
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–46, 2025

DOI:10.1017/prm.2025.10097

Large Salem sets avoiding nonlinear configurations

Jacob Denson
Department of Mathematics, University of Wisconsin-Madison,
Madison, WI, USA (jdenson@ed.ac.uk)

(Received 10 March 2025; revised 19 September 2025; accepted 19 September 2025)

We construct large Salem sets avoiding patterns, complementing previous
constructions of pattern avoiding sets with large Hausdorff dimension. For a
(possibly uncountable) family of uniformly Lipschitz functions {fi : (Td)n−2 → Td},
we obtain a Salem subset of Td with dimension d/(n− 1) avoiding nontrivial
solutions to the equation xn − xn−1 = fi(x1, ..., xn−2). For a countable family of
smooth functions {fi : (Td)n−1 → Td} satisfying a modest geometric condition, we
obtain a Salem subset of Td with dimension d/(n− 3/4) avoiding nontrivial solutions
to the equation xn = f(x1, ..., xn−1). For a set Z ⊂ Tdn which is the countable union
of a family of sets, each with lower Minkowski dimension s, we obtain a Salem subset
of Td of dimension (dn− s)/(n− 1/2) whose Cartesian product does not intersect Z
except at points with non-distinct coordinates.
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1. Introduction

Geometric measure theory explores the relationship between the geometry of sub-
sets of Td, and analytic properties of Borel measures supported on those subsets.
From the perspective of harmonic analysis, it is interesting to explore what geo-
metric information can be gathered from the Fourier analytic properties of these
measures, in particular, their Fourier decay. Some results show that the support of
measures with Fourier decay must contain certain arrangements of points, such as
arithmetic progressions [1, 6, 16]. In this paper, we work in the opposite direction,
showing that most sets supporting measures with a certain type of Fourier decay
do not contain certain configurations. More precisely, for certain sets Z ⊂ (Td)n,
and s > 0, we show that a ‘generic’ compact set E ⊂ Td supporting a measure
µ such that |µ̂(ξ)| . |ξ|ε−s/2 for any ε > 0 also avoids the pattern defined by Z,
in the sense that for any distinct points x1, . . . , xn ∈ E, (x1, . . . , xn) 6∈ Z. As an
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2 J. Denson

example, one might have Z = {(x1, . . . , xn) ∈ Tdn : xn = f(x1, . . . , xn−1)}, in
which case a set E avoids Z precisely when, for any distinct points x1, . . . , xn ∈ E,
xn 6= f(x1, . . . , xn−1), i.e. E does not contain nontrivial solutions to the equation
xn = f(x1, . . . , xn−1).

A useful statistic associated with any Borel set E ⊂ Td is its Fourier dimension;
given a finite Borel measure µ, its Fourier dimension dimF(µ) is the supremum
of all s ∈ [0, d] such that supξ∈Zd |µ̂(ξ)||ξ|s/2 < ∞. The Fourier dimension of a
compact Borel set E is then the supremum of dimF(µ), where µ ranges over all
Borel probability measures µ with supp(µ) ⊂ E. A particularly tractable family
of sets in this scheme are Salem sets, sets whose Fourier dimension agrees with
their Hausdorff dimension. Often constructions in the pattern avoidance literature
focus on constructing sets with large Hausdorff dimension which avoid patterns [3,
5, 11], but it is not necessarily possible to use the same techniques to construct
large Salem sets avoiding patterns, or even to construct sets with positive Fourier
dimension, since having large Fourier dimension is often a much stronger property
than having large Hausdorff dimension. Nonetheless, in this paper we are able to
provide techniques proving the existence of large Salem pattern avoiding sets.

One heuristic reason why Fourier decay can guarantee patterns where other
notions of dimension is that the existence of a given pattern can often be detected
via understanding a ‘blending’ of µ with itself (e.g. for linear patterns, this opera-
tion is convolution). Such blending operations often magnify Fourier decay, which
acts as a kind of ‘uniform measure of smoothness at all frequency scales’. Such mag-
nification is not necessarily true without the assumption of uniform Fourier decay.
For instance, if supp(µ) is contained in the middle thirds Cantor set (with Hausdorff
dimension log3(2)), the convolution µ∗µ∗µ∗µ must be singular, concentrated near
numbers with particular ternary expansions (reflecting the fact that µ̂(3n) cannot
tend to zero as n → ∞), whereas for a measure µ with |µ̂(ξ)| ≤ |ξ|− log3(2)/2, the
convolution µ ∗ µ ∗ µ ∗ µ is always a continuous function, guaranteeing this lack of
concentration. Nonetheless, the distinction between Hausdorff and Fourier dimen-
sion in pattern avoidance can be subtle, and this is especially so when studying
non-linear patterns.

Our paper is part of a growing body of literature on pattern avoidance problems:
given a set Z ⊂ Tdn, the pattern avoidance problem for Z asks to construct a
pattern avoiding set E ⊂ Td, a set such that for any distinct x1, . . . , xn ∈ E,
(x1, . . . , xn) 6∈ Z, which is as large as possible with respect to some particular
statistic relevant to the problem, such as the Hausdorff or Fourier dimension. The
main inspiration for the results of this paper were the results of [3] on ‘rough’
patterns, which constructed, for any set Z ⊂ Tdn formed from the countable union
of closed sets with lower Minkowski dimension at most α, a set E avoiding Z with

dimH(E) = min

(
dn− α

n− 1
, d

)
. (1.1)

While the sets E constructed using this method are not guaranteed to be Salem,
the techniques in the method (an iterative random selection procedure) seemed
amenable to produce Salem sets, since random methods are often very useful for
constructing Salem sets (randomly constructed functions are often uncorrelated
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Large Salem sets avoiding nonlinear configurations 3

with oscillation at any particular frequency, and thus tend to have good Fourier
decay properties). Our goal was thus to modify the construction of [3] in order to
ensure the resulting sets constructed were Salem.

Conjecture 1.1. For any set Z ⊂ Tdn which is the countable union of closed sets
of lower Minkowski dimension α, there exists a set E ⊂ Td with

dimF(E) = min

(
dn− α

n− 1
, d

)
,

such that for any distinct x1, . . . , xn ∈ E, (x1, . . . , xn) 6∈ Z.

Theorem 38 of [2] provides a baseline for this conjecture, constructing a Salem
set E avoiding Z with

dimF(E) = min

(
dn− α

n
, d

)
. (1.2)

In this paper, we are only able to prove Conjecture 1.1 when Z exhibits a weak
translation symmetry, as detailed in Theorem 1.4 of this paper. But even for more
general sets, we are able to improve upon the dimension given by (1.2), as detailed
in Theorems 1.2 and 1.3.

The assumption in Conjecture 1.1 that Z is formed from sets with a given lower
Minkowski dimension is not the only way one might measure the ‘dimension’ of
a pattern. For instance, one might instead use the Hausdorff dimension of Z (a
weaker assumption than lower Minkowski dimension) or perhaps even the Fourier
dimension of Z itself (a stronger assumption). But lower Minkowski dimension
provides the most effective way of discretizing the pattern at each scale in our
arguments. We are unsure whether changing these assumptions changes the Fourier
dimension of the set E constructed in Conjecture 1.1.

The methods in this paper are generic, in the sense of the Baire category theorem;
we define a complete metric space Xβ for each β ∈ (0, d], which consists of all pairs
(E, µ), where E is a compact set, and µ is a Borel probability measure supported on
E with dimF(µ) ≥ β. We then show that for an appropriate choice of β, the family
of all pairs (E, µ) ∈ Xβ such that E is Salem and avoids a pattern is comeager, or
generic in Xβ (the complement of a set of first category). In particular, the Baire
category theorem then guarantees that there exists many sets E with dimF(E) = β
which avoid a given pattern.

Many other approaches [3, 5, 9] to the pattern avoidance problem construct
large pattern avoiding sets explicitly, exchanging nonconstructive Baire category
type methods for various constructive queuing techniques. The approaches in this
paper can be modified to give a constructive queuing argument for the existence
of sets with the properties guaranteed in Theorems 1.2, 1.3, and 1.4. But using
Baire category techniques allows us to avoid the technical numerology that goes
into these constructions, so that we can focus on the more novel aspects of our
analysis. See Remark 4.3 for a brief outline of how one might obtain such a queuing
construction.

Let us now introduce the three primary results of this paper. Theorem 1.2 has
the weakest conclusions and its proof relies on a small modifications of previous
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4 J. Denson

techniques that exist in the literature, e.g. in [7]. But the theorem works for the
most general family of patterns, and its proof acts as a good foundation on which
to build the more novel and powerful theorems in this paper.

Theorem 1.2. Fix 0 ≤ α < dn, and let Z ⊂ Tdn be a compact set with lower
Minkowski dimension at most α. Set

β0 = min

(
dn− α

n− 1/2
, d

)
.

Then there exists a compact Salem set E ⊂ Td with dimF(E) = β0, such that for
any distinct points x1, . . . , xn ∈ E, (x1, . . . , xn) 6∈ Z. Moreover, if β ≤ β0, then
the family of all pairs (E, µ) ∈ Xβ such that E is Salem and avoids the pattern
generated by Z is comeager.

The remaining two results give a more novel analysis, improving upon the result
of Theorem 1.2 when the pattern Z satisfies additional regularity conditions. In
these latter theorems, we focus on patterns specified by equations of the form

xn = f(x1, . . . , xn−1),

i.e. where Z = {(x1, . . . , xn) : xn = f(x1, . . . , xn−1)}, and our assumptions will
be on structure of the function f . Under the assumption that f is smooth, and
satisfies a regularity condition geometrically equivalent to the graph of f being
transverse to any axis-oriented (n − 2) × d dimensional plane in (Rd)n−1, we are
able to improve the Fourier dimension bound obtained using previous construction
techniques, though not quite enough to match the Hausdorff dimension bound
obtained in [5], except in the fairly trivial case where n = 2 (though see the fourth
remark below).

Theorem 1.3. Consider a smooth function f : V → Td, where V is an open subset
of Td(n−1), such that for each k ∈ {1, . . . , n− 1}, the matrix

Dxk
f(x1, . . . , xn−1) =

(
∂fi

∂(xk)j

)
1≤i,j≤d

is invertible whenever x1, . . . , xn−1 are distinct and (x1, . . . , xn−1) ∈ V . Then there
exists a compact Salem set E ⊂ Td with dimension

β0 =

d : n = 2

d/(n− 3/4) : n ≥ 3

such that for any distinct points x1, . . . , xn ∈ E, with x1, . . . , xn−1 ∈ V ,

xn 6= f(x1, . . . , xn−1).

Moreover, if β ≤ β0, then the family of pairs (E, µ) ∈ Xβ such that E is Salem and
does not contain any solutions to the equation xn = f(x1, . . . , xn−1) is comeager.
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Large Salem sets avoiding nonlinear configurations 5

Finally, we consider patterns defined by equations which feature some translation
invariance. Here we can construct Salem sets with dimension exactly matching the
Hausdorff dimension results obtained in [3]. The simplest example of such a pattern
is that specified by a family of equations of the form m1x1+ · · ·+mnxn = s, where
at least two of the integers m1, . . . ,mn ∈ Z is nonzero, and s ranges over a low
dimension set in Td. But we can also consider more nonlinear patterns, such as
those formed by solutions to an equation

xn − axn−1 = f(x1, . . . , xn−2),

for a non-zero rational number a, and a locally Lipschitz function f . Even in the
case where f is linear, this theorem gives new results.

Theorem 1.4. Fix d(n−1) ≤ α < dn, a non-zero rational number a, and a locally

Lipschitz function f : V → R, where V is an open subset of Td(n−2). Suppose
F ⊂ R is a compact set with lower Minkowski dimension at most α− d(n− 1). Set

β0 =
dn− α

n− 1
.

Then there exists a compact Salem set E ⊂ Td with dimF(E) = β0 such that for
any distinct points x1, . . . , xn ∈ E, with (x1, . . . , xn−2) ∈ V ,

xn − axn−1 − f(x1, . . . , xn−2) 6∈ F.

Moreover, if β ≤ β0, then the family of all pairs (E, µ) ∈ Xβ such that E is Salem
and does not contain distinct points satisfying the equation above is comeager in
Xβ.

Under the assumptions of Theorem 1.4, the set

Z = {(x1, . . . , xn) ∈ Td : xn − axn−1 − f(x1, . . . , xn−2) ∈ F}

has lower Minkowski dimension at most α. Observing the value β0 in that Theorem,
we see that in this setting, we see we have verified Conjecture 1.1 for such patterns.

Theorem

(1) Because we are using Baire category techniques, the results we obtain remain
true when, instead of avoiding a single pattern, we avoid a countable family
of patterns. This is because the countable union of sets of first category is
a set of first category. As an example of this property, we note that the
conclusion of Theorem 1.2 holds when Z is replaced by a countable union
of compact sets, each with lower Minkowski dimension at most α. Similar
generalizations apply to Theorems 1.3 and 1.4.

(2) It is quite surprising that we are able to generically improve the bound (1.2)
in the sense of the Baire category theorem. In [14], for each β, a natural
probability measure, the fractal percolation, is constructed on the space of
all β-dimensional subsets of Td, and the question of for which β a fractal
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6 J. Denson

percolation almost surely contains a given pattern is studied. Such fractal
percolations will almost surely be Salem sets, which connects such questions
to our problem. The patterns they study in their paper are slightly different
from the regimes of this paper under which sharper results are obtained,
i.e. as given in Theorems 1.3 and 1.4. But even using the more general
result of Theorem 1.2 we see that the parameters under which a random β
dimensional set almost surely contains a pattern behave quite differently to
the parameters under which a generic β dimensional set in Xβ contains a
pattern.

More precisely, consider the set Z ⊂ Tdn defined to be the family of all
translations and dilations of a fixed tuple of points (y1, . . . , yn) ∈ Tdn. Then
Z has dimension d + 1, which we will label α. Theorem 1.1 of [14] implies
that for any β > (dn − α)/n, a random fractal percolation E ⊂ Td will
almost surely contain points x1, . . . , xn ∈ E such that (x1, . . . , xn) ∈ Z.
On the other hand, Theorem 1.2 of this paper implies that for any β ≤
(dn−α)/(n− 1/2), a generic element of Xβ does not contain any instances
of the pattern specified by Z. Thus the theorems in this paper imply that
generic pattern avoidance in a Baire category sense differs from generic
pattern avoidance in a probabilistic sense, at least in the range (dn−α)/n <
β ≤ (dn− α)/(n− 1/2).

(3) If Z ⊂ Tdn is a compact set with lower Minkowski dimension α with 0 ≤ α <
d, then for any 1 ≤ i ≤ d, the set Td −πi(Z) has full Hausdorff dimension
d, where πi : Tdn → Td is given by πi(x1, . . . , xn) = xi. Thus the pattern
avoidance problem is trivial in this case for Hausdorff dimension. This is
no longer true when studying Fourier dimension, since Td −πi(Z) need not
be a Salem set, nor even have particularly large Fourier dimension, making
the results of this paper still interesting in this range.

