum

i Z a(x)e%nf-m

N

€S

satisfies the assumptions of Lemma 4.1 for arbitrarily large N. We therefore
conclude by that Lemma that H(Ry,...,R,) is dense in Xj3. a

Our proof of Theorem 1.3 will be complete once we prove (6.8) and (6.9), i.e.
once we prove Lemmas 6.2 and 6.3.

LEMMA 6.2. Let H(&) be the random exponential sum described in Lemma 6.1.
Then

P ( sup |H(E) —E(H())| = CM*? log(M)1/2> < 1/10.
lel<Men

for some universal constant C > 0.

Before we prove this Lemma, let us describe the idea behind the proof. The
result is a concentration bound for the random quantity H(£), a standard topic
in the theory of high dimensional probability. The basic heuristic of this topic is
that for an arbitrary function F (X, ..., Xn) of many independent random inputs,
we have F(X1,..., Xy) = E(F(Xy,...,Xx)) with high probability, provided that
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(J) (] ° (]
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Figure 1. The two diagrams displayed indicate two instances of the set S for the
function f(z1,22) = (x1 — 1/2)®> + (xz2 — 1/2)%. Here M = 3, n = 3, the val-
ues on the z-axis represent the values Xi(1),X:1(2), and Xi(3), the values on the
y-axis represent the values X>(1), X2(2), and X2(3), the dark points represent the fam-
ily of all pairs (Xi(k1), X2(k2)), and the annuli represent the O(r)-neighbourhoods of
FH(X5(1), £71(X3(2), and £7'(X3(3)). In this setup, S consists of all of the values
{X2(k)}, as well as all values of Xi(k) such that none of the dark points on the vertical
line above Xi(k) intersect any of the annuli. The two diagrams only differ as a result of
adjusting a single variable X»(ko), indicated by the shaded value on the y-axis. For the
values represented in the left diagram, I = (), whereas for the values represented in the
right diagram, I contains every index, and this completely alters the exponential sums
associated with S.

each of the random inputs {X;} has a small influence on the overall output of
f. McDiarmid’s and Hoeffding’s inequalities, described in the notation section
of this paper, are two classic results in this theory. A major difference between
the two inequalities is that McDiarmid’s inequality can be applied to nonlin-
ear functions F', whereas Hoeffding’s inequality can only be applied when F' is
linear.

Since H () is a nonlinear function of the independent random quantities {X;(k)},
McDiarmid’s inequality presents itself as a useful concentration bound. However,
a naive application of McDiarmid’s inequality fails here, because changing a single
random variable X;(k) for 1 < i < n — 1 while fixing all other random variables
can change the indices contained in the set I by as much as O(M), and thus
change H(£) by as much as O(M) as a result (see Figure 1 for an example of
this phenomenon). McDiarmid’s inequality then gives that |[H(§) — E(H(E))| S M
with high probability, which is not tight enough to obtain square root cancellation
like what we obtained in (6.7). On the other hand, it seems that a single variable
X (k) only changes H (&) by O(M) when the other random variables {X;(k)} are
configured in a very particular way, which is unlikely to happen. Thus we should
expect that adjusting a single random variable X;(k) does not influence the value
of H(¢) much when averaged over the possible choices of {X,,(k)}. This leads us
to first average over this first set of random variables, and then apply McDiarmid’s
inequality, which yields the correct concentration result.
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Proof of Lemma 6.2. Consider the random set €2 of values x,, € @, such that there
are ky,...,k,—1 € {1,..., M} with

|2 = F(Xi (1), oy Xno1(kn—1))] < cr. (6.18)
Then
M
H() = An Y Z(k,€). (6.19)
k=1
where
2y = {7 Xk €0,

0 X (k)2
If ¥ is the o-algebra generated by the random variables
{Xi(k):ie{l,....,n—1}, ke {l,...,M}},

then € is measurable with respect to X. Thus the random variables {Z(k, &)}
are conditionally independent given X. Since we have |Z(k,€&)| < 1 almost surely,
Hoeffding’s inequality thus implies that for all t > 0,

P - E(HO)] > ) < e (7). (6.20)
It is simple to see that
E(H(¢)|X) = AnM/ Y ()27 do. (6.21)
Q

Since
Q= JANUX1(k), ., X1 (kn1))ser) i 1< ki, kot SN} (6.22)

we therefore see that varying each random variable X;(k), for 1 <4 < mn — 1 while
fixing the other random variables adjusts at most M"~2 of the balls forming £,
and thus varying X; (k) while fixing the other random variables changes E(H (§)|X)
by at most

M -2 (2cr)t- M" 2 <, qp r¢MT <L (6.23)

Thus McDiarmid’s inequality shows that there exists a constant C' depending on
d, n, and L, such that for any ¢ > 0,

PUEH©I) - EHO) 2 0 < dow (o3 ) (6.21)

Combining (6.20) and (6.24), we conclude that there exists a constant C' > 0 such
that for each ¢ € Z9,

