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Abstract

A pattern knot in a solid torus defines a self-map of the smooth knot concordance group.
We prove that if the winding number of a pattern is even but not divisible by 8, then
the corresponding map is not a homomorphism, thus partially establishing a conjecture of
Hedden.
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1. Introduction

The satellite construction plays an important role in low-dimensional topology in general
and knot concordance in particular. A knot in a solid torus, or pattern, induces a well-defined
function on the set C of smooth concordance classes of knots, via the satellite operation
illustrated in Figure 1. While these functions have been well-studied (see for example [4–7,
13, 14, 18, 20]), much remains open. In particular, C famously has the structure of an abelian
group, with operation induced by connected sum [9]. While both the satellite operation and
connected sum are geometrically defined operations, they do not interact well: P(K1#K2) is
isotopic to P(K1)#P(K2) essentially only if P is isotopic to either a core or an unknot in the
solid torus.

Our main result is the following, which roughly states that for patterns of certain
(algebraic) winding number this behaviour must persist even modulo concordance.

THEOREM 1·1. Let P be a pattern whose winding number is even but not divisible by 8.
Then P does not induce a homomorphism of the smooth concordance group.

This is progress towards establishing the following conjecture of Hedden.

CONJECTURE 1·2 ([2, 19]). Let P be a pattern that induces a homomorphism of the smooth
concordance group. Then P induces the zero map, the identity map, or reversal.

It is straightforward to show that the zero map can only be induced by a winding num-
ber 0 pattern, the identity map by a winding number 1 pattern, and reversal by a winding
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2 JOHANNINGSMEIER, KIM AND MILLER

Fig. 1. A pattern P (left), a knot K (center), and the satellite knot P(K) (right).

number −1 pattern. In particular, Hedden’s conjecture would imply that patterns whose
winding number is greater than one in absolute value cannot induce homomorphisms.
Previous work in this area has obstructed specific examples like the Whitehead pattern
[10] and (n, 1)-cables [12]. from inducing homomorphisms, as well as establishing new
obstructions coming from Casson–Gordon signatures [17] and the d-invariants of Heegaard
Floer homology [16]. However, Theorem 1·1 is the first result to obstruct all patterns of a
given winding number from inducing homomorphisms. Our proof relies on the following
obstruction, due to recent work of Lidman, Miller and Pinzón-Caicedo.

THEOREM 1·3 ([16]). Let P ⊂ S1 × D2 be a pattern of winding number w, where w is divis-
ible by some prime power m. Let ηm denote a preferred lift of η = {pt} × ∂D2 to the m-fold
branched cover �m(P(U)), and let t : �m(P(U)) → �m(P(U)) be a generator for the group
of covering transformations.

Suppose the following two conditions hold:

(i) ηm represents an odd order element of H1(�m(P(U)));

(ii) for k = 1, . . . , m − 1, the rational linking numbers lk�m(P(U))(ηm, tkηm) are not all
equal to 0, while being either all non-positive or all non-negative.

Then there is a knot K such that P(−K)#P(K) is not smoothly slice, and hence P does not
induce a homomorphism of the smooth concordance group.

The proof of Theorem 1·3 uses Heegaard Floer d-invariants to obstruct �m(P(−K)#P(K))
from bounding a smooth rational homology ball. Since these invariants provide no obstruc-
tion in the topoogical category, Theorem 1·3 and hence Theorem 1·1 only hold in the smooth
category. Therefore, even though Hedden’s conjecture is open in the topological category,
our results do not apply there. In fact, it remains open whether (m, 1)-cabling induces a
homomorphism of the topological concordance group.