That this is true is hinted at in Example 8 of [4], where it is shown that
there exists a set X ⊂ T which is the countable union of compact sets {Xk},
with supk dimM(Xk) ≤ 3/4, such that dimF(T−X) ≤ 3/4. Thus T−X is
not a Salem set, since T has Hausdorff dimension one. The pattern

Z =
n−1⋃
i=0

Qi ×X ×Qn−i−1,

is a countable union of compact sets, each with Minkowski dimension at
most 3/4. On the other hand, for each i ∈ {1, . . . , n}, we find that

dimF(T−πi(Z)) ≤ dimF(T−X) ≤ 3/4.

Thus the trivial solution obtained by removing a projection of Z onto a par-
ticular coordinate axis does not necessarily give a pattern avoiding set with
optimal Fourier dimension in this setting. Applying Theorem 1.2 naively
to the pattern Z shows that a generic Salem set E ⊂ T of dimension
(n − 3/4)/(n − 1/2) avoids Z, which exceeds the dimension of the trivial
construction for all n > 1. In fact, a generic Salem set E ⊂ T of dimension
1 will avoid Z, since any subset of T−X will avoid Z, and Theorem 1.2
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Large Salem sets avoiding nonlinear configurations 7

applied with Z = X implies that a generic Salem set E of dimension 1 will
be contained in T−X.

(4) If n = 2, the problem of constructing a set which avoids solutions to the
equation y = f(x) for a continuous function f : V → Td is essentially
trivial. If there exists x ∈ Td such that f(x) 6= x, there there exists an open
set U around x such that U ∩f(U) = ∅. Then U has full Fourier dimension,
and avoids solutions to the equation y = f(x). On the other hand, if f(x) = x
for all x, then there are no distinct x and y in [0, 1] such that y = f(x),
and so the problem is also trivial. But it is a less trivial to argue that a
generic set with full Fourier dimension avoids this pattern, which is proved
in Theorem 1.3, so we still obtain nontrivial information in this case.

(5) Working on patterns on Rd is not significantly different from working over
Td. For our purposes, the latter domain has several notational advantages,
which is why in this paper we have chosen to work with the pattern avoidance
pattern in this setting. But there is no theoretical obstacle in applying the
techniques described here to prove the existence of pattern avoiding sets in
Rd. Let us briefly describe how this can be done. Given a finite Borel measure
µ on Rd, we define the Fourier dimension dimF(µ) of µ to be the supremum
of all s ∈ [0, d] such that supξ∈Rd |µ̂(ξ)||ξ|s/2 < ∞, and define dimF(E) for

a Borel set E ⊂ Rd to be the supremum of the quantities dimF(µ), taken
over finite Borel measures µ supported on E. It is a simple consequence
of the Poisson summation formula that if µ is a compactly supported finite
measure on Rd, and we consider the periodization µ∗ of µ, i.e. the finite
Borel measure on Td such that for any f ∈ C(Td),∫

Td

f(x) dµ∗(x) =

∫
Rd

f(x) dµ(x), (1.3)

then dimF(µ
∗) = dimF(µ). A proof is given in Lemma 39 of [2]. Since µ

is compactly supported, it is also simple to see that dimH(µ
∗) = dimH(µ).

It follows that if E is a compact subset of [0, 1)d, and π : [0, 1)d → Td is
the natural projection map, then dimF(E) = dimF(π(E)) and dimH(E) =
dimH(π(E)). These results therefore imply we can reduce the study of pat-
terns on Rdn to patterns on Tdn, and thus obtain analogous results to
Theorems 1.2, 1.3, and 1.4 for the construction of Salem sets avoiding pat-
terns in Rd, where every instance of T in the statement of those theorems is
replaced by [0, 1].

2. Notation

• Given a metric space X, a point x ∈ X, and a positive number ε > 0, we
let Bε(x) denote the open ball of radius ε around x. For x ∈ X, we let δx
denote the Dirac delta measure at x. For a set E ⊂ X and ε > 0, we let
N(E, ε) =

⋃
x∈E Bε(x) denote the ε-neighborhood of the set E. For two sets

E1, E2 ⊂ X, we let

d(E1, E2) = inf{d(x1, x2) : x1 ∈ E1, x2 ∈ E2},
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8 J. Denson

and then define the Hausdorff distance

dH(E1, E2) = max

(
sup

x1∈E1

d(x1, E2), sup
x2∈E2

d(E1, x2)

)
.

If dH(E1, E2) < ε, then E1 ⊂ N(E2, ε) and E2 ⊂ N(E1, ε), and the
Hausdorff distance can be described as the infimum of such ε.

• A subset of a metric space X is of first category, or meager in X if it is
a subset of the countable union of closed sets with empty interior, and is
comeager if it is the complement of such a set (it contains a countable
intersection of open, dense sets). We say a property holds quasi-always, or a
property is generic in X, or quasi-all elements of X have a property, if the
set of points in X satisfying that property is comeager. The Baire category
theorem then states precisely that any comeager set in a complete metric
space is dense.

• We let Td = Rd /Zd. Given x ∈ T, we let |x| denote the minimal absolute
value of an element of R lying in the coset of x. For x ∈ Td, we let |x| =√
|x1|2 + · · ·+ |xd|2. The canonical metric on Td is then given by d(x, y) =

|x− y|, for x, y ∈ Td.
For an axis-oriented cube Q in Td, and some t > 0, we let tQ be the

axis-oriented cube in Td with the same centre and t times the sidelength.
We say a family of subsetsA of Td is downward closed if, whenever E ∈ A,

any subset of E is also an element of A. The quintessential downward closed
family for our purposes, given a set Z ⊂ Tdn, is the collection of all sets
E ⊂ Td that avoid the pattern Z, i.e. such that for any distinct points
x1, . . . , xn ∈ E, (x1, . . . , xn) 6∈ Z.

• For α ∈ [0, d] and δ > 0, the (α, δ) Hausdorff content of a Borel set E ⊂ Td

is

Hα
δ (E) = inf

{ ∞∑
k=1

εαk : E ⊂
∞⋃
k=1

Bεk(xk) and 0 < εk ≤ δ for all k ≥ 1

}
.

The α dimensional Hausdorff measure of E is equal to

Hα(E) = lim
δ→0

Hα
δ (E).

The Hausdorff dimension dimH(E) of a Borel set E is then the supremum
over all s ∈ [0, d] such that Hs(E) = ∞, or equivalently, the infimum over
all s ∈ [0, d] with Hs(E) = 0.

For a measurable set E ⊂ Td, we let |E| denote its Lebesgue measure.
We define the lower Minkowski dimension of a compact Borel set E ⊂ Td

as

dimM(E) = lim inf
r→0

d− logr |N(E, r)|.

Thus dimM(E) is the largest number such that for α < dimM(E), there
exists a decreasing sequence {ri} with limi→∞ ri = 0 and |N(E, ri)| ≤ rd−α

i

for each i.
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• At several points in this paper we will need to employ probabilistic con-
centration bounds. In particular, we use McDiarmid’s inequality. Let S
be a set, let {X1, . . . , XN} be an independent family of S-valued ran-
dom variables, and consider a function f : SN → C. Suppose that for
each i ∈ {1, . . . , N}, there exists a constant Ai > 0 such that for any
x1, . . . , xi−1, xi+1, . . . , xN ∈ S, and for each xi, x

′
i ∈ S,

|f(x1, . . . , xi, . . . , xN )− f(x1, . . . , x
′
i, . . . , xN )| ≤ Ai.

Then McDiarmid’s inequality guarantees that for all t ≥ 0,

P (|f(X1, . . . , XN )− E(f(X1, . . . , XN ))| ≥ t) ≤ 4 exp

(
−2t2

A2
1 + · · ·+A2

N

)
.

Proofs of McDiarmid’s inequality for real-valued functions are given in many
probability texts, for instance, in Theorem 3.11 of [15], but can be triv-
ially extended to the complex-valued case by taking a union bound to the
inequality for real and imaginary values of f .

A special case of McDiarmid’s inequality is Hoeffding’s Inequality.
Hoeffding’s inequality is often stated in slightly different ways depending on
the context; In this paper we use the following formulation: if {X1, . . . , XN}
is a family of independent random variables, such that for each i, there exists
a constant Ai ≥ 0 such that |Xi| ≤ Ai almost surely, then for each t ≥ 0,

P (|(X1 + · · ·+XN )− E(X1 + · · ·+XN )| ≥ t)

≤ 4 exp

(
−t2

2(A2
1 + · · ·+A2

N )

)
.

3. Applications of our results

3.1. Arithmetic patterns

An important problem in current research on pattern avoidance is to construct sets
E which avoid linear patterns, i.e. sets E which avoid solutions to equations of the
form

m1x1 + · · ·+mnxn = 0 (3.1)

for distinct points x1, . . . , xn ∈ E. This is one scenario in which we know upper
bounds on the Fourier dimension of pattern avoiding sets. It is simple to prove
that if E ⊂ Td, dimF(E) > 2d/n, and m1, . . . ,mn are non-zero integers, then
m1E+ · · ·+mnE is an open subset of Td. This is obtained by a simple modification
of the argument of [12, Proposition 3.14]. Thus there exists some choice of integers
m1, . . . ,mn and distinct points x1, . . . , xn ∈ E such that m1x1 + · · · +mnxn = 0.
Recently, under the same assumptions, Liang and Pramanik [10] have shown that
for d = 1, one can choose these integers m1, . . . ,mn to satisfy m1 + · · ·+mn = 0.
These results drastically contrasts the Hausdorff dimension setting, where there
exists sets E ⊂ Td with dimH(E) = d which are linearly independent over the
rational numbers, and thus avoid nontrivial solutions to integer equations of an
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arbitrary size (see [9] for a discussion of the case where d = 1, whose proof can be
adapted to higher dimensions).

If dimF(E) > d/n, and m1, . . . ,mn 6= 0, then the set m1E + · · · + mnE has
positive Lebesgue measure [12, Proposition 3.14]. This does not necessarily mean
that E will contain solutions to the equation m1x1+ · · ·+mnxn = 0, but indicates
why it might be difficult to push past the current Fourier dimension estimates
obtained in (1.2), which construct sets with Fourier dimension d/n avoiding such
patterns. The first success in pushing past this barrier was the main result of [8],
which showed that for each n > 0, there exists a set E ⊂ T with Fourier dimension
1/(n− 1) such that for any integers m1, . . . ,mn ∈ Z, not all zero, and any distinct
x1, . . . , xn ∈ Td, m1x1 + · · · + mnxn 6= 0. The technique used to control Fourier
decay in that paper (bounding first derivatives of distribution functions associated
with the construction of a random family of pattern avoiding sets) relies heavily on
the one dimensional nature of the problem, which makes it difficult to generalize
the proof technique to higher dimensions. The results of this paper imply a more
robust d-dimensional generalization of the result of [8].

Theorem 3.1. Suppose F ⊂ Td is the countable union of a family of compact sets,
each with lower Minkowski dimension α. Then there exists a Salem set E ⊂ Td of
dimension (d−α)/(n−1) such that for any x ∈ F , any distinct x1, . . . , xn ∈ E, and
any integers m1, . . . ,mn ∈ Z, m1x1+ · · ·+mnxn 6= x. Moreover, if β0 = d/(n−1),
then for any β ≤ β0, and for a generic set (E, µ) ∈ Xβ, the set E has this property.

Proof. It will suffice to show that a generic set (E, µ) ∈ Xβ is Salem and avoids
solutions to equations of the form

xn − an−1xn−1 = x+ a3x3 + · · ·+ anxn, (3.2)

with a2, . . . , an ∈ Q, x ∈ F , and where either an−1 6= 0, or a2 = a3 = · · · = an = 0.
Without loss of generality, we may assume F is compact and has lower Minkowski
dimension α. If an−1 6= 0, then Theorem 1.4 applies directly to the equation

xn − an−1xn−1 − f(x1, . . . , xn−2) ∈ F, (3.3)

where f(x1, . . . , xn−2) = a1x1+· · ·+an−2xn−2. Applying Theorem 1.4, we conclude
that the set of (E, µ) ∈ Xβ such that E is Salem and avoids solutions to (3.3) is
comeager. On the other hand, if a2 = a3 = · · · = an = 0, then the equation we
must avoid is precisely

x1 ∈ S, (3.4)

and it follows from Theorem 1.2 with Z = S and n = 1 that the set of (E, µ) ∈ Xβ

such that E is Salem and avoids solutions to (3.4) is comeager. Taking countable
unions ranging over the choices of coefficients a2, . . . , an shows that the set of all
(E, µ) ∈ Xβ such that E is Salem and avoids all n-variable linear equations is
comeager, which completes the proof. �

Remark 3.2. For particular linear patterns, it is certainly possible to improve the
result of Theorem 3.1. For instance, Shmerkin [13] constructed a set E ⊂ T with
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dimF(E) = 1 which contains no three numbers forming an arithmetic progressions,
i.e. solutions to the linear equation

(x3 − x2)− (x2 − x1) = 0.

This equation can also be written as

x3 − 2x1 + x1 = 0.

Liang and Pramanik [10] generalized this technique by constructing, for any finite
family of translation-invariant linear functions {fi}, a set E ⊂ T with dimF(E) = 1
such that for distinct x1, . . . , xn ∈ E, and any index i, fi(x1, . . . , xn) 6= 0. This
same paper even constructs a set with Fourier dimension close to one avoiding an
uncountable family of translation-invariant linear functions, though only those that
are of a very special form. The advantage of Theorem 3.1 is that it applies to a very
general family of uncountably many linear equations, though one does not obtain
as high a Fourier dimension bound as those obtained in [10] and [13]. Nonetheless,
though we construct sets of dimension d/(n − 1), we still remain quite far away
from the best known upper bound 2d/n of the Fourier dimension of a set avoiding
general integer linear equations.

The arguments in this paper are heavily inspired by the techniques of [8], but
augmented with some more robust probabilistic concentration inequalities and oscil-
latory integral techniques, which enables us to push the results of [8] to a much
more general family of patterns. In particular, Theorem 1.4 shows that the results
of that paper do not depend on the rich arithmetic structure of the equation
m1x1 + · · · + mnxn = 0, but rather only on a very weak translation invariance
property of the pattern. We are unable to close the gap between the upper bound
2d/n of sets avoiding n-variable linear equations for n ≥ 3, which would seem to
require utilizing the full linear nature of the equations involved much more heavily
than the very weak linearity assumption that Theorem 3.1 requires.