PO ~ B(H©)] 2 0 < Sow (g ). (6.25)
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Applying a union bound to (6.25) over all 0 < |¢| < M'*T* shows that there exists
a constant C' > 0 such that

P( sup  [H(E) ~ B(H(©)) zCMl/Qlogw)”Q) < 1/10.
[g|<Mt+r

O

The analysis of (6.9) requires a different class of probabilistic techniques. For any
set £ C T let A(FE) denote the event that there exists indices k1, ..., k,—1
such that

(X1<k’1), . ,Xn,1(/€n,1>) € FE.
Understanding the quantity E(H(£)) will follow from an analysis of the val-
ues P(A(F)). To see why this is true, note that because the random variables

{X,,(k)} are all identically distributed, for a fixed &, all the quantities {Z(k, )} are
identically distributed, and so

E(H(E)) = MA, -E(Z(1,£))
_ MAn ) E(]I(Xn(l) c Q)e2wi£~X"(1))

= M Ay [ POG() € QX (1) = )BT dPX, (1) = )
= MA, - /wn(xn)]}”(l € I1X,(1) = x,)e?™ &% dg,,.

If we write E,, = f~1(Ber (7)), then P(1 € I|X,,(1) = z,,) = P(A(E,,)), so that

n

E(H(&)) = MA, / Y () P(A(Ey,)) - €60 ds,. (6.26)

If n = 2, then we can explicitly calculate P(A(E)) ~ 1 — (1 — |E|) for any set E,
which makes this analysis of E[H (£)] more tractable. If n > 2, the random vectors

{(Xl(k‘l), .. .,anl(knfl)) 01 S kl,. . .kn,1 S M}

are not independent of one another, which makes an analysis of the quantities
P(A(FE)) difficult. An exception to this is when E = Fy X - -+ X E,,_; is a Cartesian
product, in which case

P(A(E)) = ﬁ P(There is k such that X;(k) € E;) =~ ﬁ(l — (1= |E;)M).

i=1 i=1

Our strategy to understanding the sets E,, for n > 2 is therefore to apply
the Whitney decomposition Lemma, writing E, = [J, Q; for a family of almost
disjoint, axis-oriented cubes Q;. Then A(E,, ) = |J; A(Q:), so we can approximate
P(A(FE,,)) by applying the inclusion-exclusion principle. This leads to a sufficient
approximation to the values P(A(E, )) provided that M < r~%/("=3/4) This is

n
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the only part of the proof of Theorem 1.3 where the dimension bound becomes
tight; increasing the dimension bound in Theorem 1.3 will be immediate if we can
improve the following Lemma, i.e. finding a better analysis of E[H (&)].

LEMMA 6.3. Let H(&) be the random exponential sum described in Lemma 6.1.
Then there exists C > 0 such that for any § > 0, there exists My > 0 such that for
M ;3 JVIO:

|E(H ()| < 6M(¢[~7% + M2,
Proof. We break the analysis of E(H(£)) into two cases, depending on whether
n = 2 or n > 2. Let’s start with the case n = 2, in which case our assumptions
imply that f is a diffeomorphism if the cubes R; and Ry in which we are choosing

random points are chosen small enough. For each x5 € T a change of variables
shows that

M
PIA(E,.) =1~ (1 o ) dx1>
M
(41 (10 f71) (1) " .
: (1 fos o TR o ¢ ) (020
M
=47 <1—/BM.(12)¢1($1)CZ$1> ’

(10 f~1)(21)
|det(Df)(f~(x1))]

If we define g(x2) = P(A(E,,)), then E(H({)) = M A, - @(5) We can obtain a
bound on E(H (§)) by bounding the partial derivatives of ¢5g. Bernoulli’s inequality
implies that

where

P (x1) =

M
g(x)=1- (1 —/ P (1) da:1> <p Mr® < MUY, (6.28)
cr(m)

On the other hand, for any multi-index o with || > 0, 0%g(z) is a sum of terms
of the form

m MU b1 (z1) da x1) dx
)" G (1 [ 1>d1> (H/ Ou i 1)d1>,

(6.29)

where «; # 0 for any i and &« = a1 + - -+ + . This implies 0 < m < |o| for any
terms in the sum. Now the bound |9, 1/)1 (x2) 1 implies that

| Sau

O, U1 (22) dza| Sa, 77 (6.30)

Ber(z)
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Applying (6.30) to (6.29) enables us to conclude that

9ag(@)] Sa  max M™r™< M (6.31)

Since the fact that ¢ € C°°(T?) implies that ||0at2 Lo (ray So 1 for any multi-
index «, the product rule applied to (6.31) implies that [|0a(v29)| Lo (1e) Ser
M=% for all @ > 0, which means that for any 7> 0 and £ # 0,

|E(H(€)] S Mg~ (6.32)

Since A < d, 2 —d/\ < 1, so setting T' = (3/2, fixing § > 0, and then choosing M,
appropriately, if M > My, (6.32) shows that

|E(H ()| < 6M ||~/ (6.33)

This completes the proof in the case n = 2.