To prove Theorem 1·1, we will split into cases according to whether the winding number
w of P satisfies w ≡ 2 mod 4 (Corollary 3·1) or w ≡ 4 mod 8 (Corollary 3·1). When w ≡ 2
mod 4, we argue that lk�2(P(U))(η2, tη2) �= 0 in order to apply Theorem 1·3 with m = 2. When
w ≡ 4 mod 8, we first observe that if lk�2(P(U))(η2, tη2) �= 0, then we can apply Theorem 1·3
with m = 2. We prove that if lk�2(P(U))(η2, tη2) = 0, then lk�4(P(U))(η4, tη4) = 0 (Proposition
3·5), before showing that lk�4(P(U))(η4, t2η4) �= 0 in order to apply Theorem 1·3 with m = 4.
In all of these cases our computation of linking numbers comes from relating an arbitrary
winding number w pattern to the (w, 1)-cable pattern via crossing changes (Proposition 2·5),
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A partial resolution of Hedden’s conjecture 3

lifting the surgery curves realizing these crossing changes to the appropriate branched cover,
and comparing linking numbers there.

Note that lk�m(P(U))(ηm, tkηm) = lk�m(P(U))(ηm, tm−kηm) for all 1 ≤ k ≤ m − 1, so to verify
condition (ii) of Theorem 1·3 we need consider at most �m/2	 linking numbers. Also, we
will only use Theorem 1·3 when m is a power of 2, in which case |H1(�m(P(U)))| must be
odd (see e.g. [11]) and so condition (i) of Theorem 1·3 will be automatically satisfied.

In another direction, note that for every odd integer w, there is an example of a pattern P
with winding number w such that P is isotopic to −P, and hence such that P(−K) is isotopic
to −P(K) for all knots K [17]. However, there are no known examples of a pattern Q with
even winding number such that Q(−K) is always concordant to −Q(K), unless Q induces
the 0-map. This leads to the following conjecture.

CONJECTURE 1·4. Let P be a pattern with nonzero even winding number. Then there exists
a knot K such that P(−K) is not concordant to −P(K).

Since Theorem 1·3 obstructs a pattern P from having the property that P(−K) is always
concordant to −P(K), our proof of Theorem 1·1 establishes Conjecture 1·4 for patterns
whose winding numbers are not divisible by 8.

2. Definitions and examples

All manifolds are assumed to be smooth, compact and oriented.
The rational linking number of a pair of disjoint oriented simple closed curves in a rational

homology sphere can be defined as follows, see [21, chapter 10, section 77] for further
details.

Definition 2·1. Let γ1 and γ2 be disjoint oriented simple closed curves in a rational homol-
ogy 3-sphere Y . Let � ∈N be such that �γ2 represents the trivial element of H1(Y; Z), and let
F be a 2-chain in Y with boundary ∂F = �γ2. Then the (rational) linking number of γ1 and
γ2 is

lkY (γ1, γ2) = 1

�
(γ1 · F) ∈Q.

Note that here and throughout the paper, for a simple closed curve γ and a transverse 2-chain
F, we use γ · F to denote the signed count of intersection points between γ and F. Although
it is not particularly obvious from this definition, the linking number is symmetric and
depends only on the homology class of one curve in the complement of the other.

There is a natural correspondence between patterns in the solid torus and certain ordered
2-component links in S3. Given a pattern P in S1 × D2, we let η = {pt} × ∂D2. By consider-
ing the trivial embedding of S1 × D2 in S3, we obtain an ordered 2-component link P(U) ∪ η

in S3, such that the second component η is unknotted in S3. In the other direction, given
an ordered 2-component link L1 ∪ L2 ⊆ S3 with L2 unknotted, we obtain a pattern by con-
sidering L1 ⊆ (S3 � ν(L2)◦) ∼= S1 × D2. We will frequently move between P and P(U) ∪ η

without much discussion.

Example 2·2. The left-hand side of Figure 2 illustrates the 2 component link P(U) ∪ η

describing the (6, 1) cable pattern, C6,1. On the right we have performed an isotopy so that
P(U) is the standard unknot. Now, observe that �2(P(U)) = �2(U) = S3, and the pre-image
of η in �2(P(U)) is the (6, 2) torus link, whose components have linking number 3.
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Fig. 2. The link P(U) ∪ η defining the C6,1 cable pattern is symmetric.