3.2. Isosceles triangles on curves, and other nonlinear patterns

Theorems 1.2, 1.3, and 1.4 can be applied to find sets avoiding linear patterns, but
the main power of these results that they can be applied to ‘nonlinear’ patterns
which cannot be analysed quite as easily via the Fourier transform. As a result,
relatively few results exist showing that sets with large Fourier dimension avoid
patterns, though some partial results are given in [6] for a slightly different regime
than that considered here; we do not even know if sets E ⊂ T with Fourier dimen-
sion one contain one of the simplest nonlinear patterns {x, y, z, z + (y − x)2}, and
results like that of [13] show that even in the linear setting it is difficult to conjec-
ture what might be optimal in this setting. However, Theorem 1.4 applies to this
pattern, since the pattern is specified by the equation z − x = (y − w)2, obtaining
a Salem set E ⊂ T of dimension 1/3 avoiding this pattern, the first proof of the
existence of a set with positive Fourier dimension avoiding isosceles triangles in the
literature.

In this section, we consider a more geometric example of a non-linear pattern,
finding subsets of curves which do not contain isosceles triangles; given a simple
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segment of a curve given by a smooth map γ : [0, 1] → Rd, we say a set E ⊂
[0, 1] avoids isosceles triangles on γ if for any distinct values t1, t2, t3 ∈ [0, 1],
|γ(t1)−γ(t2)| 6= |γ(t2)−γ(t3)|, i.e. if γ(E) does not contain any three points forming
the vertices of an isosceles triangle. In [5], methods are provided to construct sets
E ⊂ [0, 1] with dimH(E) = log3 2 ≈ 0.63 such that γ(E) does not contain any
isosceles triangles, but E is not guaranteed to be Salem. Using the results of this
paper, we can now construct Salem sets E ⊂ [0, 1] with dimF(E) = 4/9 ≈ 0.44,
such that γ(E) does not contain any isosceles triangles.

Theorem 3.3. For any smooth map γ : [0, 1] → Rd with γ′(t) 6= 0 for all t ∈ [0, 1],
there exists a Salem set E ⊂ [0, 1] with dimF(E) = 4/9 which avoids isosceles
triangles on γ.

Proof. Assume without loss of generality (working on a smaller portion of the curve
if necessary and then rescaling) that there exists a constant C ≥ 1 such that for
any t, s ∈ [0, 1],

|γ(t)− γ(s)− (t− s)γ′(0)| ≤ C(t− s)2, (3.5)

1/C ≤ |γ′(t)| ≤ C, (3.6)

and

|γ′(t)− γ′(s)| ≤ C|t− s|. (3.7)

Let ε = 1/2C3, and let

F (t1, t2, t3) = |γ(t1)− γ(t2)|2 − |γ(t2)− γ(t3)|2. (3.8)

A simple calculation using (3.5) and (3.6) reveals that for 0 ≤ t1, t2 ≤ ε,∣∣∣∣∂F∂t1
∣∣∣∣ = 2 |(γ(t1)− γ(t2)) · γ′(t1)| ≥ (2/C)|t2 − t1| − 2C|t2 − t1|2 ≥ (1/C)|t2 − t1|.

(3.9)
This means that ∂F/∂t1 6= 0 unless t1 = t2. Thus the implicit function theorem
implies that there exists a countable family of smooth functions {fi : Ui → [0, 1]},
where Ui ⊂ [0, ε]2 for each i and fi(t2, t3) 6= t3 for any (t2, t3) ∈ Ui, such that if
F (t1, t2, t3) = 0 for distinct points t1, t2, t3 ∈ [0, ε], then there exists an index i with
(t2, t3) ∈ Ui and t1 = fi(t2, t3).

Differentiating both sides of the equation

|γ(fi(t2, t3))− γ(t2)|2 = |γ(t2)− γ(t3)|2, (3.10)

in t2 and t3 shows that

∂fi
∂t2

(t2, t3) =
(γ(fi(t2, t3))− γ(t3)) · γ′(t2)

(γ(fi(t2, t3))− γ(t2)) · γ′(fi(t2, t3))
, (3.11)

and
∂fi
∂t3

(t2, t3) =
−(γ(t2)− γ(t3)) · γ′(t3)

(γ(fi(t2, t3))− γ(t2)) · γ′(fi(t2, t3))
. (3.12)
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In order to apply Theorem 1.3, we must show that the partial derivatives in 3.11
and 3.12 are both non-vanishing for t2, t3 ∈ [0, ε]. We calculate using (3.5), (3.6)
and (3.7) that

|(γ(fi(t2, t3))− γ(t3)) · γ′(t2)| ≥ |(γ(fi(t2, t3))− γ(t3)) · γ′(t3)|
+ |(γ(fi(t2, t3))− γ(t3)) · (γ′(t2)− γ′(t3))|

≥ (1/C)|fi(t2, t3)− t3| − C2|fi(t2, t3)− t3||t2 − t3|
≥ (1/C − C2ε)|fi(t2, t3)− t3|
≥ (1/2)|fi(t2, t3)− t3|.

(3.13)

Since fi(t2, t3) 6= t3 for all (t2, t3) ∈ Ui, it follows from (3.11) and (3.13) that if
(t2, t3) ∈ Ui with t2 6= t3,

∂fi
∂t2

(t2, t3) 6= 0. (3.14)

A similar calculation to (3.9) shows that for t2, t3 ∈ [0, ε],

|(γ(t2)− γ(t3)) · γ′(t3)| ≥ (1/C)|t2 − t3|. (3.15)

Combining (3.12) with (3.15) shows that for t2 6= t3 with (t2, t3) ∈ Ui,

∂fi
∂t3

(t2, t3) 6= 0, (3.16)

verifying the partial derivatives are non-vanishing.
Now (3.14) and (3.16) imply that each function in the family {fi} satisfy the

hypothesis of Theorem 1.3. Thus that theorem implies that for β = 4/9, each index
i, and a generic element of (E, µ) ∈ Xβ , the set E is Salem and for any distinct
t1, t2, t3 ∈ E ∩ [0, ε], fi(t1, t2, t3) 6= 0. This means precisely that |γ(t1) − γ(t2)| 6=
|γ(t2)− γ(t3)| for any distinct t1, t2, t3 ∈ E. Thus we conclude we can find a Salem
set E ⊂ [0, ε] with dimF(E) = 4/9 such that γ(E) does not contain the vertices of
any isosceles triangles. �

Theorem 1.2 can also be used to construct sets with a slightly smaller dimension
avoiding isosceles triangles on a rougher family of curves. If we consider a Lipschitz
function γ : [0, 1] → Rd−1, where there exists M < 1 with |γ(t)− γ(s)| ≤ M |t− s|
for each t, s ∈ [0, 1], then Theorem 3 of [3] guarantees that the set

Z =

{
(x1, x2, x3) ∈ [0, 1]3 :

(x1, γ(x1)), (x2, γ(x2)), (x3, γ(x3))

form the vertices of an isosceles triangle.

}

has lower Minkowski dimension at most two. Thus Theorem 1.2 guarantees that
there exists a Salem set E ⊂ [0, 1] with dimF(E) = 2/5 = 0.4 such that γ(E)
avoids all isosceles triangles. The main result of [5] constructs a set E ⊂ [0, 1] with
dimH(E) = 0.5 such that γ(E) avoids all isosceles triangles, but this set is not
guaranteed to be Salem.
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4. A metric space controlling Fourier dimension

In order to work with a Baire category type argument, we must construct an appro-
priate metric space appropriate for our task, and establish a set of tools for obtaining
convergence in this metric space. In later sections we will fix a specific choice of
β to avoid a particular pattern. But in this section we let β be an arbitrary fixed
number in (0, d]. Our approach in this section is heavily influenced by [8]. However,
we employ a Fréchet space construction instead of the Banach space construction
used in [8], which enables us to use softer estimates in our arguments, with the
disadvantage that we can obtain only Fourier dimension bounds in Theorems 1.2,
1.3, and 1.4 at the endpoint dimensions β0 considered in the theorems, rather than
the explicit decay estimates as is obtained, for instance, in Theorem 2.4 of [8]:

• We let E denote the family of all compact subsets of Td. If we consider the
Hausdorff distance dH between sets, then (E , dH) forms a complete metric
space.

• We let M∗(β) consist of all finite Borel measures µ on Td such that for each
λ ∈ [0, β),

‖µ‖M(λ) = sup
ξ∈Zd

|µ̂(ξ)||ξ|λ/2

is finite. Then ‖ · ‖M(λ) is a seminorm on M∗(β) for each λ ∈ [0, β), and
the collection of all such seminorms gives M∗(β) the structure of a Frechét
space (most importantly, this means M∗(β) is a complete metric space).
Under this topology, a sequence of probability measures {µk} converges
to a probability measure µ in M∗(β) if and only if for any λ ∈ [0, β),
limk→∞ ‖µk − µ‖M(λ) = 0.

We now let Xβ be the collection of all pairs (E, µ) ∈ E × M∗(β), where µ is a
probability measure such that supp(µ) ⊂ E. Then Xβ is a closed subset of E×M∗(β)
under the product metric, and thus a complete metrizable space. We remark that
for any λ ∈ [0, β) and (E, µ) ∈ Xβ ,

lim
|ξ|→∞

|µ̂(ξ)||ξ|λ/2 = 0. (4.1)

Thus dimF(E) ≥ dimF(µ) ≥ β for each (E, µ) ∈ Xβ . This means that Xβ can
be thought of as a space of compact sets, augmented with a measure providing a
certification guaranteeing the set’s Fourier dimension is at least β.

Lemma 4.1 allows us to reduce the proof of density arguments in Xβ to the

construction of large discrete subsets in Td with well-behaved Fourier analytic prop-
erties. We recall that a family A of subsets of Td is downward closed if, whenever
E ⊂ A, any subset of E is also contained in A.

Lemma 4.1. Let A be a downward closed family of subsets of Td. Fix β > 0,
κ > 0, and a large constant C > 0. Suppose that for all small δ > 0, and all
λ ∈ [0, β), there are arbitrarily large integers N > 0 for which there exists a finite

set S = {x1, . . . , xN}, positive numbers {a1, . . . , aN} such that
∑N

k=1 ak = N , and
a quantity r ≥ (2N)−1/λ such that the following properties hold:
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(1) N(S, r) ∈ A.
(2) For each ξ ∈ Zd −{0} with |ξ| ≤ (1/r)1+κ,∣∣∣∣∣ 1N

N∑
k=1

ake
2πiξ·xk

∣∣∣∣∣ ≤ CN−1/2 log(N) + δ|ξ|−λ/2

Then {(E, µ) ∈ Xβ : E ∈ A} is dense in Xβ.

Because the proof of Lemma 4.1 is somewhat technical, we relegate it to an
appendix found at the end of this paper. In the remainder of this section, we use
Lemma 4.1, together with a probabilistic argument to argue some general results
about Xβ which will be useful in the proofs of Theorems 1.2, 1.3, and 1.4.

Remark 4.2. We will be able to take δ = 0 for the applications of Lemma 4.1 in
Theorems 1.2 and 1.4 by applying purely probabilistic arguments which give rise
to square root cancellation in the number of random variables involved. We only
need to take δ > 0 when applying this result to Theorem 1.3, because we must
apply some oscillatory integral bounds which give an additional decaying factor as
ξ → ∞.

Let us comment on the intuition underlying Lemma 4.1. Consider a large integer
N , and suppose there is a discrete family of N points S = {x1, . . . , xN} such that
N(S, r) does not contain any incidences of a particular pattern. Then N(S, r) is
a union of N balls of radius r, so if N ≈ r−β , and these balls do not overlap too
much, we might expect N(S, r) to behave like an r-thickening of a β-dimensional
set. The Fourier analytic properties of S can be understood by taking exponential
sums, i.e. considering quantities of the form

1

N

N∑
k=1

ake
2πiξ·xk .

where a1, . . . , aN are non-negative and sum to one as in Lemma 4.1. For any set S,
taking in absolute values gives a trivial bound on the exponential sum∣∣∣∣∣ 1N

N∑
k=1

a(xk)e
2πiξ·xk

∣∣∣∣∣ ≤ 1, (4.2)

and this bound can be tight for general sets S, for instance, if S behaves like an
arithmetic progression with a frequency ξ, as happens for

S =

{
k
ξ

|ξ|2
: 1 ≤ k ≤ N

}
.

If one can significantly improve upon this bound, one therefore thinks of S as having
additional regularity from the perspective of Fourier analysis. The best case we can
hope to hold for a ‘generic’ choice of S is a square root cancellation bound of the
form
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16 J. Denson∣∣∣∣∣ 1N
N∑

k=1

ake
2πiξ·xk

∣∣∣∣∣ ≤ CN−1/2, (4.3)

which, roughly speaking, holds if the points {xk} are not significantly periodic at the
frequency ξ. If κ > 0 is fixed, and equation (4.3) holds for all |ξ| . (1/r)1+κ, then
one might therefore think of N(S, r) as behaving like an r-thickening of a Salem
set with dimension β. Note that, up to a logarithmic constant, and a negligible
term which decays as |ξ| → ∞, Lemma 4.1 obtains such a square root cancellation
bound. Since the assumptions of Lemma 4.1 guarantee that we can construct such
sets at arbitrarily small scales r, it makes sense that one should be able to use such
assumptions to construct Salem sets avoiding patterns.

Lemma 4.1 not only guarantees that we can construct Salem sets avoiding pat-
terns, but also guarantees that such pattern avoiding sets are generic among all
Salem sets. The reason such a result is possible given the assumptions of Lemma 4.1
is that the points in the discrete set S are not significantly periodic at any fre-
quency ξ, which heuristically (à la Weyl’s equidistribution theorem) implies such
points are evenly distributed in Td. We do not need equidistribution here, but we
are able to obtain in Lemma A.4 that for any ε > 0, if N is taken appropriately
large, then the set S guaranteed by the assumptions of Lemma 4.1 is ε-dense in
Td, i.e. Td = N(S, ε). This will allow us to approximate an arbitrary compact set
of dimension β by subsets of S, and thus approximate an arbitrary element of Xβ

by an element which is pattern avoiding, thus guaranteeing that sets containing
patterns are of first category.

Remark 4.3. In each of Theorems 1.2, 1.3, and 1.4 we will prove that quasi-all sets
in Xβ avoid a particular pattern by constructing a countable family {Ak : k ≥ 1}
of downward closed sets, each of which being open in Xβ , such that all sets in

⋂
Ak

avoid a particular pattern. By verifying that the hypotheses of Lemma 4.1 hold for
each set Ak, we obtain density of Ak in Xβ , so that their intersection is comeager
in Xβ .

Each such argument can be converted into an explicit ‘queuing construction’ of
a pattern avoiding set via a method we very briefly outline. In particular, one can
obtain a nested family of sets {Ek}, and a family of non-negative measures {µk},
with µk supported on Ek and with µk(Td) uniformly bounded from below in k, so
that E =

⋂
Ek is pattern avoiding, has Hausdorff dimension at most β, and any

weak limit of the measures (which necessarily must be supported on E) has Fourier
decay |ξ|ε−β/2 for all ε > 0, which will justify that E is Salem of dimension β.

