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Abstract

In previous papers, three terms have been included in Ogden's stress-deformation
function for incompressible isotropic elastic materials. The material constants have been
calculated by elementary methods and the resulting fits to sets of experimental data have
been moderately good.

The purpose of the present paper is to improve upon established correlation between
theory and experiment by means of a systematic optimization procedure for calculating
material constants. For purposes of illustration the Levenberg-Marquardt non-linear least
squares optimization algorithm is adapted to determine the material constants in Ogden's
stress-deformation function.

The use of this algorithm for three-term stress-deformation functions improves some-
what on previous results. Calculations are also carried out in respect of a four-term
stress-deformation function and further improvement in the fit is achieved over a large
range of deformation.

1. Introduction

In a number of publications (see, for example, Ogden [6], Chadwick et al. [1]),
elementary methods have been used to determine the material constants /i,, a, in
the stress-deformation function

M M

2 , , c ) = 2 M ( ( X - I + O ' - * - I + C O ' ) (i)
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12] Isotropic elastic materials 425

for incompressible isotropic elastic materials. In equation (1), F represents the
force per unit undeformed area, normal to the principal direction of strain,
corresponding to the principal stretch X. The units of the ju, are those of F and the
a, are dimensionless ( /= 1,...,M). Considerations of stability and physically
realistic response lead to the inequalities

H,a, > 0 for all / = \,...,M. (2)

The parameter c in equation (1) is related to the pure homogeneous deformation
of simple tension, pure shear and equibiaxial tension, for which c = — {, — 1, —2
respectively. For further details of the three deformations and the derivation of
the corresponding values of c, the reader is referred to Ogden [6].

The set of numerical results for ju, and a, (/' = 1,2,3) given by Ogden [6] were
obtained by an ad hoc method as were the two sets given by Chadwick et al. [1];
all of these values of the constants were derived to fit curves to the experimental
data of Treloar [9]. Treloar's data were obtained in three experiments on samples
cut from a single sheet of vulcanized natural rubber; his three sets of data are
plotted for simple tension, pure shear and equibiaxial tension in Figures 1, 2, 3
respectively. A brief review of other experiments and associated fitted curves by
Jones and Treloar [3], James et al. [2] and Treloar and Riding [10] is contained in
Ogden [7].

Chadwick et al. [1] and Ogden [6] obtained values of /*, and a, (/ = 1,2,3) by
using the fact that, at small strains (X ^ 1), the computation is dominated by just
one term nlp(X,ai,c), with n2p(X,a2,c) and ju3/?(X, a3, c) increasing in
importance as X increases. The actual values of ^,, a, determined by Chadwick et
al. [1] and Ogden [6] for the data of Treloar [9] are reproduced for comparison
purposes in Table 1.

In previous papers, authors using the stress-deformation formula (1), have
taken M = 3. It was observed by Ogden [6, page 578], however, that by taking
M = 4, a better fit could be obtained for X > 7.0. One purpose of this paper is to
report numerical results which verify this claim, though it will be seen that
Ogden's estimate of a4 =* 10 is too low for Treloar's data. The other purpose of
this paper is to show that superior numerical results for /*,, a, (/ = 1,2,...,M) are
obtained using non-linear least squares optimization techniques (Section 2). Such
techniques obviate the need to calculate the /*,, a, (/ = 1,2,...,M) successively by
fitting curves to expanding ranges of data. The optimal values n*, af (i =
l,2,...,M) are determined as the elements of a vector. For the data of Treloar [9]
the optimal values with M = 3,4 are reported in Section 3 and, for M = 4, the
curves generated by (1) are plotted in Figures 1, 2, 3. Comparison with the values
of Ogden [6] and Chadwick et al. [1] is presented in Table 1 and comparison of
the accuracy obtained using non-linear optimization methods with the accuracy
attained by Ogden [6] and Chadwick et al [ 1 ] in Table 2.
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TABLE 1. Numerical values of ji/(&g cm'2), a,(i = 1,...,M; M = 3 or 4)

[3 ]

Method

Twizell and
Ogden

M = 4, c = - \

Twizell and
Ogden
A / = 4, c = -1

Twizell and
Ogden
M = 4, c = - 2

Twizell and
Ogden
A/ = 3, c = - j

Twizell and
Ogden
A/ = 3, c = - 1

Twizell and
Ogden
M = 3 , c = - 2

Ogden (1972)

allc

Chadwick et al.
(1977) equation (5.4)
allc

Chadwick et al.
(1977) equation (5.5)
allc

Mi

6.27

6.26

6.17

2.22

3.31

5.39

6.3

3.0

3.24

a,

1.23

1.2!