Fig. 3. The preimage of η in �4(C8,1(U)) = S3, once the left and right-hand sides of the diagram
are identified without twisting.

Fig. 4. A winding number 8 pattern that Theorem 1·3 does not obstruct from inducing a
homomorphism.

This example generalises to give the following.

LEMMA 2·3. Let Cn,1(U) ∪ η denote the 2-component link describing the (n, 1)-cable
pattern. Then lk�m(Cn,1(U))(ηm, tjηm) = n/m for all m dividing n and 1 ≤ j ≤ m − 1.

Proof. Suppose that m divides n, and so n = mk for some k ∈N. The link Cn,1(U) ∪ η

is symmetric and the preimage of η in �m(Cn,1(U)) = S3 is the torus link T(mk, m), as
illustrated in Figure 3 for n = 8 and m = 4. Since T(mk, m) is isotopic to T(m, mk), the m-
component link obtained from the m-component unlink by inserting k full twists between all
components, we see that the linking number between any two distinct lifts of η is equal to
k = n/m.

Example 2·4 (A winding number 8 pattern that Theorem 1·3 does not obstruct from
inducing a homomorphism.) Consider the pattern depicted in Figure 4. The link P(U) ∪ η is
symmetric, and since P(U) = U and so �m(P(U)) = S3 for all m, we can use a diagrammatic
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approach akin to that of Example 2·2 and Lemma 2·3 to compute the linking numbers corre-
sponding to the m-fold cyclic branched covers for all prime powers m dividing the winding
number:

(1) m = 2: lkS3(η2, tη2) = 0.

(2) m = 4: lkS3(η4, tη4) = lkS3(η4, t2η4) = 0,

(3) m = 8: lkS3(η8, tη8) = 1, lkS3(η8, t2η8) = 0, and lkS3(η8, t3η8) = lkS3(η8, t4η8) = −1.

Since in each case the linking numbers are either identically zero or of mixed sign,
Theorem 1·3 does not provide an obstruction.

Finally, we record the following for later use.

PROPOSITION 2·5. Let P be a pattern with winding number n > 1. Then there exists a
sequence of crossing changes which transforms P into the cable pattern Cn,1.

Proof. Note that a pattern with winding number n represents the same homotopy class as
Cn,1 in the solid torus. As observed for example in [15, section 4], a homotopy of curves can
be realized by a composition of isotopies and crossing changes, thereby giving the desired
result.

In fact, an identical argument establishes Proposition 2·5 for any n ∈Z, so long as we
interpret Cn,1 as a positively oriented core when n = 1, an unknot in the solid torus when
n = 0, a negatively oriented core when n = −1, and as the reverse of C|n|,1 when n < −1.

3. Proof of main theorem

The strategy for the proof of Theorem 1·1 is as follows. We will lift the curves realis-
ing the crossing changes converting the winding number n pattern P to the (n, 1) cable to
the m-fold cyclic branched cover �m(Cn,1(U)) = S3. This will give us a surgery descrip-
tion for (�m(P(U)), ∪m−1

i=0 tiηP
m) in terms of (�m(Cn,1(U)), ∪m−1

i=0 tiηC
m), where by a mild abuse

of notation we use t to refer to either of the covering transformation maps on �m(P(U))
or on �m(Cn,1(U)). The following theorem of Cha and Ko then allows us to relate the
linking numbers of the components of

⋃m−1
i=0 tiηP

m in �m(P(U)) to the linking numbers of
the corresponding components of

⋃m−1
i=0 tiηC

m in �m(Cn,1(U)) = S3, which we computed in
Lemma 2·3.

THEOREM 3·1 ([3, theorem 3·1]). Let L = K1 ∪ . . . ∪ K� be an integrally framed link in S3

such that the result of surgery on S3 along L is a rational homology 3-sphere Y. Let A = (Ai,j)
be the linking-framing matrix of L. Then for any two disjoint 1-cycles a and b in S3 � L, we
have that

lkY (a, b) = lkS3 (a, b) − xTA−1y,

where x = (xi) and y = (yi) are column vectors with xi = lkS3(a, Ki) and yi = lkS3(b, Ki) for
all i = 1, . . . , �.