To obtain {Ek} and {µk}, we choose {λk} converging rapidly to β from below,
{δk} and {κk} converging rapidly to zero, and {Nk} converging rapidly to infinity.
We set E0 = Td, and let µ0 = ITd . For k > 0, we use the hypotheses of Lemma 4.1
to find a set Sk, coefficients ak : Sk → [0,∞), such that if rk = (2Nk)

−1/λk ,
then N(Sk, rk) ∈ Ak and the exponential sums

∑
ak(x)e

2πiξ·x satisfy the square
root cancellation bounds above for |ξ| ≤ (1/rk)

1+κk . We then define Ek = Ek−1 ∩
N(Sk, rk) and let µk = (A ∗ φr)µk−1, where A =

∑
x∈S a(x)δx, and φr is a smooth

bump function supported in a r neighborhood of the origin. If δk and Nk are
sufficiently small, then a Plancherel argument à la the methods of Lemma A.4
can be used to guarantee that µk(Td) ≥ (1 − 2−k)µk−1(Td). And one can also
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recursively justify that there is Cε > 0 for each ε > 0 so that, uniformly in k,
|µ̂k(ξ)| ≤ Cε|ξ|ε−β/2, so that any weak limit µ of the measures µk satisfies |µ̂(ξ)| ≤
Cε|ξ|ε−β/2 for each ε > 0. Since one also has µ(Td) ≥

∏
(1−2−k) ≥ e−2 this proves

E has Fourier dimension at least β. Moreover, E is covered by Nk balls of radius
(2Nk)

−1/λk for each k, so that E has lower Minkowski dimension at most β, and
thus has Hausdorff dimension at most β, which justifies that E is a Salem set of
dimension β.

It is a useful heuristic that in a metric space whose elements are sets, and with
distance defined in terms of the Hausdorff distance, quasi-all elements are as ‘thin
as possible’ (by quasi-all we mean in a Baire category sense, i.e. the family of
all sets which fail to be as thin as possible is contained in a countable union of
closed sets with non-empty interior). In particular, we should expect the Hausdorff
dimension and Fourier dimension of a generic element of Xβ to be as low as possible.
For each (E, µ) ∈ Xβ , the condition that µ ∈ M∗(β) implies that dimF(µ) ≥ β, so
dimH(E) ≥ dimF(E) ≥ β. Since the Fourier dimension and Hausdorff dimension are
lower bounded by β, and this bound is tight, our heuristic thus leads us to believe
that for quasi-all (E, µ) ∈ M∗(β), the set E has both Hausdorff dimension and
Fourier dimension equal to β, i.e. E is a Salem set of dimension β. We will finish this
section with a proof of this fact. This will also give some more elementary variants
of the kinds of probabilistic arguments we will later use to prove Theorems 1.2, 1.3,
and 1.4, which will allow us to become more comfortable with these techniques in
preparation for the proofs of these theorems.

Lemma 4.4. Fix a positive integer N , and κ > 0. Let X1, . . . , XN be independent
random variables on Td, such that for each ξ ∈ Zd −{0},

N∑
k=1

E
(
e2πiξ·Xk

)
= 0. (4.4)

Then there exists a constant C depending on d and κ such that

P

(
sup

|ξ|≤N1+κ

∣∣∣∣∣ 1N
N∑

k=1

e2πiξ·Xk

∣∣∣∣∣ ≥ CN−1/2 log(N)1/2

)
≤ 1/10.

Remark 4.5. In particular, the assumptions of Lemma 4.4 hold if the random
variables {X1, . . . , XN} are uniformly distributed on Td, since then E(e2πiξ·Xk) = 0
for all ξ ∈ Zd −{0} and 1 ≤ k ≤ N .

Proof. For each ξ ∈ Zd and k ∈ {1, . . . , N}, consider the random variable

Y (ξ, k) = N−1e2πiξ·Xk .

Then for each ξ ∈ Zd,

N∑
k=1

Y (ξ, k) =
1

N

N∑
k=1

e2πiξ·Xk . (4.5)
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We also note that for each ξ ∈ Zd and k ∈ {1, . . . , N},

|Y (ξ, k)| = N−1. (4.6)

Moreover,

N∑
k=1

E(Y (ξ, k)) = 0. (4.7)

Since the family of random variables {Y (ξ, k)} is independent for a fixed ξ, we can
apply Hoeffding’s inequality together with (4.5) and (4.6) to conclude that for all
t ≥ 0,

P

(∣∣∣∣∣ 1N
N∑

k=1

e2πiξ·Xk

∣∣∣∣∣ ≥ t

)
≤ 2e−Nt2/2. (4.8)

Taking a union bound obtained by applying (4.8) over all |ξ| ≤ N1+κ gives the
existence of a constant C ≥ 10 depending on d and κ such that

P

(
sup

|ξ|≤N1+κ

∣∣∣∣∣ 1N
N∑

k=1

e2πiξ·Xk

∣∣∣∣∣ ≥ t

)
≤ exp

(
C log(N)− 5Nt2

C

)
. (4.9)

But then setting t = CN−1/2 log(N)1/2 in (4.9) completes the proof. �

Lemma 4.6. For quasi-all (E, µ) ∈ Xβ, E is a Salem set of dimension β.

Proof. We shall assume β < d in the proof, since when β = d, E is a Salem set for
any (E, µ) ∈ Xβ , and thus the result is trivial. Since the Hausdorff dimension of a
measure is an upper bound for the Fourier dimension, it suffices to show that for
quasi-all (E, µ) ∈ Xβ , E has Hausdorff dimension at most β. For each α > β and
δ, s > 0, we let

A(α, δ, s) = {E ⊂ Td : Hα
δ (E) < s}.

and set

A(α, δ, s) = {(E, µ) ∈ Xβ : E ∈ A(α, δ, s)}.

Then A(α, δ, s) is an open subset of Xβ , and

∞⋂
n=1

∞⋂
m=1

∞⋂
k=1

A(β + 1/n, 1/m, 1/k), (4.10)

is precisely the family of (E, µ) ∈ Xβ such that E has Hausdorff dimension at
most β. Thus it suffices to show that A(α, δ, s) is dense in Xβ for all α > β, all
δ > 0, and all s > 0. Since A(α, δ, s) is a downward closed family of subsets of
Td, we may apply Lemma 4.1. Fix a large integer N , and set r = N−1/β , so that
N ≥ (1/2)r−λ satisfies the condition for Lemma 4.1 to apply to these quantities.
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Lemma 4.4 shows that there exists a constant C depending on β and d, as well as
N points S = {x1, . . . , xN} ⊂ Td such that for each |ξ| ≤ N1+κ,

∣∣∣∣∣ 1N
N∑

k=1

e2πiξ·xk

∣∣∣∣∣ ≤ CN−1/2 log(N)1/2. (4.11)

Now N(S, r) is a union of N balls of radius r, and thus if r ≤ δ,

Hα
δ (N(S, r)) ≤ Nrα = N1−α/β . (4.12)

Since α > β, taking N appropriately large gives a set N(S, r) with

Hα
δ (N(S, r)) < s. (4.13)

Thus N(S, r) ∈ A(α, δ, s) for sufficiently large integers N . But together with (4.11),
this justifies that the hypothesis of Lemma 4.1 applies to this scenario. Thus that
lemma implies that A(α, δ, s) is dense in Xβ , completing the proof. �

This concludes the setup to the proof of Theorems 1.2, 1.3, and 1.4. All that
remains is to show that quasi-all elements of Xβ avoid the given set Z for a suitable
parameter β; it then follows from Lemma 4.6 that quasi-all elements of Xβ are
Salem and avoid the given set Z (since the intersection of two generic subsets of
Xβ is also generic). The advantage of Lemma 4.1, combined with a Baire category
argument, is that we can now reduce our calculations to finding suitable finite
families of points with nice Fourier analytic properties.

5. Random avoiding sets for rough patterns

We begin by proving Theorem 1.2, which requires simpler calculations than
Theorem 1.3 and Theorem 1.4. In the last section, our results held for an arbitrary
β ∈ (0, d]. But in this section, we assume

β ≤ min

(
d,
dn− α

n− 1/2

)
,

where α and n are as in the statement of Theorem 1.2. Then β is small enough to
show that the pattern Z described in Theorem 1.2 is avoided by a generic element
of Xβ . The construction here is very similar to the construction in [3], albeit in a
Baire category setting, and with modified parameters to ensure a Fourier dimension
bound rather than just a Hausdorff dimension bound.

Lemma 5.1. Let Z ⊂ Tdn be a compact set with lower Minkowski dimension at
most α. Then for quasi-all (E, µ) ∈ Xβ, for any distinct points x1, . . . , xn ∈ E,
(x1, . . . , xn) 6∈ Z.
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Proof. For any s > 0, consider the set

B(Z, s) =

{
E ⊂ Td :

for all x1, . . . , xn ∈ E such that

|xi − xj | ≥ s for i 6= j, (x1, . . . , xn) 6∈ Z

}
,

and

B(Z, s) = {(E, µ) ∈ Xβ : E ∈ B(Z, s)}.

Then B(Z, s) is open in Xβ , and

∞⋂
k=1

B(Z, 1/k) (5.1)

consists of the family of sets (E, µ) such that for distinct x1, . . . , xn ∈ E,
(x1, . . . , xn) 6∈ Z. Now for each k, the set B(Z, 1/k) is a downward closed fam-
ily, which means that, after we verify the appropriate hypotheses, we can apply
Lemma 4.1 to prove B(Z, s) is dense in Xβ for each s > 0, which would complete
the proof. Thus we must construct a set S = {x1, . . . , xN} for N which can be
made arbitrarily large, such that N(S, r) ∈ B(Z, s) and associate with the set an
exponential sum satisfying a square root cancellation bound.

Let c = 2n1/2. Since Z has lower Minkowski dimension at most α, for any
γ ∈ (α, dn], we can find arbitrarily small r ∈ (0, 1) such that

|N(Z, cr)| ≤ rdn−γ . (5.2)

Pick λ ∈ [0, (dn− γ)/(n− 1/2)), and suppose that we can find an integer M ≥ 10
with

r−λ ≤M ≤ r−λ + 1. (5.3)

Let X1, . . . , XM be independent and uniformly distributed on Td. For each distinct
set of indices k1, . . . , kn ∈ {1, . . . ,M}, the random vector Xk = (Xk1

, . . . , Xkn
) is

uniformly distributed on Tnd, and so (5.2) and (5.3) imply that

P(d(Xk, Z) ≤ cr) ≤ |N(Z, cr)| ≤ rdn−γ .M− dn−γ
λ ≤M−(n−1/2), (5.4)

If M0 denotes the number of indices k such that d(Xk, Z) ≤ cr, then by linearity of
expectation, since there are at most Mn such indices, we conclude from (5.4) that
there is a constant C > 0 such that

E(M0) ≤ (C/10)M1/2. (5.5)

Applying Markov’s inequality to (5.5), we conclude that

P(M0 ≥ CM1/2) ≤ 1/10. (5.6)

Fix some small κ > 0. Taking a union bound to (5.6) and the results of
Lemma 4.4, we conclude that ifM is sufficiently large, there existsM distinct points
x1, . . . , xM ∈ Td and a constant C > 0 such that the following two statements hold:
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(1) Let I be the set of indices kn ∈ {1, . . . ,M} with the property that we can find
distinct indices k1, . . . , kn−1 ∈ {1, . . . ,M} such that if X = (Xk1

, . . . , Xkn
),

then d(X,Z) ≤ cr. Then #(I) ≤ CM1/2.
(2) For 0 < |ξ| ≤M1+κ,∣∣∣∣∣ 1M

M∑
k=1

e2πiξ·xk

∣∣∣∣∣ ≤ CM−1/2 log(M)1/2.

We now use this information to construct the set S required to verify the hypotheses
of Lemma 4.1.

Now set S = {xk : k 6∈ I} and let N = #(S). Then Property (1) implies that

N ≥M −#(I) ≥M − CM1/2. (5.7)

Thus for M ≥ 4C2,

N ≥ (1/2)M ≥ (1/2)r−λ. (5.8)

Property (1) and (2) imply that for 0 < |ξ| ≤ N1+κ,∣∣∣∣∣ 1N ∑
x∈S

e2πiξ·x

∣∣∣∣∣ ≤
∣∣∣∣∣ 1N

N∑
k=1

e2πiξ·xk

∣∣∣∣∣+
∣∣∣∣∣ 1N ∑

k∈I

e2πiξ·xk

∣∣∣∣∣
≤ 2CM−1/2 log(M)1/2 +#(I)/N

. N−1/2 log(N)1/2 +N−1/2

. N−1/2 log(N)1/2.

(5.9)

As long as we can show that N(S, r) ∈ B(Z, s), then (5.8) and (5.9) allows us
to apply Lemma 4.1, completing the proof that B(Z, s) is dense. To check this,
consider n points y1, . . . , yn ∈ N(S, r), with |yi − yj | ≥ s for any two indices i 6= j.
Provided that s > 10r, we can therefore find distinct indices k1, . . . , kn 6∈ I such
that for each i ∈ {1, . . . , n}, |xki

−yi| ≤ r, which means if we set x = (xk1
, . . . , xkn

)
and y = (y1, . . . , yn), then

|x− y| ≤ cr/2. (5.10)

Since kn 6∈ I, d(x,Z) ≥ cr, which combined with (5.10) implies

d(y, Z) ≥ d(x,Z)− |x− y| ≥ cr/2. (5.11)

Thus in particular, we conclude y 6∈ Z. But this means we have proved precisely
that N(S, r) ∈ B(Z, s). Thus Lemma 4.1 implies that B(Z, s) is dense in Xβ for
each s > 0, completing the proof. �

The Baire category theorem, applied to the result of Lemma 5.1, shows that a
pattern avoiding set exists in Xβ , completing the proof of Theorem 1.2. Before we
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move onto the proof of Theorem 1.3, let us discuss the main obstacle which prevents
us from finding Salem sets with dimension

dn− α

n− 1
, (5.12)

avoiding the pattern Z, instead only obtaining Salem sets with dimension at most

dn− α

n− 1/2
. (5.13)

We begin by noting that the quantity (5.12) is the maximum dimension one can
obtain using the randomized selection method used in Lemma 5.1 to choose the set

S, since if one alters the parameters used in the proof so thatM & r−
dn−α
n−1 , then the

expectation bounds used in the proof above to control M0 cannot even guarantee
that S is non-empty with positive probability. More precisely, for general parame-
ters M and r, one can guarantee with high probability that #(I) .Mnrdn−α. For

M � r−
dn−α
n−1 , one also expects to have #(I) � M , and in this situation we will

have S = ∅, so the construction above does not work at all. In this proof however,

we were forced to choose M much smaller than r−
dn−α
n−1 , i.e. we chose M ≈ r−

dn−α
n−1/2

so that we could guarantee that #(I) . N1/2. The importance of this is that the
trivial bound ∣∣∣∣∣∑

k∈I

e2πi(ξ·Xk)

∣∣∣∣∣ ≤ #(I), (5.14)

obtained by the triangle inequality was then enough to obtain the square root
cancellation bound in equation (5.9). On the other hand, if we were able to show
that the set I itself satisfied a square root cancellation bound of the form∣∣∣∣∣∑

k∈I

e2πi(ξ·Xk)

∣∣∣∣∣ . #(I)1/2, (5.15)

then there would be no barrier to choosing M ≈ r−
dn−α
n−1 , which would allow us

to prove the existence of a pattern avoiding set with Fourier dimension matching
the quantity in equation (5.13), matching that of the Hausdorff dimension bound
obtained in [3]. Under stronger assumptions on the pattern we are trying to avoid,
which form the hypotheses of Theorem 1.3, we are able to justify that some kind of
square root cancellation, like that of (5.15) takes place, though with an additional
term that we are only able to bound appropriately for n > 2 using an inclusion-

exclusion argument combined with some oscillatory integrals if we set N ≈ r−
dn−α
n−3/4 .