1.26

2.26

1.79

1.46

1.3

2.0

2.0

-0.054

— 0.067

-0.091

-0 .448

-0 .689

-0.530

- 0 . 1

-0 .81

- 0 . 1

« 2

-1.99

-1 .99

-2.01

-2.01

-1 .99

-2 .02

- 2 . 0

-1 .25

- 2 . 0

/*3

0.036

\S.\J~l S

0.046

0.39(-6)

0.20(-5)

0.19(-5)

0.012

0.37(-4)

0.62(-5)

« 3

4.44

4.43

4.26

10.01

9.88

9.68

5.0

7.82

8.7

0.80(-15)

A C\Af 1 C\

1.00(— 14)

-

-

-

-

-

-

« 4

19.49

19.49

19.49

-

-

-

-

-

-

Whereas the main aim of the present paper is to provide a systematic numerical
procedure which ensures a close overall fit to Treloar's data, it is emphasized that
this is different from the aims of Ogden [6] and Chadwick et al. [I]. In particular
Chadwick et al. [1] were motivated by the desire to obtain modifications of the
neo-Hookean (a, = 2) and Mooney-Rivlin (a, = 2, a2 = —2) strain-energy func-
tions, these being widely accepted as prototype models of the behaviour of
rubberlike materials. Also, the above authors did not obtain separate fits to
Treloar's [9] simple tension, pure shear and equibiaxial tension data sets, as is
done in the present paper, but obtained values of /*,., a, (/ = 1,2,3) appropriate to
all three deformations simultaneously.
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TABLE 2. Sums of squares (5)

427

Twizell and Ogden

M = 4, c = - 1

Twizel] and Ogden

M = 4, c = - 1

Twizel] and Ogden
Af = 4, c = - 2

Twizell and Ogden

A/ = 3, c = - 5

Twizell and Ogden
A/ = 3 , c = - 1

Twizell and Ogden
M = 3, c= - 2

•Ogden (1972)

Chadwick ef al.
(1977) equation (5.4)

Chadwick el al.
(1977) equation (5.5)

c = - i

6.30

-

-

12.80

-

-

302.90

20.40

16.10

c = -1

-

0.36

-

-

0.63

-

1.60

2.83

1.44

c = - 2

-

-

1.92

-

-

2.47

3.91

10.32

4.42

2. A non-linear least squares algorithm

In this section the Levenberg-Marquardt iterative algorithm for calculating the
optimal values [if, a? (/ = 1,... ,M) is outlined. The algorithm was published in
1963 by Marquardt and is similar to the method published in 1944 by Levenberg.
In these two papers the L2 norm is used in the minimization process; Shrager and
Hill [8] discuss the implementation of the Levenberg-Marquardt algorithm in the
L, and Lx norms. The Lx norm is particularly beneficial when the experimental
data for A and F contain one or more wild points, and the Lx norm when the
errors in the experimental values of F are negligible. The L2 norm has enjoyed
much more use than the other two, as error estimates have long been available in
the literature. Consequently a large literature of successful applications of the
Levenberg-Marquardt algorithm in the L2 norm, and a large amount of associated
computer software, has resulted. The Levenberg-Marquardt algorithm in the L2

norm is available to IBM users as Share Problem #1428 and from the NAG
(Numerical Algorithms Group) subroutine library where it is implemented in
Fortran as E04GAF&nd in Algol as E04GAA.

https://doi.org/10.1017/S0334270000003787 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003787


428 E. H. Twizell and R. W. Ogden [si

The data of Treloar [9] used in this paper contain no wild points and so the
outline of the Levenberg-Marquardt algorithm which follows is related to the L2

norm.
Suppose there are K data pairs (Xk, Fk) for k - 1,... ,K with K^2M. Let Fk

be the value of Fk yielded by

M

i= 1

and let Ek = Fk — Fk be the error in Fk. The least squares criterion requires that