We will also need the notion of a block circulant matrix, see for example [1].
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Definition 3·2. An nm × nm matrix A is called n × n block circulant with m × m blocks if
there exist m × m matrices B1, . . . , Bn such that

A =

⎡
⎢⎢⎢⎢⎢⎣

B1 B2 . . . Bn−1 Bn

Bn B1 . . . Bn−2 Bn−1
...

. . .
. . .

. . .
...

B3 . . . Bn B1 B2

B2 . . . Bn−1 Bn B1

⎤
⎥⎥⎥⎥⎥⎦ .

We record the following elementary proposition for future reference.

PROPOSITION 3·3. Let A be an invertible n × n block circulant matrix with m × m blocks.
Then A−1 is also an n × n block circulant matrix with m × m blocks.

Proof. One can directly verify that a matrix C is n × n block circulant with m × m blocks
if and only if C = Pn,mCP−1

n,m, where Pn,m is the n × n block circulant matrix with m × m
blocks B2 = Im and B1 = B3 = · · · = Bn = 0m, i.e.:

Pn,m: =

⎡
⎢⎢⎢⎢⎢⎣

0m Im 0m . . . 0m

0m 0m Im . . . 0m
...

. . .
. . .

. . .
...

0m . . . . . . 0m Im

Im 0m . . . 0m 0m

⎤
⎥⎥⎥⎥⎥⎦ .

Now observe that since A is invertible and A = Pn,mAP−1
n,m, we have A−1 = Pn,mA−1P−1

n,m, i.e.
A−1 is also n × n block circulant with m × m blocks.

3·1. The case of n ≡ 2 mod 4

The following result relates the 2-fold cover linking numbers of a winding number 2k
pattern to those of C2k,1.

LEMMA 3·4. Let P = P(U) ∪ η be a pattern with even winding number n = 2k. Let η1

and η2 denote the lifts of η to �2(P(U)). There exists a ∈Z such that

lk�2(P(U)) (η1, η2) = k + 2a

|H1(�2(P(U)))| .

Proof. By Proposition 2·5, P can be transformed into the (n, 1) cable Cn,1 by a sequence
of m crossing changes for some m ∈N. We can realize the ith crossing change by doing
εi-framed surgery (for εi = ±1) along a small curve Li linking P(U) geometrically twice
and algebraically zero times, while linking η zero times. We refer to the resulting link as
PC ∪ ηC ∪ ⋃m

i=1 Li. Note that blowing down the Li curves transforms PC ∪ ηC to P ∪ η,
while ignoring the Li curves we see PC ∪ ηC = Cn,1.

Each framed curve Li lifts to a 2-component framed link L1
i ∪ L2

i in �2(Cn,1(U)) = S3, and
the curve ηC lifts to the 2-component link η1

C ∪ η2
C. Doing surgery along L = ⋃m

i=1 (L1
i ∪ L2

i )
according to the induced framing converts (�2(Cn,1(U)), η1

C ∪ η2
C) to (�2(P(U)), η1 ∪ η2).

Let A be the linking-framing matrix for L with respect to the ordering
L1

1, . . . , L1
m, L2

1, . . . L2
m. Observe that since lk(tγ1, tγ2) = lk(γ1, γ2) for any two curves γ1, γ2,
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for any 1 ≤ i, j ≤ m we have

Ai,j+m = lk(L1
i , L2

j ) = lk(L2
i , L1

j ) = Ai+m,j

Ai+m,j+m = lk(L2
i , L2

j ) = lk(L1
i , L1

j ) = Ai,j.

That is, A is a 2 × 2 block circulant matrix with size m × m blocks.
Now define

x = (lk(η1
C, L1

1), . . . , lk(η1
C, L1

m), lk(η1
C, L2

1), . . . , lk(η1
C, L2

m))

y = (lk(η2
C, L1

1), . . . , lk(η2
C, L1

m), lk(η2
C, L2

1), . . . , lk(η2
C, L2

m)).