Under the hypothesis of Theorem 1.4, we are able to make this additional term

vanish completely, which will enable us to set N ≈ r−
dn−α
n−1 , thus obtaining sets

with Fourier dimension matching the quantity in equation (5.13), and completely
recovering the dimension bound of [3] in the setting of Salem sets.
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6. Concentration bounds for smooth surfaces

In this section we prove Theorem 1.3 using some more robust probability concen-
tration calculations, which allow us to justify the kinds of square root cancellation
alluded to at the end of the last section. We set

β ≤

d : n = 2

d/(n− 3/4) : n ≥ 3
.

For such β, we now prove that elements of the space Xβ will generically avoid pat-
terns given by an equation xn = f(x1, . . . , xn−1), where f satisfies the hypotheses
of Theorem 1.3.

Lemma 6.1. Suppose f : V → Td satisfy the hypothesis of Theorem 1.3. Then
for quasi-all (E, µ) ∈ Xβ, and for any distinct points x1, . . . , xn ∈ E, xn 6=
f(x1, . . . , xn−1).

Proof. Given any family of disjoint, closed cubes R1, . . . , Rn ⊂ Td such that (R1 ×
· · · ×Rn) ∩ V is a closed set, we let

H(R1, . . . , Rn) = {E ⊂ Td : for all xi ∈ Ri ∩ E, xn 6= f(x1, . . . , xn−1)},

and let

H(R1, . . . , Rn) = {(E, µ) ∈ Xβ : E ∈ H(R1, . . . , Rn)}.

Then H(R1, . . . , Rn) is an open subset of Xβ . For the purpose of a Baire category
argument, this proof will follow by showing H(R1, . . . , Rn) is dense in Xβ for any
family of disjoint cubes {R1, . . . , Rn}, each having common sidelength s for some
s > 0, such that if Qi = 2Ri for each i, then Q2×· · ·×Qn ⊂ V , and d(Ri, Rj) ≥ 10s
for each i 6= j. Since H(R1, . . . , Rn) is a downward closed family of sets, we will
prove this result by applying Lemma 4.1. Thus for a suitable choice of r > 0, we
must construct a large discrete set S such that N(S, r) ∈ H(R1, . . . , Rn) and whose
exponential sums exhibit square root cancellation.

Since f is smooth, we can fix a constant L ≥ 0 such that for any x, y ∈ Q1 ×
· · · ×Qn−1,

|f(x)− f(y)| ≤ L|x− y|. (6.1)

Fix a family of non-negative bump functions ψ0, ψ1, . . . , ψn ∈ C∞(Td), such that
for i ∈ {1, . . . , n}, ψi(x) = 1 for x ∈ 1.5 · Qi, ψi(x) = 0 for x 6∈ Ri, and ψ0(x) +
· · ·+ψn(x) = 1 for x ∈ Td. For i ∈ {0, . . . , n}, let Ai =

∫
ψi(x) dx denote the total

mass of ψi. Now fix a large integer M > 0, and consider a family of independent
random variables

{Xi(k) : 0 ≤ i ≤ n, 1 ≤ k ≤M},

where the random variable Xi(k) is chosen with respect to the probability density
function A−1

i ψi. Fix λ ∈ [0, β), and set r = M−1/λ, i.e. so that M = rλ. Let
c = 2n1/2(L + 1), and define I to be the set of all indices kn ∈ {1, . . . ,M} such
that there are indices k1, . . . , kn−1 ∈ {1, . . . ,M} with the property that
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|Xn(kn)− f(X1(k1), . . . , Xn−1(kn−1))| ≤ cr. (6.2)

Now (6.2) implies that if kn 6∈ I, then for any k1, . . . , kn−1 ∈ {1, . . . ,M},

|Xn(kn)− f(X1(k1), . . . , Xn−1(kn−1))| > cr. (6.3)

We now use these points to construct a set S verifying the hypotheses of Lemma 4.1.
Set

S = {Xi(k) : 0 ≤ i ≤ n− 1, 1 ≤ k ≤M} ∪ {Xn(k) : k 6∈ I}

Then we claim that N(S, r) ∈ H(R1, . . . , Rn) for suitably small r; to see this,
suppose there were distinct y1, . . . , yn ∈ N(S, r) such that y1 ∈ R1, . . . , yn ∈ Rn,
and yn = f(y1, . . . , yn−1). We may pick x1, . . . , xn ∈ S such that |xi − yi| ≤ r
for each i. Since d(Ri, Rj) = 10s for i 6= j, if r ≤ s, then it cannot be true that
xi = Xj(k) for some j ∈ {1, . . . , n} and k ∈ {1, . . . ,M}. Since ψi(x) = 1 on 1.5Ri,
if r < 0.5s, we have d(supp(ψ0), Ri) ≥ 0.5s and so it also cannot be true that
xi = X0(k) for some k ∈ {1, . . . ,M}. Thus there must be ki ∈ {1, . . . ,M} such
that xi = Xi(ki). But by assumption kn 6∈ I, so we have

|Xn(kn)− f(X1(k1), . . . , Xn−1(kn−1))| > cr. (6.4)

Thus (6.1) and (6.4) imply that

0 = |yn − f(y1, . . . , yn)| ≥ cr > 0, (6.5)

which gives a contradiction, proving that N(S, r) ∈ H(R1, . . . , Rn). The remainder
of the proof focuses on bounding exponential sums associated with S, so that we
may apply Lemma 4.1 and thus prove the conclusion of the theorem.

Consider the random exponential sums

F (ξ) =
∑

i∈{0,...,n−1}

M∑
k=1

Aie
2πiξ·Xi(k) +

∑
k 6∈I

Ane
2πiξ·Xn(k).

Controlling |F (ξ)| with high probability will justify an application of Lemma 4.1.
To analyze F , introduce the auxiliary exponential sums

G(ξ) =
n∑

i=0

M∑
k=1

Aie
2πiξ·Xi(k)

and

H(ξ) =
∑
k∈I

Ane
2πiξ·Xn(k).

Then F (ξ) = G(ξ)−H(ξ).
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Obtaining a bound on G(ξ) is simple since it is a sum of (n+1) ·M independent
random variables. For non-zero ξ ∈ Zd,

E(G(ξ)) =
n∑

i=0

MAi

∫
(ψi(x)/Ai)e

2πiξ·x dx

=M
n∑

i=0

∫
ψi(x)e

2πiξ·x dx

=M

∫
Td

e2πiξ·x dx = 0.

(6.6)

Applying Lemma 4.4, we conclude that for any fixed κ > 0, there is C > 0 such
that

P

(
sup

|ξ|≤N1+κ

|G(ξ)| ≥ CM1/2 log(M)1/2

)
≤ 1/10, (6.7)

This bound guarantees G is sufficiently small with high probability.
Analyzing H(ξ) requires a more subtle concentration bound, which we delegate

to a series of lemmas following this proof:

• In Lemma 6.2, we will employ some concentration bounds to show that

P

(
sup

|ξ|≤N1+κ

|H(ξ)− E(H(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10. (6.8)

• In Lemma 6.3 we will show that for any δ > 0, there exists r1 > 0 such that
for r ≤ r1 and any nonzero ξ ∈ Zd,

|E(H(ξ))| ≤ δM |ξ|−β/2 +O(M1/2). (6.9)

These bounds together guarantee that H is sufficiently small with high probability.
Analogous to equation (5.4) in Lemma 5.1, for any indices k1, . . . , kn ∈

{1, . . . ,M}, we have

P
(
|Xn(kn)− f(X1(k1), . . . , Xn−1(kn−1))| ≤ 2n1/2 · (L+ 1) · r

)
.n,L r

d .M−d/λ.

(6.10)

Thus if M0 denotes the number of tuples of indices (k1, . . . , kn) such that (6.2)
holds, then (6.10) implies that

E(M0) .Mn−d/λ. (6.11)

Applying Markov’s inequality to (6.11), we conclude that there exists a constant
C > 0 such that

P(M0 ≥ CMd/λ−n) ≤ 1/10. (6.12)

Taking a union bound to (6.7), (6.8), and (6.12), and then applying (6.9), we
conclude that there exists C > 0 and a particular instantiation of the random
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variables {Xi(k)} such that for any 0 < |ξ| ≤M1+κ,

|G(ξ)| ≤ CM1/2 log(M)1/2, (6.13)

and

|H(ξ)| ≤ CM1/2 log(M)1/2 + δM |ξ|−β/2. (6.14)

And

#(I) ≤ CMd/λ−n. (6.15)

Since λ < β0 < d/(n − 1), the inequality d/λ − n < 1 holds. Thus (6.15) implies
that for sufficiently large M > 0, if N = #(S), then

N ≥M − CMd/λ−n ≥ (1/2)M ≥ (1/2)r−λ. (6.16)

Putting (6.9), (6.13), (6.14), and the fact that F (ξ) = G(ξ) +H(ξ) together, if we
set ã(Xi(k)) = Ai for each i and k, then∣∣∣∣∣ 1N ∑

x∈S

ã(x)e2πiξ·x

∣∣∣∣∣ . CN1/2 log(N)1/2 + δ|ξ|−β/2. (6.17)

Since
∑

x∈S ã(x) ≥ N , if we set

a(x) = N · ã(x)∑
x∈S ã(x)

,

then (6.17), (6.16) and the fact that N(S, r) ∈ H(R1, . . . , Rn) imply that the sum

1

N

∑
x∈S

a(x)e2πiξ·x

satisfies the assumptions of Lemma 4.1 for arbitrarily large N . We therefore
conclude by that Lemma that H(R1, . . . , Rn) is dense in Xβ . �

Our proof of Theorem 1.3 will be complete once we prove (6.8) and (6.9), i.e.
once we prove Lemmas 6.2 and 6.3.

Lemma 6.2. Let H(ξ) be the random exponential sum described in Lemma 6.1.
Then

P

(
sup

|ξ|≤M1+κ

|H(ξ)− E(H(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10.

for some universal constant C > 0.

Before we prove this Lemma, let us describe the idea behind the proof. The
result is a concentration bound for the random quantity H(ξ), a standard topic
in the theory of high dimensional probability. The basic heuristic of this topic is
that for an arbitrary function F (X1, . . . , XN ) of many independent random inputs,
we have F (X1, . . . , XN ) ≈ E(F (X1, . . . , XN )) with high probability, provided that
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Figure 1. The two diagrams displayed indicate two instances of the set S for the
function f(x1, x2) = (x1 − 1/2)2 + (x2 − 1/2)2. Here M = 3, n = 3, the val-
ues on the x-axis represent the values X1(1), X1(2), and X1(3), the values on the
y-axis represent the values X2(1), X2(2), and X2(3), the dark points represent the fam-
ily of all pairs (X1(k1), X2(k2)), and the annuli represent the O(r)-neighbourhoods of
f−1(X3(1)), f

−1(X3(2)), and f−1(X3(3)). In this setup, S consists of all of the values
{X2(k)}, as well as all values of X1(k) such that none of the dark points on the vertical
line above X1(k) intersect any of the annuli. The two diagrams only differ as a result of
adjusting a single variable X2(k0), indicated by the shaded value on the y-axis. For the
values represented in the left diagram, I = ∅, whereas for the values represented in the
right diagram, I contains every index, and this completely alters the exponential sums
associated with S.

each of the random inputs {Xi} has a small influence on the overall output of
f . McDiarmid’s and Hoeffding’s inequalities, described in the notation section
of this paper, are two classic results in this theory. A major difference between
the two inequalities is that McDiarmid’s inequality can be applied to nonlin-
ear functions F , whereas Hoeffding’s inequality can only be applied when F is
linear.

SinceH(ξ) is a nonlinear function of the independent random quantities {Xi(k)},
McDiarmid’s inequality presents itself as a useful concentration bound. However,
a naive application of McDiarmid’s inequality fails here, because changing a single
random variable Xi(k) for 1 ≤ i ≤ n − 1 while fixing all other random variables
can change the indices contained in the set I by as much as O(M), and thus
change H(ξ) by as much as O(M) as a result (see Figure 1 for an example of
this phenomenon). McDiarmid’s inequality then gives that |H(ξ)− E(H(ξ))| .M
with high probability, which is not tight enough to obtain square root cancellation
like what we obtained in (6.7). On the other hand, it seems that a single variable
Xi(k) only changes H(ξ) by O(M) when the other random variables {X1(k)} are
configured in a very particular way, which is unlikely to happen. Thus we should
expect that adjusting a single random variable Xi(k) does not influence the value
of H(ξ) much when averaged over the possible choices of {Xn(k)}. This leads us
to first average over this first set of random variables, and then apply McDiarmid’s
inequality, which yields the correct concentration result.
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Proof of Lemma 6.2. Consider the random set Ω of values xn ∈ Qn such that there
are k1, . . . , kn−1 ∈ {1, . . . ,M} with

|xn − f(X1(k1), . . . , Xn−1(kn−1))| ≤ cr. (6.18)

Then

H(ξ) = An

M∑
k=1

Z(k, ξ). (6.19)

where

Z(k, ξ) =

e2πiξ·Xn(k) : Xn(k) ∈ Ω,

0 : Xn(k) 6∈ Ω
.