Now we move on to the case where n > 3, which is made more complicated by
the lack of an explicit formula for P(A(E,,)). For any cube Q € T™~Y and any
indices 1 < ky,...,kn—1 < K, set k = (k1,...,kn,—1) and let A(Q;k) denote the
event that (X1(k1),..., Xn—1(kn—1)) € Q. Then

AQ) = JA@;k). (6.34)
k
For any cube @ and index k,

PA(Q; k) = /Q (1) o (@) . ds, (6.35)
and so

Z]P’(A(Q;k)):M”_I/Qd)l(azl)~-~¢n1(xn1)dx1...da:n1. (6.36)

k

An application of inclusion exclusion to (6.36) thus shows that

P(AQ)) — M1 /Q Gr(@1) - nr (@) der ... dEns
< )T PAQ; k) N A(Q; K)).

kK’

(6.37)

For each k, K/, the quantity P(A(Q; k)N A(Q; k")) depends on the number of indices
i such that k; = k}. In particular, if I C {1,...,n — 1} is the set of indices where
the quantity agrees, then
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PA(Q: k) N A(Q: ) (H/ e ) (/ il dx) (638)
il

iel
In particular, if @ has sidelength ! and #(I) = m, then P(A(Q;k) N A(Q; k")) <
14(2n=m=2) For each m, there are at most M>"~"~2 pairs k and k¥’ with #(I) = m
And so provided 1¢ < 1/M,
n—2
D PA@K) NAQ:K)) £ D (M- =2 g Mt (6.39)
k#k! m=0

Thus we conclude from (6.37) and (6.39) that
PA(Q)) = M~ / D1(21) o o (s )y - dn—1 + O(MI™).  (6.40)
Q

Since f is a submersion, for each z,, F,, is contained in a O(r)-thickening of a
d(n—2) dimensional surface in T*"~Y_ Applying the Whitney covering lemma, we
can find a family of almost disjoint dyadic cubes {Q;; : j > 0} such that

0o My

= J U @i, (6.41)

i=0j=1

where for each i > 0, Q;; is a sidelength /2 cube, and n; < (r/29)~4"=2) Tt
follows from (6.41) that

= UA(QZ»J»). (6.42)

Since n > 3, we can use (6.40) to calculate that

ZP Qz] Mn 1/ wl .131 wn l(xn 1)d
%]
o (6.43)
Z 7“/21 (n— (MH(T/Q )dn)
=0
<r2pm < M2,

2

Thus an inclusion exclusion bound together with (6.42) and (6.43) implies that

P(A(E,,)) - M1 /E ba(en) b () do

SM7E 4 Y PAQig) N AQin))-
(11,51)#(42,52)

(6.44)

The quantity P(A(Qi,;,) N A(Qi,j,)) depends on the relation between the various
sides of @Q;,;, and @;,;,. Without loss of generality, we may assume that iy > 4o.
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If 1(Qi, s Qinjp) is the set of indices 1 < k < n — 1 where Qi,j,x C Qiyjok, and
#(I(Qi1j17Qi2j2)) =m, then

P(A(Qirjy) N A(Qizz)) S (M(r/20)T)™ - (M (r/27)T - M(r/22)T) "

~

— gdl(n=D)ir+(n—m—1)ia] () d)2n—m—2 (6.45)

The condition that D, f is invertible for all k¥ on the domain of f implies that
any axis-oriented plane in T intersects transversally with the level sets of f. In
particular, this means that the intersection of a O(r/2%) thickening of a codimen-
sion dm axis-oriented hyperplane intersects a O(r/2%) thickening of OE,, (which
has codimension d) in a set with volume O ((r/2")%(r/2)4™), and intersects a
O(r/2') thickening of dE,, in a set with volume O ((r/2%2)4(r/211)%™). As a par-
ticular example of this, for any distinct indices j1,...,jm € {1,...,n—1}, and any
family of integers 0 < 11, ..., Nma < 21 /7, the set

1 1
(n11 + )_ Mo Nmd + } (6.46)

:271_ 1< 7 e o <xj.4 < 90
contains at most
O (/2" ) r/2 )i (rf2) =40 ) = O (2n=m=2in=dinm=2)) - (6.47)
sidelength /2% dyadic cubes in the decomposition of E, , and at most
0 ((T/Qiz)d(r/Qil)dm(r/2i2)fd(n71)) -0 (2d(n72)i27(dm)i1r7d(nfmf2)) (6.48)

sidelength r/2%2 dyadic cubes in the decomposition of E, . Letting the integers
{nr1} vary over all possible choices we conclude from (6.47) and (6.48) that for
each i; and i there are at most

0 ((Qil/r)dm (2d(n7m72)i1,r,fd(nfm72)) <2d(n72)i27(dm)i1rfd(n7m72)))

6.49
=0 (2d(n—m—2)i1+d(n—2)i2r—d(2n—m—4)) ( )

pairs Qi,j, and Qi,j, with I(Qi,j,,Qiyj,) = m. Thus we conclude from (6.45) and
(6.49) that
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Z P(A(Qij) N A(Qirj1))
(4,0)# @ ,37)

n—2
S Z Z <2dn m—2)i1+d(n—2)is —d(2n m— 4))
m=01i1 >0

(2—d((n—1)i1+(n—m—1)i2) (M,rd)Zn—m—Q)
(6.50)

n—2
5 r2d Z M2n—m—2 Z 27d(m+1)i1+d(m71)i2

m=0 il Ziz

< M2(n—1)r2d < M_l/Q.