We have that

lk(η2
C, L2

i ) = lk(tη1
C, tL1

i ) = lk(η1
C, L1

i )

and

lk(η1
C, L2

i ) = lk(tη2
C, tL1

i ) = lk(η2
C, L1

i )

for all i = 1, . . . , m.

Claim. lk(η1
C, L2

i ) = −lk(η1
C, L1

i ).
Proof of claim. Let Fi be a surface in S3 with boundary ∂Fi = Li. Observe that 0 =

lk(ηC, Li) = Fi · ηC. Let F̃i denote the pre-image of Fi in �2(Cn,1(U)) = S3. Then F̃i is a
surface with boundary ∂F̃i = L1

i ∪ L2
i . Moreover,

F̃i · (η1
C ∪ η2

C) = 2(Fi · ηC) = 0.

Let Gi be a surface in �2(Cn,1(U)) = S3 with ∂Gi = −L1
i . Then we can compute

lk(η1
C, L2

i ) + lk(η2
C, L2

i ) = (F̃i ∪ Gi) · (η1
C ∪ η2

C)

= Gi · (η1
C ∪ η2

C)

= (Gi · η1
C) + (Gi · η2

C) = −lk(η1
C, L1

i ) − lk(η2
C, L1

i ).

We can now apply the previous observations that lk(η2
C, L1

i ) = lk(η1
C, L2

i ) and lk(η2
C, L2

i ) =
lk(η1

C, L1
i ) to finish the proof of our claim.

We therefore have that x = (v, −v) and y = (−v, v) for some v ∈Zm. By Theorem 3·1, we
know that

lk�2(P(U))(η1, η2) = lkS3(η1
C, η2

C) − xTA−1y = k − xTA−1y,

where we use Lemma 2·3 to compute lk(η1
C, η2

C) = k.
It now only remains to show that xTA−1y = 2a/|H1(�2(P(U)))| for some a ∈Z. Since A is

a block circulant matrix, Proposition 3·3 implies that A−1 is also block circulant, and hence

can be written A−1 =
[

F G
G F

]
for some F, G ∈ Mm×m(Q). We obtain

xTA−1y = [
vT −vT

] [
F G
G F

] [−v
v

]
= 2vT (G − F)v.
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The adjoint formula for a matrix inverse, applied to A, implies that the entries of F and
G are all of the form a/det (A) for some a ∈Z, and so we obtain our desired result, since
| det (A)| = |H1(�2(P(U)))|.

The following proof now follows quickly.

Proof of Theorem 1·1. for n ≡ 2 mod 4. Let P = P(U) ∪ η be a pattern whose winding
number is even but not divisible by 4. Then P does not induce a homomorphism of the
concordance group.

Proof. Write n = 2k for an odd integer k. By Lemma 3·4, we know that there is a ∈Z

such that

lk�2(P(U))(η1, η2) = k + 2a

|H1(�2(P(U)))| = k|H1(�2(P(U)))| + 2a

|H1(�2(P(U)))| �= 0,

since k and |H1(�2(P(U)))| are both odd. Theorem 1·3 with m = 2 then gives the desired
result.

3·2. The case of n ≡ 4 mod 8

Our proof strategy for n ≡ 4 mod 8 will involve both the 2-fold and 4-fold branched cover
linking numbers. The following result relates the two.

PROPOSITION 3·5. Let P = P(U) ∪ η be a pattern with winding number that is divisible
by 4. Let η1

4 denote a preferred lift of η to �4(P(U)), and let η
j+1
4 = tjη1

4 for j = 1, 2, 3. Define
η1

2 = π(η1
4) and η2

2 = π(η2
4), where π : �4(P(U)) → �2(P(U)) is the branched covering

projection map. Then

lk�2(P(U)) (η1
2, η2

2) = 2 lk�4(P(U)) (η1
4, η2

4).

For convenience, in this proof we will abbreviate lk�2(P(U)) to lk2 and lk�4(P(U)) to lk4.