If Σ is the σ-algebra generated by the random variables

{Xi(k) : i ∈ {1, . . . , n− 1}, k ∈ {1, . . . ,M}},

then Ω is measurable with respect to Σ. Thus the random variables {Z(k, ξ)}
are conditionally independent given Σ. Since we have |Z(k, ξ)| ≤ 1 almost surely,
Hoeffding’s inequality thus implies that for all t ≥ 0,

P (|H(ξ)− E(H(ξ)|Σ)| ≥ t) ≤ 4 exp

(
−t2

2M

)
. (6.20)

It is simple to see that

E(H(ξ)|Σ) = AnM

∫
Ω

ψn(x)e
2πiξ·x dx. (6.21)

Since

Ω =
⋃

{N(f(X1(k1), . . . , Xn−1(kn−1)), cr) : 1 ≤ k1, . . . , kn−1 ≤ N} . (6.22)

we therefore see that varying each random variable Xi(k), for 1 ≤ i ≤ n− 1 while
fixing the other random variables adjusts at most Mn−2 of the balls forming Ω,
and thus varying Xi(k) while fixing the other random variables changes E(H(ξ)|Σ)
by at most

M · 2 · (2cr)d ·Mn−2 .n,d,L r
dMn−1 . 1. (6.23)

Thus McDiarmid’s inequality shows that there exists a constant C depending on
d, n, and L, such that for any t ≥ 0,

P (|E(H(ξ)|Σ)− E(H(ξ))| ≥ t) ≤ 4 exp

(
−t2

CM

)
. (6.24)

Combining (6.20) and (6.24), we conclude that there exists a constant C > 0 such
that for each ξ ∈ Zd,

P (|H(ξ)− E(H(ξ))| ≥ t) ≤ 8 exp

(
−Mt2

C

)
. (6.25)
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Applying a union bound to (6.25) over all 0 < |ξ| ≤M1+κ shows that there exists
a constant C > 0 such that

P

(
sup

|ξ|≤M1+κ

|H(ξ)− E(H(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10.

�

The analysis of (6.9) requires a different class of probabilistic techniques. For any

set E ⊂ Td(n−1), let A(E) denote the event that there exists indices k1, . . . , kn−1

such that

(X1(k1), . . . , Xn−1(kn−1)) ∈ E.

Understanding the quantity E(H(ξ)) will follow from an analysis of the val-
ues P(A(E)). To see why this is true, note that because the random variables
{Xn(k)} are all identically distributed, for a fixed ξ, all the quantities {Z(k, ξ)} are
identically distributed, and so

E(H(ξ)) =MAn · E(Z(1, ξ))
=MAn · E(I(Xn(1) ∈ Ω)e2πiξ·Xn(1))

=MAn ·
∫

P(Xn(1) ∈ Ω|Xn(1) = xn)e
2πiξ·xndP(Xn(1) = xn)

=MAn ·
∫
ψn(xn)P(1 ∈ I|Xn(1) = xn)e

2πiξ·xn dxn.

If we write Exn
= f−1(Bcr(xn)), then P(1 ∈ I|Xn(1) = xn) = P(A(Exn

)), so that

E(H(ξ)) =MAn ·
∫
ψn(xn)P(A(Exn

)) · e2πiξ·xn dxn. (6.26)

If n = 2, then we can explicitly calculate P(A(E)) ≈ 1− (1− |E|)M for any set E,
which makes this analysis of E[H(ξ)] more tractable. If n > 2, the random vectors

{(X1(k1), . . . , Xn−1(kn−1)) : 1 ≤ k1, . . . kn−1 ≤M}

are not independent of one another, which makes an analysis of the quantities
P(A(E)) difficult. An exception to this is when E = E1 × · · ·×En−1 is a Cartesian
product, in which case

P(A(E)) =
n−1∏
i=1

P(There is k such that Xi(k) ∈ Ei) ≈
n−1∏
i=1

(1− (1− |Ei|)M ).

Our strategy to understanding the sets Exn for n > 2 is therefore to apply
the Whitney decomposition Lemma, writing Exn =

⋃
iQi for a family of almost

disjoint, axis-oriented cubes Qi. Then A(Exn) =
⋃

iA(Qi), so we can approximate
P(A(Exn)) by applying the inclusion-exclusion principle. This leads to a sufficient
approximation to the values P(A(Exn)) provided that M � r−d/(n−3/4). This is
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the only part of the proof of Theorem 1.3 where the dimension bound becomes
tight; increasing the dimension bound in Theorem 1.3 will be immediate if we can
improve the following Lemma, i.e. finding a better analysis of E[H(ξ)].

Lemma 6.3. Let H(ξ) be the random exponential sum described in Lemma 6.1.
Then there exists C > 0 such that for any δ > 0, there exists M0 > 0 such that for
M ≥M0,

|E(H(ξ))| ≤ δM |ξ|−β/2 + CM1/2.

Proof. We break the analysis of E(H(ξ)) into two cases, depending on whether
n = 2 or n > 2. Let’s start with the case n = 2, in which case our assumptions
imply that f is a diffeomorphism if the cubes R1 and R2 in which we are choosing
random points are chosen small enough. For each x2 ∈ Td, a change of variables
shows that

P(A(Ex2
)) = 1−

(
1−

∫
f−1(Bcr(x2))

ψ1(x1) dx1

)M

= 1−

(
1−

∫
Bcr(x2)

(ψ1 ◦ f−1)(x1)

| det(Df)(f−1(x1))|
dx1

)M

= 1−

(
1−

∫
Bcr(x2)

ψ̃1(x1) dx1

)M

,

(6.27)

where

ψ̃1(x1) =
(ψ1 ◦ f−1)(x1)

| det(Df)(f−1(x1))|
.

If we define g(x2) = P(A(Ex2
)), then E(H(ξ)) = MA2 · ψ̂2g(ξ). We can obtain a

bound on E(H(ξ)) by bounding the partial derivatives of ψ2g. Bernoulli’s inequality
implies that

g(x) = 1−

(
1−

∫
Bcr(x)

ψ̃1(x1) dx1

)M

.L Mrd .M1−d/λ. (6.28)

On the other hand, for any multi-index α with |α| > 0, ∂αg(x) is a sum of terms
of the form

(−1)m
M !

(M −m)!

(
1−

∫
Bcr(x)

ψ̃1(x1) dx1

)M−m( m∏
i=1

∫
Bcr(x)

∂αi ψ̃1(x1) dx1

)
,

(6.29)

where αi 6= 0 for any i and α = α1 + · · · + αm. This implies 0 < m ≤ |α| for any
terms in the sum. Now the bound |∂αi ψ̃1(x2)| .αi 1 implies that∣∣∣∣∣

∫
Bcr(x)

∂αi ψ̃1(x2) dx2

∣∣∣∣∣ .αi r
d. (6.30)
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Applying (6.30) to (6.29) enables us to conclude that

|∂αg(x)| .α max
0<m≤|α|

Mmrmd ≤M1−d/λ, (6.31)

Since the fact that ψ2 ∈ C∞(Td) implies that ‖∂αψ2‖L∞(Td) .α 1 for any multi-
index α, the product rule applied to (6.31) implies that ‖∂α(ψ2g)‖L∞(Td) .α

M1−d/λ for all α > 0, which means that for any T > 0 and ξ 6= 0,

|E(H(ξ))| .T M2−d/λ|ξ|−T . (6.32)

Since λ < d, 2− d/λ < 1, so setting T = β/2, fixing δ > 0, and then choosing M0

appropriately, if M ≥M0, (6.32) shows that

|E(H(ξ))| ≤ δM |ξ|−β/2. (6.33)

This completes the proof in the case n = 2.
Now we move on to the case where n ≥ 3, which is made more complicated by

the lack of an explicit formula for P(A(Exn
)). For any cube Q ∈ Td(n−1) and any

indices 1 ≤ k1, . . . , kn−1 ≤ K, set k = (k1, . . . , kn−1) and let A(Q; k) denote the
event that (X1(k1), . . . , Xn−1(kn−1)) ∈ Q. Then

A(Q) =
⋃
k

A(Q; k). (6.34)

For any cube Q and index k,

P(A(Q; k)) =

∫
Q

ψ1(x1) . . . ψn−1(xn−1) dx1 . . . dxn−1, (6.35)

and so

∑
k

P(A(Q; k)) =Mn−1

∫
Q

ψ1(x1) · · ·ψn−1(xn−1) dx1 . . . dxn−1. (6.36)

An application of inclusion exclusion to (6.36) thus shows that∣∣∣∣P(A(Q))−Mn−1

∫
Q

ψ1(x1) · · ·ψn−1(xn−1) dx1 . . . dxn−1

∣∣∣∣
≤
∑
k 6=k′

P(A(Q; k) ∩A(Q; k′)).
(6.37)

For each k, k′, the quantity P(A(Q; k)∩A(Q; k′)) depends on the number of indices
i such that ki = k′i. In particular, if I ⊂ {1, . . . , n − 1} is the set of indices where
the quantity agrees, then
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P(A(Q; k) ∩A(Q; k′)) =

(∏
i∈I

∫
Qi

ψi(x) dx

)
·

∏
i6∈I

(∫
Qi

ψi(x) dx

)2
 . (6.38)

In particular, if Q has sidelength l and #(I) = m, then P(A(Q; k) ∩ A(Q; k′)) .
ld(2n−m−2). For each m, there are at mostM2n−m−2 pairs k and k′ with #(I) = m.
And so provided ld ≤ 1/M ,

∑
k 6=k′

P(A(Q; k) ∩A(Q; k′)) .
n−2∑
m=0

(M · ld)2n−m−2 .Mnldn. (6.39)

Thus we conclude from (6.37) and (6.39) that

P(A(Q)) =Mn−1

∫
Q

ψ1(x1) . . . ψn−1(xn−1)dx1 . . . dxn−1 +O(Mnldn). (6.40)

Since f is a submersion, for each xn, Exn
is contained in a O(r)-thickening of a

d(n−2) dimensional surface in Td(n−1). Applying the Whitney covering lemma, we
can find a family of almost disjoint dyadic cubes {Qij : j ≥ 0} such that

Exn
=

∞⋃
i=0

ni⋃
j=1

Qij(xn), (6.41)

where for each i ≥ 0, Qij is a sidelength r/2i cube, and ni . (r/2i)−d(n−2). It
follows from (6.41) that

A(Exn
) =

⋃
i,j

A(Qij). (6.42)

Since n ≥ 3, we can use (6.40) to calculate that∣∣∣∣∣∣
∑
i,j

P(A(Qij))−Mn−1

∫
Exn

ψ1(x1) . . . ψn−1(xn−1) dx

∣∣∣∣∣∣
.

∞∑
i=0

(r/2i)−d(n−2) ·
(
Mn(r/2i)dn

)
. r2dMn ≤M−1/2.

(6.43)

Thus an inclusion exclusion bound together with (6.42) and (6.43) implies that∣∣∣P(A(Exn))−Mn−1

∫
Exn

ψ1(x1) . . . ψn−1(xn−1) dx
∣∣∣

.M−1/2 +
∑

(i1,j1) 6=(i2,j2)

P(A(Qi1j1) ∩A(Qi2j2)).
(6.44)

The quantity P(A(Qi1j1) ∩ A(Qi2j2)) depends on the relation between the various
sides of Qi1j1 and Qi2j2 . Without loss of generality, we may assume that i1 ≥ i2.
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If I(Qi1j1 , Qi2j2) is the set of indices 1 ≤ k ≤ n − 1 where Qi1j1k ⊂ Qi2j2k, and
#(I(Qi1j1 , Qi2j2)) = m, then

P(A(Qi1j1) ∩A(Qi2j2)) . (M(r/2i1)d)m · (M(r/2i1)d ·M(r/2i2)d)n−m−1

= 2−d[(n−1)i1+(n−m−1)i2](Mrd)2n−m−2.
(6.45)

The condition that Dxk
f is invertible for all k on the domain of f implies that

any axis-oriented plane in Tdn intersects transversally with the level sets of f . In
particular, this means that the intersection of a O(r/2i1) thickening of a codimen-
sion dm axis-oriented hyperplane intersects a O(r/2i1) thickening of ∂Exn

(which
has codimension d) in a set with volume O

(
(r/2i1)d(r/2i1)dm

)
, and intersects a

O(r/2i2) thickening of ∂Exn
in a set with volume O

(
(r/2i2)d(r/2i1)dm

)
. As a par-

ticular example of this, for any distinct indices j1, . . . , jm ∈ {1, . . . , n− 1}, and any
family of integers 0 ≤ n11, . . . , nmd ≤ 2i1/r, the set

{
x ∈ Exn

:
n11
2i1

≤ xj11 ≤ (n11 + 1)

2i1
, . . . ,

nmd

2i1
≤ xjmd ≤ nmd + 1

2i1

}
(6.46)

contains at most

O
(
(r/2i1)d(r/2i1)dm(r/2i1)−d(n−1)

)
= O

(
2d(n−m−2)i1r−d(n−m−2)

)
(6.47)

sidelength r/2i1 dyadic cubes in the decomposition of Exn
, and at most

O
(
(r/2i2)d(r/2i1)dm(r/2i2)−d(n−1)

)
= O

(
2d(n−2)i2−(dm)i1r−d(n−m−2)

)
(6.48)

sidelength r/2i2 dyadic cubes in the decomposition of Exn
. Letting the integers

{nkl} vary over all possible choices we conclude from (6.47) and (6.48) that for
each i1 and i2 there are at most

O
(
(2i1/r)dm

(
2d(n−m−2)i1r−d(n−m−2)

)(
2d(n−2)i2−(dm)i1r−d(n−m−2)

))
= O

(
2d(n−m−2)i1+d(n−2)i2r−d(2n−m−4)

) (6.49)

pairs Qi1j1 and Qi2j2 with I(Qi1j1 , Qi2j2) = m. Thus we conclude from (6.45) and
(6.49) that
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34 J. Denson∑
(i,j) 6=(i′,j′)

P(A(Qij) ∩A(Qi′j′))

.
n−2∑
m=0

∑
i1≥i2

(
2d(n−m−2)i1+d(n−2)i2r−d(2n−m−4)

)
(
2−d((n−1)i1+(n−m−1)i2)(Mrd)2n−m−2

)
. r2d

n−2∑
m=0

M2n−m−2
∑
i1≥i2

2−d(m+1)i1+d(m−1)i2

.
n−2∑
m=0

M2n−m−2r2d

.M2(n−1)r2d .M−1/2.

(6.50)

Returning to the bound in (6.44), (6.50) implies that∣∣∣∣∣P(A(Exn
))−Mn−1

∫
Exn

ψ1(x1) . . . ψn−1(xn−1) dx1 . . . dxn−1

∣∣∣∣∣ .M−1/2. (6.51)

Returning even further back to (6.26) , recalling that Exn
= f−1(Br(xn)), (6.51)

implies ∣∣∣∣∣E(H(ξ))−An ·Mn

∫
Td

ψn(xn)

∫
f−1(Br(xn))

ψ1(x1) . . . ψn−1(xn−1)

× e2πiξ·xn dx1 . . . dxn

∣∣∣∣∣ .M1/2. (6.52)

Applying the co-area formula, writing ψ(x) = ψ1(x1) . . . ψn(xn), we find∫
Td

∫
f−1(Br(xn))

ψ(x)e2πiξ·xn dx1 . . . dxn

=

∫
Br(0)

∫
Td

∫
f−1(x+v)

ψ(x)e2πiξ·xn dHn−2(x1, . . . , xn−1) dxn dv

=

∫
Br(0)

∫
Td(n−1)

ψ(x, f(x)− v) · e2πiξ·(f(x)−v)|Jf(x)| dx dv

=

∫
Br(0)

∫
Td(n−1)

ψ̃(x, v) · e2πiξ·(f(x)−v) dx dv.