Returning to the bound in (6.44), (6.50) implies that

P(A(E,,)) — M"™ 1/ (@) o Yno1 (@) doy | S MR (6.51)

Returning even further back to (6.26) , recalling that E,, = f~'(B,(z,)), (6.51)
implies

E(H(é-)) - An : Mn "/}n(xn)/ 1ljl(xl) .. ~7/Jn71(xn71)
T4 F=H(Br(zn))

X 2TETn dpy L da,| < MY, (6.52)

Applying the co-area formula, writing ¢ (z) = ¢1(x1) ... ¥n(z,), we find

/d/ (z)e*™ & dyy .. dxy,
T

/ az)e%’f‘x” dH" %(21,...,2p_1) dzy, dv
F1@+v)

)
/ /
_ /BT@)/T Wi, (@) = v) - 2TEC@)| T ()] dee do

d(n—1)

= / / QZ(JE,U) 2T (F(@)=v) 14 do.
B,.(0) JT4n=1)

where 9(z,v) = (z, f(z) —v) - |Jf(x)|, and Jf is the rank-d Jacobian of f. A
consequence of (6.53) in light of (6.52) is that it reduces the study of E(H(£)) to a
standard oscillatory integral. If we look at the phase

(6.53)

¢z, v) =& (f(x) —v),
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then we see that V,é(x,v) = Df(x)T¢, which is only equal to zero if £ = 0 since
Df is surjective on the domain of f (this is implied by the stronger assumption
that f is a diffeomorphism on each variable). Thus the oscillatory integral above
has no stationary points in the z-variable. Integrating by parts in the z-variable
thus allows us to conclude that for all |v| <1 and T > 0,

Srlel™T (6.54)

/ D, v) - 2TES@=0) gy
Td(n—1)

Now the bound in (6.54) can be applied with (6.53) to conclude that

/ / w(x)e2”§'””’L dzy ... dz, dz;
T¢ J f=1(Br(z))

In particular, taking T'= (/2 here, combined with (6.52), (6.55), we find that

Srorflel" (6.55)

|E(H())| S M™rig| =572 + MY2 < M3/ =P2 4 M2, (6.56)

Thus there exists C' > 0 such that for any é > 0, there is rqg > 0 such that for
r <71y, and any nonzero £ € 7,

|E(H ()] < 6MIE|™72 + oM.
O

The proof of Lemma 6.3 is the only obstacle preventing us from constructing a
Salem set X avoiding the pattern defined by Z with

dimp(X) = —

All other aspects of the proof carry through for d/(n —3/4) < 8 <d/(n—1). The
problem with Lemma 6.3 in this scenario is that if we try to repeat the proof when
n >3 and M > r—4/("=3/4) there is too much ‘overlap’ between the various cubes
we use in our covering argument in the various axis; thus the inclusion-exclusion
argument found in this proof cannot be used to control E(H (§)) in a significant way.
We believe our method can construct Salem sets with Fourier dimension d/(n — 1),
but new tools are required to improve the estimates on E(H (£)). In the next section,
we are able to modify our construction for patterns satisfying a weak translation
invariance by a simple trick: we will modify the analogous exponential sums H ()
so that E(H(£)) = 0 for all £ # 0, so that the analogue of Lemma 6.3 is trivial in
this setting, and we thus obtain a construction of Salem sets avoiding patterns with
dimension exactly matching those obtained in the Hausdorff dimension setting.

7. Expectation bounds for translation-invariant patterns

The proof of Theorem 1.4 uses very similar arguments to Theorem 1.3. The concen-
tration bound arguments will be very similar to those applied in the last section.
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The difference here is that the translation-invariance of the pattern can be used to
bypass estimating the expected values like those which caused us the most difficulty
in Theorem 1.4. We can therefore construct Salem sets avoiding the pattern with
dimension exactly matching the Hausdorff dimension of the sets which would be
constructed using the method of [3]. In this section, let

8 < min (dn—a7d>.
n—1

We then show that generic elements of A’z avoid patterns satisfying the assumptions
of Theorem 1.4.

LEMMA 7.1. Fixa € Q—{0}, and let f : V — R and F C R satisfy the assump-
tions of Theorem 1.4. Then for quasi-all (E,pu) € Xg, and any distinct points
(x17"'7xn) € E7

Tp —aTp—1 — f(z1,...,Zp_2) & F.

Proof. Set
W ={(z1,...,2,) € T2 XV : 2, — azp_1 — f(z1,...,xn_2) € F}.