Proof. Let � = |H1(�4(P(U)))|. Note that as observed by Fox [8] we have that

|H1(�4(P(U)))| = |
P(U)(−1)
P(U)(i)
P(U)(−i)|
= |H1(�2(P(U)))| · |
P(U)(i)
P(U)(−i)|,

where as usual 
P(U)(t) denotes the Alexander polynomial of P(U). Therefore, every 1-cycle
a in �2(P(U)) has the property that �a bounds a 2-cycle.

Let F be a 2-cycle in �2(P(U)) such that ∂F = �η2
2, so lk2(η1

2, η2
2) = (1/�)(η1

2 · F). Define
F̃ = π−1(F) ⊂ �4(P(U)), and observe that ∂F̃ = �(η2

4 ∪ η4
4). Let G be a 2-cycle in �4(P(U))

such that ∂G = −�η4
4. Observe that for j ∈ {1, 3} we have that

lk4(ηj
4, η2

4) = 1

�
(ηj

4 · (F̃ ∪ G)) = 1

�
(ηj

4 · F̃) + 1

�
(ηj

4 · G) = 1

�
(ηj

4 · F̃) − lk4(ηj
4, η4

4).
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It follows that

4 lk4(η1
4, η2

4) = lk4(η1
4, η2

4) + lk4(η1
4, η4

4) + lk4(η3
4, η2

4) + lk4(η3
4, η4

4)

= 1

�
((η1

4 ∪ η3
4) · F̃)

= 1

�
(π−1(η1

2) · π−1(F))

= 2

�
(η1

2 · F)

= 2 lk2(η1
2, η2

2),

where the second-to-last equality follows from the fact that π : �4(P(U)) → �2(P(U)) is
2-to-1 everywhere besides the branch set P(U).

We also need the analogue of Lemma 3·4 for patterns with winding number divisible
by 4.

LEMMA 3·6. Let P = P(U) ∪ η be a pattern of winding number n = 4k. Let η1, η2, η3, η4

denote the lifts of η to �4(P(U)), where for i = 1, 2, 3, we obtain ηi+1 from ηi by the action
of the covering transformation. Then there exists a ∈Z such that

lk�4(P(U))(η
1, η3) = k + 2a

|H1(�4(P(U)))| .

Proof of Lemma 3·6. Our strategy imitates that of the proof of Lemma 3·4. Let L1 ∪ . . . ∪
Lm be a framed link of unknots, surgery along which realises the crossing changes of P(U)
that transform P = P(U) ∪ η to the (n, 1)-cable pattern Cn,1 = PC ∪ ηC. Note that

lk(Li, P(U)) = lk(Li, η) = lk(Li, Lj) = 0

for all 1 ≤ i �= j ≤ m.
For each i = 1, . . . , m, pick a preferred lift L1

i of Li to �4(Cn,1(U)) = S3, and let L2
i = tL1

i ,
L3

i = t2L1
i , and L4

i = t3L1
i . Similarly, let η1

C be a preferred lift of ηC to �4(Cn,1(U)) = S3, and

let η2
C = tη1

C, η3
C = t2η1

C, and η4
C = t3η1

C. We have that (�4(P(U)),
⋃4

i=1 ηi) is obtained from

(�4(Cn,1(U)),
⋃4

i=1 ηi
C) by performing appropriately framed surgery along

L = L1
1 ∪ · · · L1

m ∪ L2
1 ∪ · · · L2

m ∪ L3
1 ∪ . . . ∪ L3

m ∪ L4
1 ∪ . . . ∪ L4

m.

Now let A be the linking-framing matrix of L and let x (respectively y) be the 4m-
component vector whose ith entry is the linking of η1

C (respectively η3
C) with the ith

component of L. Theorem 3·1 tells us that

lk�4(P(U))(η
1, η3) = lk(η1

C, η3
C) − xTA−1y = k − xTA−1y,

where for the last equality we use Lemma 2·3.