(6.53)

where ψ̃(x, v) = ψ(x, f(x) − v) · |Jf(x)|, and Jf is the rank-d Jacobian of f . A
consequence of (6.53) in light of (6.52) is that it reduces the study of E(H(ξ)) to a
standard oscillatory integral. If we look at the phase

φ(x, v) = ξ · (f(x)− v),
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then we see that ∇xφ(x, v) = Df(x)T ξ, which is only equal to zero if ξ = 0 since
Df is surjective on the domain of f (this is implied by the stronger assumption
that f is a diffeomorphism on each variable). Thus the oscillatory integral above
has no stationary points in the x-variable. Integrating by parts in the x-variable
thus allows us to conclude that for all |v| ≤ 1 and T > 0,∣∣∣∣∫

Td(n−1)

ψ̃(x, v) · e2πiξ·(f(x)−v) dx

∣∣∣∣ .T |ξ|−T . (6.54)

Now the bound in (6.54) can be applied with (6.53) to conclude that∣∣∣∣∣
∫
Td

∫
f−1(Br(x))

ψ(x)e2πiξ·xn dx2 . . . dxn dx1

∣∣∣∣∣ .T rd|ξ|−T . (6.55)

In particular, taking T = β/2 here, combined with (6.52), (6.55), we find that

|E(H(ξ))| .Mnrd|ξ|−β/2 +M1/2 .M3/4|ξ|−β/2 +M1/2. (6.56)

Thus there exists C > 0 such that for any δ > 0, there is r0 > 0 such that for
r ≤ r0, and any nonzero ξ ∈ Zd,

|E(H(ξ))| ≤ δM |ξ|−β/2 + CM1/2.

�

The proof of Lemma 6.3 is the only obstacle preventing us from constructing a
Salem set X avoiding the pattern defined by Z with

dimF(X) =
d

n− 1
.

All other aspects of the proof carry through for d/(n− 3/4) ≤ β ≤ d/(n− 1). The
problem with Lemma 6.3 in this scenario is that if we try to repeat the proof when
n ≥ 3 and M � r−d/(n−3/4), there is too much ‘overlap’ between the various cubes
we use in our covering argument in the various axis; thus the inclusion-exclusion
argument found in this proof cannot be used to control E(H(ξ)) in a significant way.
We believe our method can construct Salem sets with Fourier dimension d/(n− 1),
but new tools are required to improve the estimates on E(H(ξ)). In the next section,
we are able to modify our construction for patterns satisfying a weak translation
invariance by a simple trick: we will modify the analogous exponential sums H(ξ)
so that E(H(ξ)) = 0 for all ξ 6= 0, so that the analogue of Lemma 6.3 is trivial in
this setting, and we thus obtain a construction of Salem sets avoiding patterns with
dimension exactly matching those obtained in the Hausdorff dimension setting.

7. Expectation bounds for translation-invariant patterns

The proof of Theorem 1.4 uses very similar arguments to Theorem 1.3. The concen-
tration bound arguments will be very similar to those applied in the last section.
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The difference here is that the translation-invariance of the pattern can be used to
bypass estimating the expected values like those which caused us the most difficulty
in Theorem 1.4. We can therefore construct Salem sets avoiding the pattern with
dimension exactly matching the Hausdorff dimension of the sets which would be
constructed using the method of [3]. In this section, let

β ≤ min

(
dn− α

n− 1
, d

)
.

We then show that generic elements of Xβ avoid patterns satisfying the assumptions
of Theorem 1.4.

Lemma 7.1. Fix a ∈ Q−{0}, and let f : V → R and F ⊂ R satisfy the assump-
tions of Theorem 1.4. Then for quasi-all (E, µ) ∈ Xβ, and any distinct points
(x1, . . . , xn) ∈ E,

xn − axn−1 − f(x1, . . . , xn−2) 6∈ F.

Proof. Set

W = {(x1, . . . , xn) ∈ T2d ×V : xn − axn−1 − f(x1, . . . , xn−2) ∈ F}.

The assumption that f is a locally Lipschitz map, and thus continuous, implies
that for any disjoint, closed cubes R1, . . . , Rn ⊂ Td such that R1×· · ·×Rn−2 ⊂ V ,
(R1 × · · · ×Rn) ∩W will be a closed set. It follows that if we set

H(R1, . . . , Rn) = {E ⊂ Td : (R1 × · · · ×Rn) ∩W ∩ En = ∅}

and

H(R1, . . . , Rn) = {(E, µ) ∈ Xβ : E ∈ H(R1, . . . , Rn)},

then H(R1, . . . , Rn) is an open subset of Xβ , and H(R1, . . . , Rn) is a downward
closed family of sets. The proof will be complete will be proved that for each
positive integer m, and any choice of cubes R1, . . . , Rn with common sidelength
1/2am, with d(Ri, Rj) ≥ 10/am for i 6= j, and with Q1 × · · · × Qn−2 a closed
subset of V , where Qi = 2Ri, then the set H(R1, . . . , Rn) is dense in Xβ . To prove
H(R1, . . . , Rn) is dense, we may assume without loss of generality that the set F
is 1/m periodic, i.e. F + k/m = F for any k ∈ Zd, by replacing F with a finite
union of its translates. The set H(R1, . . . , Rn) is downward closed, so we can apply
Lemma 4.1.

Since f is a locally Lipschitz map, we may fix L > 0 such that for x1, x2 ∈
R1 × · · · ×Rn−2,

|f(x1)− f(x2)| ≤ L|x1 − x2|. (7.1)

Fix a large integer M > 0, λ ∈ [0, β), γ ∈ [0, α) and pick r > 0 such that r−λ ≤
M ≤ r−λ + 1. If c = 2(1 + |a|+ Ln1/2), and r is suitably small, then

|N(F, cr)| ≤ rdn−γ (7.2)

For 1 ≤ i ≤ n, consider a family of independent random variables {Xi(k) : 1 ≤
k ≤ M}, such that Xi(k) is uniformly distributed on Qi for each i, as well as
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another independent family of random variables {X0(k) : 1 ≤ k ≤ M} uniformly
distributed in Td −(Q1 ∪ · · · ∪Qn). Let I be the set of indices kn ∈ {1, . . . , N} such
that there are indices k1, . . . , kn−1 ∈ {1, . . . , N} with the property that

dH

(
Xn(kn)− aXn−1(kn−1)− f

(
X1(k1), . . . , Xn−2(kn−2)

)
, F
)
≤ cr. (7.3)

If

S = {Xi(k) : 0 ≤ i ≤ n− 1, 1 ≤ k ≤ N} ∪ {Xn(k) : k 6∈ I}.

then (7.1) implies that N(S, r) ∈ H(W ;R1, . . . , Rn).
We claim that for each x ∈ Qn, the quantity

P (x) = P(1 ∈ I|Xn(1) = x),

is independent of x. To see this, we note that because F is 1/m periodic, the
quantity

dH

(
x− axn−1 − f

(
x1, . . . , xn−2

)
, F
)

depends only on x1, . . . , xn−2, and the value of x− axn−1 in Td /(Zd /m). Because
aXn−1(kn−1) is uniformly distributed in aQn, which is an axis-oriented cube with
sidelength 1/m, it follows that the distribution of the random variable

x− aXn−1(kn−1)

modulo Td /(Zd /m), is independent of x, which yields the claim.
Let P denote the common quantity of the values P (x), and let

G(x1, . . . , xn−1) = dH

(
− axn−1 − f

(
x1, . . . , xn−2)

)
, F
)
.

A union bound, together with (7.2), implies

P = P

 ⋃
k1,...,kn−1

{
G(X1(k1), . . . , Xn−1(kn−1)) ≤ cr

}
≤

∑
k1,...,kn−1

P (G(X1(k1), . . . , Xn−1(kn−1)) ≤ cr)

.Mn−1|N(F, cr)| ≤Mn−1rdn−γ .Mn−1−(dn−γ)/λ

(7.4)

Because (n− 1)− (dn− γ)/λ < 0, (7.4) implies that for suitably large integers M
depending on n, d, λ, and γ,

P ≤ 1/2. (7.5)

Set A0 = (1 − P )|Td −Q1 − · · · − Qn|, set Ai = (1 − P )|Qi| if i ∈ {1, . . . , n − 1},
and let An = |Qn|. Define

F (ξ) =
n−1∑
i=0

M∑
k=1

Aie
2πiξ·Xi(k) +

∑
k 6∈I

Ane
2πiξ·Xn(k).
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The choice of coefficients is made so that
∑
Ai & 1, and for any ξ 6= 0, E(F (ξ)) = 0.

Indeed, we have

E(F (ξ)) =
MA0

|Td −Q1 − · · · −Qn|

∫
Td −Q1−···−Qn

e2πiξ·x dx

+
n−1∑
i=1

MAi

|Qi|

∫
Qi

e2πiξ·x dx

+
MAn

|Qn|

∫
Rn

[1− P (x)]e2πiξ·x; dx

=M(1− P )

∫
Td

e2πiξ·x = 0.

Split up F into the sum of two exponential sums

G(ξ) =
n∑

i=0

M∑
k=1

Aie
2πiξ·Xi(k)

and

H(ξ) =
∑
k∈I

Ane
2πiξ·Xn(k).

Applying Lemma 4.4, we conclude that for any fixed κ > 0, there is C > 0 such
that

P

(
sup

|ξ|≤N1+κ

|G(ξ)− E(G(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10. (7.6)

Lemma 7.2, which follows from a very similar argument to Lemma 6.2 in the last
section, implies that

P

(
sup

|ξ|≤M1+κ

|H(ξ)− E(H(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10. (7.7)

A union bound applied to (7.6) and (7.7) implies that, since E(F (ξ)) = 0,

P

(
sup

|ξ|≤M1+κ

|F (ξ)| ≥ CM1/2 log(M)1/2

)
≤ 1/5 (7.8)

Set N = #(S). Then

N ≥M & (1/2)r−λ. (7.9)

Now (7.6), (7.7), and (7.9) imply that there exists a constant C > 0 and an
instantiation of the random variables {Xi(k)} such that if ã(Xi(k)) = Ai, then∣∣∣∣∣ 1N ∑

x∈S

ã(x)e2πiξ·x

∣∣∣∣∣ . CN1/2 log(N)1/2. (7.10)
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Since
∑

x∈S ã(x) & N , if we set

a(x) = N · ã(x)∑
x′∈S a(x

′)
,

then the sum
1

N

∑
x∈S

a(x)e2πiξ·x

satisfies the assumptions of Lemma 4.1 for arbitrarily large N . We therefore
conclude by that Lemma that H(R1, . . . , Rn) is dense in Xβ . �

All that remains to prove Theorem 1.4 is to prove Lemma 7.2.

Lemma 7.2. For any κ > 0, there exists C > 0 such that

P

(
sup

|ξ|≤M1+κ

|H(ξ)− E(H(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10

Proof. Consider the random set Ω of values xn ∈ Qn such that there are
k1, . . . , kn−1 ∈ {1, . . . ,M} with

xn − f(X1(k1), . . . , Xn−2(kn−2)) ∈ N(F, cr). (7.11)

Then

H(ξ) =
An

M

M∑
k=1

Z(k, ξ). (7.12)

where

Z(k, ξ) =

e2πiξ·Xn(k) : Xn(k) 6∈ Ω,

0 : Xn(k) ∈ Ω
.

If Σ is the σ algebra generated by the random variables

{Xi(k) : i ∈ {1, . . . , n− 1}, k ∈ {1, . . . ,M}},

then Ω is measurable with respect to Σ. Thus the random variables {Z(k, ξ)}
are conditionally independent given Σ. Since we have |Z(k, ξ)| ≤ 1 almost surely,
Hoeffding’s inequality thus implies that for all t ≥ 0,

P (|H(ξ)− E(H(ξ)|Σ)| ≥ t) ≤ 4 exp

(
−t2

2M

)
. (7.13)

It is simple to see that

E(H(ξ)|Σ) = AnM

∫
Ω

ψn(x)e
2πiξ·x dx. (7.14)
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Since

Ω =
⋃

{f(X1(k1), . . . , Xn−2(kn−2)) +N(F, cr) : 1 ≤ k1, . . . , kn−1 ≤ K} . (7.15)

we see that varying each random variable Xi(k), for 1 ≤ i ≤ n − 1 while fixing
the other random variables adjusts at most Mn−2 of the sets forming Ω, each of
which having volume Od,n,L(r

dn−α), and thus varying Xi(k) while fixing the other
random variables changes E(H(ξ)|Σ) by at most

M ·Od,n,L(r
dn−α) ·Mn−1 . 1. (7.16)

Thus McDiarmid’s inequality shows that there exists C > 0 such that for any t ≥ 0,

P (|E(H(ξ)|Σ)− E(H(ξ))| ≥ t) ≤ 4 exp

(
−t2

CM

)
. (7.17)

Combining (7.13) and (7.17), we conclude that there exists C > 0 such that for
each ξ ∈ Zd,

P (|H(ξ)− E(H(ξ))| ≥ t) ≤ 8 exp

(
−t2

CM

)
. (7.18)

Applying a union bound to (7.18) over all 0 < |ξ| ≤M1+κ shows that there exists
a constant C > 0 such that

P

(
sup

|ξ|≤M1+κ

|H(ξ)− E(H(ξ))| ≥ CM1/2 log(M)1/2

)
≤ 1/10.

�
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Appendix A. Justifying discretization

The main goal of this appendix is a proof of Lemma 4.1. Throughout this section,
we will apply mollification. So we fix a smooth, non-negative function φ ∈ C∞(Td)
such that φ(x) = 0 for |x| ≥ 2/5 and

∫
Td φ(x) dx = 1.

For each r ∈ (0, 1), we can then define φr ∈ C∞(Td) by writing

φr(x) =

r−dφ(x/r) : |x| < r,

0 : otherwise.

The following standard properties hold:

(1) For each r ∈ (0, 1), φr is a non-negative smooth function with∫
Td

φr(x) dx = 1, (A.1)

and φr(x) = 0 for |x| ≥ r.
(2) For any r ∈ (0, 1), ∥∥φ̂r∥∥L∞(Zd)

= 1. (A.2)

(3) For each ξ ∈ Zd,

lim
r→0

φ̂r(ξ) = 1. (A.3)

(4) For each T > 0, for all r > 0, and for any non-zero ξ ∈ Zd,

|φ̂r(ξ)| .T r−T |ξ|−T . (A.4)

We will prove Lemma 4.1 after a series of more elementary lemmas which give
results about the metric space Xβ .

Lemma A.1. The set of all (E, µ) ∈ Xβ with µ ∈ C∞(Td) and supp(µ) = E is
dense in Xβ.