K

c — e(„ „ „ n \ — V F2

j •3\[ij,al,.. .,fiM, aM) — ^ ck

k=\

K ( M "I 2

k=\ { 1=1 J

be minimized; this minimum of S being reached by obtaining optimal values
(i*,a* of the parameters /z,, a, (/ = 1,... ,M). In order to implement the Leven-
berg-Marquardt algorithm to minimize S, it is convenient to introduce a vector x
of order 2M defined by

, \T i \T
X — \X\, X2,. . . , -*2A/- l> X2M/ ~ \ru " l> - • • 'f*A/> aM) >

where T denotes transpose.
The Levenberg-Marquardt algorithm calculates iteratively a sequence of points

x(r) (/• = 0,1,2,...) with x(0) some initial point chosen so that the sequence {x(r)}
will converge to a point x* = (juf, af,... ,ix*M, a*M)T that minimizes S (the super-
script r denoting the rth iterate). The algorithm calculates the vector x( r+1) from
the vector x(r) using the equation

w ) V r > + Y ( ' ) / ] " V ( r ) ) r E ( ' ) , r = 0 , 1 , 2 , . . . , (4)

where y(r) (r = 0,1,2,...) is an arbitrary parameter and E = (£, , E2,... ,Ek)
T is

the vector of errors (see equation (3)). The matrix / is the identity matrix of order
2M and P is the matrix of first derivatives of order K X 2M whose element/^, at
the r th iterate is given by

(r) _ M*
Pk< ~ dx,

, (k= l,...,K;i= 1 2W;r = 0 , l , 2 , . . . ) .

Thus
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and

toTk=\,...,K;l= l,...,M;r = 0 , 1 , 2 , . . . .

Marquardt [5] has shown that a sufficiently large y(r) always exists such that

(unless x(r) = x*), where S(r) denotes the value of S at the rth iteration (r =
0,1,2,...). It is clear therefore that the method converges from poor starting
values nf\ a<0) (/ = 1,... ,M) and convergence proceeds as follows:

(i) arbitrarily choose y(0) and a parameter u > 1; say y(0) = 0.01 and u = 10;
(ii) let T(y(r)), T(y(r)/u) be the values of S(r) when y(r) and y(r)/u, respec-

tively, are used in equation (3);
(iii) calculate 5<r+1), T(y(r)) and T(y^/u);
(iv) then

(a) if T\yir)/u) < S(r+1), let Y(r+1) = y(r ) /«;
(b) if T(y(r)/u) > S(r+ '> and T(y^) < S( r + ", let yir+1} = Y(f);
(c) if T(yir)/u)>S(r+n and T(y^) > S(r+i), increase y(r) by successive

multiplication by u until the positive integer n is reached such that T(y^r)u") <
S(r+1). LetY(r+1) = y<r)/M";

(v) test for convergence of all the material constants /a,, a, (/ = 1,... ,M) to the
required accuracy. If the accuracy criterion is met the iterations cease, otherwise r
is incremented by unity and control returns to (ii).

The convergence tests described in steps (iv) and (v) of the strategy do lead to
increased computer time and storage in comparison with less sophisticated
methods. With y<r) = 0, for instance, the Levenberg-Marquardt algorithm (4)
becomes the Gauss-Newton algorithm which, for some problems, may well
converge faster, from good initial values, than the Levenberg-Marquardt algo-
rithm. From poor initial values, however, the Gauss-Newton method may diverge
while the Levenberg-Marquardt algorithm will converge. It is this factor which
highlights the superior reliability of the Levenberg-Marquardt algorithm, and
which makes it especially valuable for fitting a curve of the form (1) to experimen-
tal data.

3. Numerical results

The optimal values of fi,, a, (/ = 1,2,3,4) were computed using the
Levenberg-Marquardt algorithm for the laboratory data of Treloar [9] relating to
his simple tension, pure shear and equibiaxial tension experiments for which
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c = — j , — 1, —2 respectively. These optimal values for M = 4 are contained in
Table 1. With the exception of a4, corresponding material constants vary slightly
between experiments. Ideally, this variation would not happen and a possible
explanation for its occurrence is the presence of errors in experimental observa-
tions. The minimum sums of squares, defined by equation (3), were then com-
puted for the three sets of material constants with their corresponding sets of
experimental data; these three values of S1 are contained in Table 2.