The assumption that f is a locally Lipschitz map, and thus continuous, implies
that for any disjoint, closed cubes Ry, ..., R, C T% such that Ry X -+ X Rp_o C V,
(Ry x -+ x Ry,) N W will be a closed set. It follows that if we set

H(Ry,...,Ry) ={ECT: (R x---x R,)NWNE" =0}

and
H(Rl,...,Rn) = {(E,u) € X[g ke H(Rl,...,Rn)},

then H(Ry,...,R,) is an open subset of X, and H(R1,...,R,) is a downward
closed family of sets. The proof will be complete will be proved that for each
positive integer m, and any choice of cubes Ry,..., R, with common sidelength
1/2am, with d(R;, R;) > 10/am for i # j, and with Q1 X --- X Qn—2 a closed
subset of V, where Q; = 2R;, then the set H(Ry,...,R,) is dense in X3. To prove
H(Ry,...,R,) is dense, we may assume without loss of generality that the set F
is 1/m periodic, i.e. F + k/m = F for any k € Z%, by replacing F with a finite
union of its translates. The set H(Ry, ..., Ry) is downward closed, so we can apply
Lemma 4.1.

Since f is a locally Lipschitz map, we may fix L > 0 such that for xy,zs €
Ry x---x Rn72,

|f(x1) = f(x2)] < L|zy — x2]. (7.1)

Fix a large integer M > 0, A € [0,/3), v € [0,) and pick r > 0 such that r—* <
M <7~ 4+ 1.1f ¢ = 2(1 + |a| + Ln'/?), and r is suitably small, then

IN(F,cr)| < rdn= (7.2)

For 1 < i < n, consider a family of independent random variables {X;(k) : 1 <
k < M}, such that X;(k) is uniformly distributed on Q; for each i, as well as
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another independent family of random variables {X(k) : 1 < k < M} uniformly
distributed in T% —(Q1 U---UQ,,). Let I be the set of indices k, € {1,..., N} such
that there are indices k1,...,k,—1 € {1,..., N} with the property that

dss (Xn(k;n) —aX (k1) — (X2 (k1) .. ,Xn_g(kn_g)),F) <er. (73)

If
S={Xi(k):0<i<n—1,1<k<N}U{X.(k): k &I}

then (7.1) implies that N(S,r) € H(W;Ry,..., Ry).
We claim that for each z € @,,, the quantity

P(z) = P(1 € I| X (1) = 2),

is independent of x. To see this, we note that because F is 1/m periodic, the
quantity

dH(x—axn,l — f(xl,...,xn,g),F)

depends only on 1, ..., Z,_, and the value of z — az,_1 in T¢ /(Zd /m). Because
aX,—1(kp—1) is uniformly distributed in aQ,, which is an axis-oriented cube with
sidelength 1/m, it follows that the distribution of the random variable

€r — aXn—l(kn—l)

modulo T? /(Z% /m), is independent of z, which yields the claim.
Let P denote the common quantity of the values P(z), and let

G(l’l,...,l‘nfl) = dH( — AQTp—-1 — f(:L‘l,...,al‘n,Q)),F>.

A union bound, together with (7.2), implies

p=p( (J {G(Xl(kl),...,Xn_l(kn_l))gcr}

k1yeekn_1

7.4
< Y PGXa(k),. . Xno1(kno1)) < cr) (7.4)
k17"'1kﬂ,—1

S Mn_1|N(F, cr)\ < M Lpdn—y S Mn—l—(d'fb—’y)//\

Because (n — 1) — (dn —v)/A < 0, (7.4) implies that for suitably large integers M
depending on n, d, A, and ~,

P<1/2 (7.5)
Set Ag = (1= P)|T—Q1 — -+ — Qu|, set A; = (1 — P)|Q;| ifi € {1,...,n—1},
and let A, = |@Qy]|. Define
n—1 M
F(g) — Z ZAiGQTriE-Xi(k) + ZAne%riﬂXn(k)'
i=0 k=1 kgl
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The choice of coefficients is made so that Y A; 2 1, and for any £ # 0, E(F(£)) = 0.
Indeed, we have

MAg

E(F _ 2mi€-x
( (5)) |Td —Ql __Qn| Td_Ql_..._Qne dx
n—1
MAZ 2mik-

+ e2mET 1.
; @il Ja,

+ %/ [1 - P(x)]e*™*; do
|Qn| R,

=M(1 - P)/ e2mieT — ),
T

Split up F into the sum of two exponential sums

n M
G(¢) = ZZAie%iéXi(k)

=0 k=1

and

H(¢) = Z A, e2miE Xn (k)

kel
Applying Lemma 4.4, we conclude that for any fixed x > 0, there is C' > 0 such
that
P( sup  [G(€) - B(G(&)] = CMY/2 1og<M>1/2> <110 (76)

|§|SNTHs

Lemma 7.2, which follows from a very similar argument to Lemma 6.2 in the last
section, implies that