Proof. Let

X̃β = {(E, µ) ∈ Xβ : supp(µ) = E}. (A.5)

We begin by proving that the set of all (E, µ) ∈ X̃β such that µ ∈ C∞(Td) is dense

in X̃β . Fix (E0, µ0) ∈ X̃β . For each r ∈ (0, 1), consider the convolved measure µr =

https://doi.org/10.1017/prm.2025.10097 Published online by Cambridge University Press

https://web.math.princeton.edu/rvan/APC550.pdf
https://web.math.princeton.edu/rvan/APC550.pdf
https://doi.org/10.1017/prm.2025.10097


42 J. Denson

µ0 ∗ φr. Then µr ∈ C∞(Td) and supp(µr) = Er. We claim that limr→0(Er, µr) =
(E0, µ0), which would complete the proof. Since dH(E0, Er) ≤ r, we find that
limr→0Er = E0 holds with respect to the Hausdorff metric. Now fix λ ∈ (0, β] and

δ > 0. For each ξ ∈ Zd, |µ̂r(ξ)| = |φ̂r(ξ)||µ̂0(ξ)|, so

|ξ|λ/2|µ̂r(ξ)− µ̂0(ξ)| = |ξ|λ/2|φ̂r(ξ)− 1||µ̂0(ξ)|. (A.6)

We control (A.6) using the fact that |µ̂0(ξ)| is small when ξ is large, and |φ̂r(ξ)−1|
is small when ξ is small. Since (E0, µ0) ∈ Xβ , we can apply (4.1) to find R > 0 such
that for |ξ| ≥ R,

|ξ|λ/2|µ̂0(ξ)| ≤ δ/2. (A.7)

Combining (A.6), (A.7), and (A.2), for |ξ| ≥ R we find that

|ξ|λ/2|µ̂r(ξ)− µ̂0(ξ)| ≤ δ. (A.8)

On the other hand, (A.3) shows that there exists r0 > 0 such that for r ≤ r0 and
|ξ| ≤ R,

|ξ|λ/2|φ̂r(ξ)− 1| ≤ δ. (A.9)

The (L1, L∞) bound for the Fourier transform implies that |µ̂0(ξ)| ≤ µ0(Td) = 1,
which combined with (A.9) gives that for r ≤ r0 and |ξ| ≤ R,

|ξ|λ/2|µ̂r(ξ)− µ̂0(ξ)| ≤ δ. (A.10)

Putting together (A.8) and (A.10) shows that for r ≤ r0, ‖µr −µ0‖M(λ) ≤ δ. Since
δ and λ were arbitrary, we conclude that limr→0 µr = µ0. Thus the set of all pairs
(E, µ) ∈ X̃β with µ ∈ C∞(Td) is dense in X̃β .

Our proof will therefore be complete if we can show that X̃β is dense in Xβ . We

prove this using a Baire category argument. For each closed cube Q ⊂ Td, let

A(Q) = {(E, µ) ∈ Td : (E ∩Q) = ∅ or µ(Q) > 0}.

Then A(Q) is an open set. If {Qk} is a countable sequence enumerating all cubes
with rational corners in Td, then

∞⋂
k=1

A(Qk) = X̃β . (A.11)

Thus it suffices to show that A(Q) is dense in Xβ for each closed cube Q. To do this,
we fix (E0, µ0) ∈ Xβ −A(Q), λ ∈ [0, β), and ε > 0, and try and find (E, µ) ∈ A(Q)
with dH(E,E0) ≤ ε and ‖µ0 − µ‖M(λ) ≤ ε.
Because (E0, µ0) ∈ Xβ − A(Q), we know E0 ∩ Q 6= ∅ and µ0(Q) = 0. Find a

smooth probability measure ν supported on N(E0, ε)∩Q and, for t ∈ (0, 1), define
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µt = (1− t)µ0+ tν. Then supp(µt) ⊂ N(E0, ε), so if we let E = supp(ν)∪ supp(µ),
then dH(E,E0) ≤ ε. Clearly (E, µt) ∈ A(Q) for t > 0. And

‖µt − µ0‖M(λ) ≤ t
(
‖µ0‖M(λ) + ‖ν‖M(λ)

)
, (A.12)

so if we choose t ≤ ε · (‖µ‖M(λ) + ‖ν‖M(λ))
−1 we find ‖µt − µ‖M(λ) ≤ ε. Since ε

was arbitrary, we conclude A(Q) is dense in Xβ . �

Remark A.2. The reason we must work with the metric space Xβ rather than the

smaller space X̃β ⊂ Xβ is that X̃β is not a closed subset of Xβ , and so is not a
complete metric space, preventing the use of the Baire category theorem. However,
the latter arguments in the proof of Lemma A.1 shows that quasi-all elements of
Xβ belong to X̃β , so that one can think of Xβ and X̃β as being equal ‘generically’.

The density argument of Lemma 4.1 requires constructing approximations to an
arbitrary element of (E0, µ0) ∈ Xβ by (E, µ) ∈ Xβ such that E ∈ A. We do this by

multiplying µ0 by a smooth function f ∈ C∞(Td) which cuts off parts of µ0 which
cause the support of µ0 to fail to be in A. As long as µ0 is appropriately smooth,
and the Fourier transform of f decays appropriately quickly, the next lemma shows
that fµ0 ≈ µ0.

Lemma A.3. Consider a finite measure µ0 on Td, as well as a smooth probability
density function f ∈ C∞(Td). If we define µ = fµ0, then for any λ ∈ [0, d),

‖µ− µ0‖M(λ) .d ‖µ0‖M(d+1)‖f‖M(λ).

Proof. Since µ̂ = f̂ ∗ µ̂0, and f̂(0) = 1, for each ξ ∈ Zd we have

|ξ|λ/2|µ̂(ξ)− µ̂0(ξ)| = |ξ|λ/2
∣∣∣∣∣∣
∑
η 6=ξ

f̂(ξ − η)µ̂0(η)

∣∣∣∣∣∣ . (A.13)

If |η| ≤ |ξ|/2, then |ξ|/2 ≤ |ξ − η| ≤ 2|ξ|, so

|ξ|λ/2|f̂(ξ − η)| ≤ ‖f‖M(λ)|ξ|λ/2|ξ − η|−λ/2 ≤ 2λ/2‖f‖M(λ) .d ‖f‖M(λ). (A.14)

Thus the bound (A.14) implies

|ξ|λ/2
∣∣∣∣∣∣

∑
0≤|η|≤|ξ|/2

f̂(ξ − η)µ̂0(η)

∣∣∣∣∣∣ .µ0,d ‖µ0‖M(d+1)‖f‖M(λ)

1 +
∑

0<|η|≤|ξ|/2

1

|η|d+1


.d ‖µ0‖M(d+1)‖f‖M(λ) ≤ ‖µ0‖M(d+1)‖f‖M(λ).

(A.15)

On the other hand, for all η 6= ξ,

|f̂(ξ − η)| ≤ ‖f‖M(λ)|ξ − η|−λ ≤ ‖f‖M(λ). (A.16)
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Thus we calculate that

|ξ|λ/2

∣∣∣∣∣∣∣∣
∑

|η|>|ξ|/2
η 6=ξ

f̂(ξ − η)µ̂0(η)

∣∣∣∣∣∣∣∣ .d,µ0
‖µ0‖M(d+1)‖f‖M(λ) · |ξ|λ/2

∑
|η|>|ξ|/2

1

|η|d+1

.d ‖µ0‖M(d+1)‖f‖M(λ).

(A.17)

Combining (A.13), (A.15) and (A.17) completes the proof. �

The bound in Lemma A.3, if ‖f‖M(λ) is taken appropriately small, also implies
that the Hausdorff distance between the supports of µ and µ0 are small.

Lemma A.4. Fix a probability measure µ0 ∈ C∞(Td) and λ ∈ [0, d). For any
ε > 0, there exists δ > 0 such that if µ ∈ C∞(Td), supp(µ) ⊂ supp(µ0), and
‖µ0 − µ‖M(λ) ≤ δ, then dH(supp(µ), supp(µ0)) ≤ ε.

Proof. Consider any cover of supp(µ0) by a family of radius ε/3 balls {B1, . . . , BN},
and for each i ∈ {1, . . . , N}, consider a smooth function fi ∈ C∞

c (Bi) such that
there is s > 0 with ∫

fi(x)dµ0(x) ≥ s (A.18)

for each i ∈ {1, . . . , N}. Fix A > 0 with∑
ξ 6=0

|f̂i(ξ)| ≤ A (A.19)

for all i ∈ {1, . . . , N} as well. Set δ = s/2A. If ‖µ0 − µ‖M(λ) ≤ δ, we apply
Plancherel’s theorem together with (A.18) and (A.19) to conclude that

∣∣∣∣∫ fi(x)dµ(x) dx−
∫
fi(x)dµ0(x)

∣∣∣∣ =
∣∣∣∣∣∣
∑
ξ∈Zd

f̂i(ξ) (µ̂(ξ)− µ̂0(ξ))

∣∣∣∣∣∣
≤ A‖µ0 − µ‖M(λ)

≤ s/2.

(A.20)

Thus we conclude from (A.18) and (A.20) that∫
fi(x)dµ(x) dx ≥

∫
fi(x)dµ0(x)− s/2 ≥ s/2 > 0. (A.21)

Since equation (A.21) holds for each i ∈ {1, . . . , N}, the support of µ inter-
sects every ball in {B1, . . . , BN}. Combined with the assumption that supp(µ) ⊂
supp(µ0), this implies that dH(µ0, µ) ≤ ε. �

Now we have the technology to prove Lemma 4.1.
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Proof of Lemma 4.1. Fix (E0, µ0) ∈ Xβ . By Lemma A.1, without loss of generality,

we may assume that µ0 ∈ C∞(Td) and that supp(µ0) = E0. Our goal, for any
λ ∈ [0, β) and δ0 > 0, is to find (E, µ) ∈ Xβ such that E ∈ A, dH(E,E0) ≤ δ0, and
‖µ− µ0‖M(γ) ≤ δ0.
Fix δ > 0, ε > 0, and λ ∈ (γ, β), and consider a set S = {x1, . . . , xN} and

{a1, . . . , aN} satisfying the assumptions of the Lemma. If we set

η =
1

N

N∑
k=1

akδxk
,

then η is a probability measure, and Property (2) implies that for |ξ| ≤ (1/r)1+κ,

|η̂(ξ)| ≤ CN−1/2 log(N) + δ|ξ|−λ/2. (A.22)

Consider the function f = η ∗ φr, where φr is the mollifier defined in the notation
section. For each ξ ∈ Zd,

f̂(ξ) = η̂(ξ)φ̂r(ξ). (A.23)

For |ξ| ≤ 1/r, (A.22) and (A.2) together with (A.23) imply that there is κ1 > 0
depending on β, λ, and γ such that

|f̂(ξ)| ≤ CN−1/2 log(N) + δ|ξ|−λ/2 ≤ (CN−κ1 + δ)|ξ|−γ/2. (A.24)

Thus if N is suitably large, we conclude that for |ξ| ≤ 1/r,

|f̂(ξ)| ≤ 2δ|ξ|−γ/2. (A.25)

If (1/r) ≤ |ξ| ≤ (1/r)1+κ, (A.4) implies |φ̂r(ξ)| .β r−β/2|ξ|−β/2, which together
with (A.2) and (A.22) applied to (A.23) allows us to conclude that there is κ2 > 0
depending on β, λ, and γ, such that

|f̂(ξ)| = δ|ξ|−λ/2 +Oβ

(
N−1/2 log(N) · r−β/2|ξ|−β/2

)
≤
(
δ +Oβ,κ

(
N−1/2 log(N) · r−β/2|ξ|−(β−λ)/2

))
|ξ|−λ/2

≤
(
δ +Oβ,κ

(
N−1/2 log(N)r−λ/2

))
|ξ|−λ/2

≤ (δ +Oβ,κ(N
−κ2(β,ε)))|ξ|−γ/2.

(A.26)

Thus if N is sufficiently large, then for (1/r) ≤ |ξ| ≤ (1/r)1+κ,

|f̂(ξ)| ≤ 2δ|ξ|−γ/2. (A.27)
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Finally, if |ξ| ≥ (1/r)1+κ, we apply (A.4) for T ≥ β/2 together with the bound
‖η̂‖L∞(Zd) = 1, which follows because η is a probability measure, to conclude that

|f̂(ξ)| .T r−T |ξ|−T

= r−T |ξ|β/2−T · |ξ|−β/2

≤ r−T (1/r)(β/2−T )(1+κ) · |ξ|−β/2

= rκT−(β/2)(1+κ) · |ξ|−β/2.

(A.28)

If we choose T > (β/2)(1 + 1/κ), then as r → 0, rκT−(β/2)(1+κ) → 0. Thus we
conclude from (A.28) that if N is sufficiently large, then for |ξ| ≥ (1/r)1+κ

|f̂(ξ)| ≤ 2δ|ξ|−β/2 ≤ 2δ|ξ|−γ/2. (A.29)

Combining (A.25), (A.27) and (A.29) shows that if N is sufficiently large,

‖f‖M(γ) ≤ 2δ. (A.30)

Intuitively, if δ � 1, then the Fourier transform of f approximately looks like
the Dirac delta function at the origin in Td, so we should expect f ≈ 1 on Td.
In particular, we should expect that fµ0 ≈ µ0. Since supp(fµ0) ⊂ supp(f) ⊂
N(S, r), we know that supp(fµ0) ∈ A. Carrying out all these details numerically
will complete the proof of density.
We start by applying Lemma A.3 using (A.30), which implies that if ρ = fµ0,

then

‖ρ− µ0‖M(γ) .d,µ0
‖f‖M(γ) ≤ 2δ. (A.31)

Using (A.30) and the fact that µ̂0 ∈ L1(Zd) because µ0 ∈ C∞(Td), we find that

ρ(Td) = (f̂ ∗ µ̂0)(0) ≥ 1−
∑
|ξ|6=0

|f̂(ξ)||µ̂0(−ξ)| ≥ 1−Oµ0
(2δ). (A.32)

Thus if we define µ = ρ/ρ(Td), then for δ ≤ 1,

‖µ− µ0‖M(γ) ≤ ‖µ− ρ‖M(γ) + ‖ρ− µ0‖M(γ)

= (1/ρ(Td)− 1) · ‖ρ‖M(γ) + ‖ρ− µ0‖M(γ)

.µ0 δ‖ρ‖M(γ) + ‖ρ− µ0‖M(γ)

. δ‖µ0‖M(γ) + ‖ρ− µ0‖M(γ) . δ.

(A.33)

If we take δ suitably small, (A.33) implies that ‖µ−µ0‖M(γ) ≤ δ0. Since supp(µ) ⊂
supp(µ0), Lemma A.4 implies that if δ is taken even smaller, then dH(E,E0) ≤ δ0.
Thus if we set E = supp(µ), then E ∈ A since E ⊂ N(S, r) and A is downward
closed, and since δ0 and γ were arbitrary, this completes the proof of density. �
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