The two sets of material constants obtained by Ogden [6] and Chadwick et al.
[1] all with M = 3, are contained in Table 1 and the resulting values of S are
contained in Table 2. The values of S obtained in the present paper for M = 4
using the non-linear least squares algorithm, are seen to be smaller, leading to a
better overall fit to each of the three sets of experimental data.

Sets of optimal values of jw,, a, (/ = 1,2,3) were also computed using the
Levenberg-Marquardt algorithm for the same laboratory data of Treloar [9].
These optimal values for M = 3 are also contained in Table 1 and the corre-
sponding values of S are contained in Table 2. The three values of S obtained
using the material constants determined for M = 3 are again seen to be smaller
than those obtained by Chadwick et al. [1] and Ogden [6]. They are not, however,
as small as those obtained with M = 4.

It is seen that for M = 3 the values of /i,, a,, n2, ju3 for different tests
(c = — j,—1,-2) differ considerably, but for M = 4 the maximum difference
between tests is very small. This justifies the introduction of the fourth term,
although there is no obvious physical basis for it. The differences in values of the
material constants for M = 4 are small enough not to be detectable within
bounds of experimental error, and the set of values

ju., = 6.23, p2 = -0.071, n3= 0.047, ju4 = 0.91 X \0-l5(kgcm'2) ,g.
a, = 1.23, a2 = -1.99, a3 = 4.38, a4 = 19.49

may be taken to cover all three tests.
In Figures 1, 2, 3 the curves for simple tension, pure shear and equibiaxial

tension are plotted for M = 4 and compared with the data points of Treloar [9].
Also included for comparison are the corresponding curves generated by the
material constants of Ogden [6] and Chadwick et al. [1, page 74]. The figures
confirm that the use of four terms in the stress-deformation function (1) gives a
very close fit overall for all three experiments. The comparison with Ogden's
results should be qualified with the fact that he omitted one of Treloar's simple
tension data points in calculating his material constants (two from his Figure 1).

The sets of optimal values of ju,, a, (/ = 1,... ,M) computed for both M = 3
and M = 4 by the Levenberg-Marquardt algorithm clearly satisfy the inequalities
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DEFORMATION (A)

Figure 1. Curves for Treloar's simple tension data.

Twizell and Ogden, M = 4;
Ogden [6];
Chadwick et al. [ 1 ];
Treloar's data.

(2). However, of the optimal values af for M — 3 only that corresponding to

c — — { satisfies the condition

a, < -1 or a, > 2, (7)
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18-

15-

F

(kg cm-2)

12-

9

3 •

2 3 4

DEFORMATION (X)

Figure 2. Curves for Treloar's pure shear data.

Twizell and Ogden, M = 4;
Ogden [6];
Chadwick et al. [ 1 ];
Treloar's data.

(Chadwick et al. [1, page 63]). These conditions are sufficient to guarantee the
existence of a unique solution to the problem of a shape-preserving deformation
of a circular cylinder rotating about its axis. In their paper, Chadwick et al. [1]
reject Ogden's value of a, = 1.3 in [6] because it, too, violates (7); it is noted that
for all three values of c with M = 4, the Levenberg-Marquardt algorithm yields
optimal values \i.\ and af which are very close to those of Ogden [6]. The values of
af computed using the non-linear least squares method with M — 3 and c = - 1 ,
- 2 also violate (7), yet the corresponding values of S are smaller than those
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24 '•

DEFORMATION (X)

Figure 3. Curves for Treloar's equibiaxial tension data.

Twizell and Ogden, M — 4;

Ogden [6];

Chadwick eiat. [ i ] ;
. . Treloar's data.

obtained by either Chadwick et al.[\] or Ogden [6]. Grounds for accepting values
of a, which violate (7) are discussed in Ogden [7]. Indeed such values of a, are
necessary, for example, for bifurcation from a spherical configuration of an
inflated, initially spherical shell.
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4. Summary

The numerical results reported in the present paper verify that the use of
non-linear least squares optimization methods is justified when fitting curves of
the form (1) to the experimental data; the wide availability of relevant computer
software enforces this point.

It has further been verified that the use of four terms in Ogden's stress-defor-
mation funciion produces a closer overall fit than the use of three terms, as might
be expected. Moreover, the values of the /*,-, a, (/ = 1,... ,M) for different tests
are much closer for M — 4 than M = 3, and provide a single set of material
constants for all the three tests within the bounds of experimental error.
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