P ( sup |H(E) —E(H()| = CM'/? log(M)1/2> < 1/10. (7.7)
lel<pren

A union bound applied to (7.6) and (7.7) implies that, since E(F(&)) = 0,

IP( sup  |F(€)] > CM/? 10g(M)1/2> <1/5 (7.8)
[g|<MIt+r
Set N = #(.5). Then

N>M > (1/2)r. (7.9)

Now (7.6), (7.7), and (7.9) imply that there exists a constant C' > 0 and an
instantiation of the random variables {X;(k)} such that if a(X;(k)) = 4, then

% > a(x)e?™ T < CNY2 log(N)'/2, (7.10)

zES
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Since ) g a(z) 2 N, if we set

then the sum

1 .
N Z a(aj)e%rzf':c

eSS

satisfies the assumptions of Lemma 4.1 for arbitrarily large N. We therefore
conclude by that Lemma that H(Ry,...,R,) is dense in X3. O

All that remains to prove Theorem 1.4 is to prove Lemma 7.2.

LEMMA 7.2. For any k > 0, there exists C' > 0 such that

P < sup  |H(§) —E(H(€))| = CM*? log(M)1/2> <1/10
HESYag

Proof. Consider the random set  of values z, € @, such that there are
ki,...,kn_1 € {1,...,M} with

— f(Xi(kr), .., Xn_o(kn_2)) € N(F,cr). (7.11)
Then
AM f: (7.12)
where B

e2mieXalk) X, (k) ¢ Q,

B = Xa(k)eQ

If ¥ is the o algebra generated by the random variables
{X;(k):ie{l,....n—1} ke {l,...,M}},

then € is measurable with respect to X. Thus the random variables {Z(k,¢)}
are conditionally independent given X. Since we have |Z(k,€&)| < 1 almost surely,
Hoeffding’s inequality thus implies that for all t > 0,

—¢2
P(H(E) — E(H(©)[S)| > 1) < dexp (W) | (7.13)

It is simple to see that

E(H(&)|X) = A, M /Q P (2)e*™ET dy. (7.14)
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Since
Q= J{f(X1(k), ..., Xp—a(kno2)) + N(Fier) : 1< ki, kg < K} (T.15)

we see that varying each random variable X;(k), for 1 < ¢ < n — 1 while fixing
the other random variables adjusts at most M"™ 2 of the sets forming (2, each of
which having volume Og,, 1,(r™~%), and thus varying X;(k) while fixing the other
random variables changes E(H (£)|X) by at most

M- Ogpr(ri"=). M" 1 < 1. (7.16)

Thus McDiarmid’s inequality shows that there exists C' > 0 such that for any ¢t > 0,

—¢2
PUEH©I) - EHO) 2 0 < dow (517 ). (7.17)
Combining (7.13) and (7.17), we conclude that there exists C' > 0 such that for
each £ € z4,
42
P - E(H©O)] 2 0 < 3o (537 ) (7.18)

Applying a union bound to (7.18) over all 0 < |¢| < M'** shows that there exists
a constant C' > 0 such that

P sup  [H(E) —E(H(©) = CM 2 log(M)"2 ) <1/10.
[§]<MI+r
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Appendix A. Justifying discretization

The main goal of this appendix is a proof of Lemma 4.1. Throughout this section,
we will apply mollification. So we fix a smooth, non-negative function ¢ € C*>° (']I‘d)
such that ¢(x) = 0 for |z| > 2/5 and [, ¢(x) dx = 1.

For each 7 € (0,1), we can then define ¢, € C*°(T%) by writing

r*dqﬁ(m/r) x| <y

0 : otherwise.

¢r(z) =

The following standard properties hold:

(1) For each r € (0,1), ¢ is a non-negative smooth function with

» ¢r(x) doe =1, (A1)
and ¢, (z) =0 for |z| > r.
(2) For any r € (0,1),
H(ETHLOO(Zd) =1 (A.2)
(3) For each ¢ € Z%,
lim 3, () = 1. (A.3)

(4) For each T > 0, for all » > 0, and for any non-zero £ € 74,

|6r (&) ST 1ElT (A.4)

We will prove Lemma 4.1 after a series of more elementary lemmas which give
results about the metric space X3.

LEMMA A.1. The set of all (E,u) € Xz with p € C®°(T%) and supp(p) = E is
dense in Xjg.

Proof. Let
Xs = {(E,p) € X5 : supp(p) = E}. (A.5)

We begin by proving that the set of all (E, ) € X such that u € C°°(T%) is dense
in Xg. Fix (Ey, po) € X3. For each r € (0, 1), consider the convolved measure p, =
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1o * ¢r. Then p,. € COO(']I‘d) and supp(u,) = E,. We claim that lim, _,o(Ey, ) =
(Eo, tt0), which would complete the proof. Since dy(Ey, E.) < r, we find that
lim, g E, = Ey holds with respect to the Hausdorff metric. Now fix A € (0, 8] and

§ > 0. For each ¢ € 27, |11,(€)] = |6 (€)[|7i0(€)], so

€127 (€) — Fio ()] = 1?1 (€) — 1|70 (€)]. (A.6)

We control (A.6) using the fact that |fig(€)| is small when ¢ is large, and |<ET(§) —1]
is small when ¢ is small. Since (Ey, po) € X, we can apply (4.1) to find R > 0 such
that for |¢| > R,

€210 ()] < 6/2. (A7)
Combining (A.6), (A.7), and (A.2), for || > R we find that

€121 (€) = Fio ()] < 6. (A-8)

On the other hand, (A.3) shows that there exists rg > 0 such that for r» < ry and
€l < R,

112160 (6) — 1] < 6. (A.9)

The (L', L>®) bound for the Fourier transform implies that |fio(¢)| < po(T?) = 1,
which combined with (A.9) gives that for r < r¢ and |¢] < R,

€121, (€) — Ba(€)] < 6. (A.10)

Putting together (A.8) and (A.10) shows that for r < 7o, ||, — pto|lar(x) < 6. Since
0 and X\ were arbitrary, we conclude that lim,_,q p,- = po. Thus the set of all pairs
(E, p) € X with g € C°°(T?) is dense in Xg.

Our proof will therefore be complete if we can show that X is dense in X5. We
prove this using a Baire category argument. For each closed cube @ C T, let

AQ) = {(E,p) e T": (ENQ) =0 or u(Q) > 0}.

Then A(Q) is an open set. If {Qx} is a countable sequence enumerating all cubes
with rational corners in T¢, then

N A@w) = %s. (A.11)
k=1

Thus it suffices to show that A(Q) is dense in X3 for each closed cube Q. To do this,
we fix (Eo, o) € Xg — A(Q), A € [0,8), and € > 0, and try and find (E, ) € A(Q)
with du(E, Eo) < € and [[uo — pllaprn) < e

Because (Ey, o) € X — A(Q), we know Eg N Q # 0 and po(Q) = 0. Find a
smooth probability measure v supported on N(Ep,&) NQ and, for ¢t € (0,1), define
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e = (1 —t)po + tv. Then supp(u:) C N(Eo,¢), so if we let E' = supp(v) Usupp(u),
then du(E, Ey) < . Clearly (E, 1) € A(Q) for t > 0. And

e = mollarcry < t (ol ey + Iwllaeeny) 5 (A.12)
so if we choose t < e - (||ullarn) + IWllarny) ™" we find ||pe — pllarn) < €. Since e
was arbitrary, we conclude A(Q) is dense in Xjg. O

REMARK A.2. The reason we must work with the metric space Xg rather than the
smaller space X3 C Xj is that X is not a closed subset of X, and so is not a
complete metric space, preventing the use of the Baire category theorem. However,
the latter arguments in the proof of Lemma A.1 shows that quasi-all elements of
X3 belong to X3, so that one can think of X3 and Xg as being equal ‘generically’.

The density argument of Lemma 4.1 requires constructing approximations to an
arbitrary element of (Ey, to) € X by (E, u) € Xz such that E € A. We do this by
multiplying pg by a smooth function f € C* (Td) which cuts off parts of po which
cause the support of pg to fail to be in A. As long as pg is appropriately smooth,
and the Fourier transform of f decays appropriately quickly, the next lemma shows

that fMO ~ -

LEMMA A.3. Consider a finite measure o on T, as well as a smooth probability
density function f € C°°(T). If we define = fuo, then for any \ € [0, d),

1= pollarny Sa llollararny Lf laren)-
Proof. Since fi = f * fig, and f(O) =1, for each ¢ € Z¢ we have

E1M217(€) — ()] = €12 D7 F(& = m)io(n)] - (A.13)
n#E

If | < [€]/2, then [¢]/2 < |€ —n| < 2|¢], so

€217 (& = m < I T L6216 =nl ™2 < 22201 flloy Sa I lwny- (A14)

Thus the bound (A.14) implies

R ) 1
€2 D2 e mio)| Suoa Iollasainllascy {1+ D0 o

0<|n|<|€l/2 0<|n|<|€l/2

Sa llollaras I fllareoy < leollaras ol fllaron-
(A.15)

On the other hand, for all n # &,

1F€ =) < Nl = nl™ < 1 Fllarny- (A.16)
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Thus we calculate that

1

€21 Y FE=mio)| Samo llollaran 1 f e - 112 T
In|>1€]/2 In|>1€1/2
n#¢
Sa llpollararn 1 llarn-
(A.17)
Combining (A.13), (A.15) and (A.17) completes the proof. O

The bound in Lemma A.3, if || f||as(x) is taken appropriately small, also implies
that the Hausdorff distance between the supports of p and py are small.

LEMMA A.4. Fiz a probability measure pg € C®(T?) and X € [0,d). For any
e > 0, there exists 6 > 0 such that if p € C“(Td), supp(p) C supp(po), and
o — pllarny < 6, then du(supp(p), supp(po)) < €.

Proof. Consider any cover of supp(ug) by a family of radius €/3 balls { By, ..., By},
and for each ¢ € {1,..., N}, consider a smooth function f; € C°(B;) such that
there is s > 0 with

/fi(z)duo(x) >s (A.18)
for each i € {1,...,N}. Fix A > 0 with
PIAGIE:! (A.19)
§#0

for all i € {1,...,N} as well. Set § = s/2A. If ||po — pllarny < 6, we apply
Plancherel’s theorem together with (A.18) and (A.19) to conclude that

‘ [ fi@ydnta) do - [ fitw)dno(a)

=D Jil&) (7€) — o(€))

gezd (A.20)
< Allpo = pllaren
< s/2.

Thus we conclude from (A.18) and (A.20) that

/fi(a:)du(a:) dz > /fi(x)duo(x) /23 5/25 0. (A.21)

Since equation (A.21) holds for each i € {1,...,N}, the support of u inter-
sects every ball in {By,..., By}. Combined with the assumption that supp(u) C
supp(po), this implies that dy(uo, 1) < e. O

Now we have the technology to prove Lemma 4.1.
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Proof of Lemma 4.1. Fix (Ey, pio) € Xg. By Lemma A.1, without loss of generality,

we may assume that po € C°°(T%) and that supp(ug) = Ep. Our goal, for any
A €10,5) and §p > 0, is to find (E, u) € X such that E € A, dy(E, Ep) < dy, and

e = pollar(yy < do-
Fix § > 0, e > 0, and X\ € (v,5), and consider a set S = {z1,...,zy} and

{ai,...,an} satisfying the assumptions of the Lemma. If we set

1 N
n= N Zak61k7
k=1

then 7 is a probability measure, and Property (2) implies that for [¢] < (1/r)1*",
7€) < CN~V21og(N) + ol 2. (A.22)
Consider the function f = 7 * ¢,., where ¢, is the mollifier defined in the notation

section. For each € € Z,

o~

F&) =7(6)8r(6). (A.23)

For |¢] < 1/r, (A.22) and (A.2) together with (A.23) imply that there is k1 > 0
depending on 3, A\, and v such that

F©1 < CNTY2log(N) +dl¢[ /2 < (ONT" + 8)|¢| /2. (A24)
Thus if N is suitably large, we conclude that for |¢] < 1/r,
F©) < 20072, (A.25)

If (1/r) < €] < (1/r)'+%, (A.4) implies |é,(€)] <p rP/2|¢|7P/2 which together
with (A.2) and (A.22) applied to (A.23) allows us to conclude that there is kg > 0
depending on 3, A, and -y, such that

F©)1 = 0l¢1™2 + 0 (N2 10g(N) - 7=7121¢|12)

< (6 + O (N—1/2 log(NN) ,T—ﬁ/2|§‘—(ﬂ—>\)/2)) |£‘—/\/2

(A.26)
< (64 Op (N2 10g(N)r /2 ) ) Jg|7/2
< (§+ Opn(NT200)) e[ /2,
Thus if N is sufficiently large, then for (1/r) < |£] < (1/r)1F%,
F© < 20072, (A.27)
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Finally, if [¢] > (1/r)'*", we apply (A.4) for T > (/2 together with the bound
7l oo (zay = 1, which follows because 7 is a probability measure, to conclude that

1F(©)] Srr T~ T
= r~T|efr2T . g P/

< T’iT(l/r)(ﬁ/sz)(I#»N) . |§‘,5/2 (A28)

= T =B/2(+R) | =B/2,

If we choose T' > (8/2)(1 + 1/k), then as r — 0, r*T—(8/2(+%) (. Thus we
conclude from (A.28) that if NV is sufficiently large, then for |¢] > (1/r)1**

FO)1 < 20177/ < 2[¢|77/2, (A.29)
Combining (A.25), (A.27) and (A.29) shows that if NV is sufficiently large,

[ fllaryy < 26. (A.30)

Intuitively, if § < 1, then the Fourier transform of f approximately looks like
the Dirac delta function at the origin in T?, so we should expect f~1lon T
In particular, we should expect that fup =~ po. Since supp(fuo) C supp(f) C
N(S,7), we know that supp(fuo) € A. Carrying out all these details numerically
will complete the proof of density.

We start by applying Lemma A.3 using (A.30), which implies that if p = fuo,
then

o= ollniyy Sapo [1flla1(y) < 20 (A.31)
Using (A.30) and the fact that fig € L'(Z%) because g € C°°(T?), we find that

p(T4) = (F# 7io)(0) > 1 — g F©)lTio(=&)] > 1= 0, (20). (A.32)
0

Thus if we define u = p/p(Td), then for § <1,

= tollaryy < Nl = pllary + llp = wollary)
= 1/pM) =1 lpllarey + o= sollrey (4 55
Suo Ollllazcyy + lle — pollary)
S Ollpollariy) + e = pollary) S 6
If we take ¢ suitably small, (A.33) implies that ||u— pol|ar() < do. Since supp(p) C
supp(po), Lemma A.4 implies that if § is taken even smaller, then dy(FE, Ey) < do.

Thus if we set E = supp(p), then E € A since E C N(S,r) and A is downward
closed, and since §p and «y were arbitrary, this completes the proof of density. [
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