Observe that for any 1 ≤ i, j ≤ m and 1 ≤ a, b ≤ 4 we have

lk(La
i , Lb

j ) = lk(ta−1L1
i , tb−1L1

j ) = lk(L1
i , tb−aL1

j ) = lk(L1
i , Lb−a+1

j ),
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where all exponents are taken modulo 4. It follows that A is a 4 × 4 block circulant matrix
with blocks of size m × m, and hence by Proposition 3·3 has a block circulant inverse

A−1 =

⎡
⎢⎢⎣

Q R S RT

RT Q R S
S RT Q R
R S RT Q

⎤
⎥⎥⎦ ,

for some Q, R, S ∈ Mm×m(Q) with QT = Q and ST = S. (We use here that A is a linking-
framing matrix, hence symmetric, so A−1 is also symmetric.)

Claim. lk(η1
C, L4

i ) = −lk(η1
C, L1

i ) − lk(η1
C, L2

i ) − lk(η1
C, L3

i ).
Proof of claim. Let Fi be a surface in S3 with boundary ∂F = Li, and observe that

0 = lk(η, Li) = F · ηC. Taking the pre-image of F in �4(Cn,1(U)) = S3, we obtain F̃, a surface
with boundary L1

i ∪ L2
i ∪ L3

i ∪ L4
i and with the property that

F̃ · (η1
C ∪ η2

C ∪ η3
C ∪ η4

C) = 4(F · ηC) = 0.

Let G1, G2, and G3 be surfaces in �4(Cn,1(U)) = S3 with ∂Gj = −Lj
i, and observe that

4∑
k=1

lk(ηk
C, L4

i ) = (F̃ ∪ G1 ∪ G2 ∪ G3) · (η1
C ∪ η2

C ∪ η3
C ∪ η4

C)

= (G1 ∪ G2 ∪ G3) · (η1
C ∪ η2

C ∪ η3
C ∪ η4

C) =
3∑

j=1

4∑
k=1

−lk(ηk
C, Lj

i).

Rewriting, we obtain that

0 = (lk(η1
C, L1

i ) + lk(η1
C, L2

i ) + lk(η1
C, L3

i ) + lk(η1
C, L4

i ))

+ (lk(η2
C, L2

i ) + lk(η2
C, L3

i ) + lk(η2
C, L4

i ) + lk(η2
C, L1

i ))

+ (lk(η3
C, L3

i ) + lk(η3
C, L4

i ) + lk(η3
C, L1

i ) + lk(η3
C, L2

i ))

+ (lk(η4
C, L4

i ) + lk(η4
C, L1

i ) + lk(η4
C, L2

i ) + lk(η4
C, L3

i )).

Now observe that each 4-term parenthetical sum is equal, since lk(ηj
C, Lk

i ) depends only on
1 ≤ i ≤ m and the value of k − j mod 4. So we obtain our desired claim.

We therefore have that x = (u, v, w, −u − v − w), where ui = lk(η1
C, L1

i ), vi = lk(η1
C, L2

i ),
and wi = lk(η1

C, L3
i ) for i = 1, . . . , m. Furthermore, since x records the linking of η1

C with the
components of L and y records the linking of η3

C = t2η1
C with the components of L, we have

that y = (w, −u − v − w, u, v).
We can now compute

( ∗ ) = xTA−1y

= [
uT vT wT −uT − vT − wT

]
⎡
⎢⎢⎣

Q R S RT

RT Q R S
S RT Q R
R S RT Q

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w
−u − v − w

u
v

⎤
⎥⎥⎦

= uTQw + vTQ(−u − v − w) + wTQu + (−uT − vT − wT )Qv

+ uTR(−u − v − w) + vTRu + wTRv + (−uT − vT − wT )Rw
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+ uTSu + vTSv + wTSw + (−uT − vT − wT )S(−u − v − w)

+ uTRTv + vTRTw + wTRT (−u − v − w) + (−uT − vT − wT )RTu

= 2(uTQw − uTQv − vTQv − vTQw)

+ 2(−uTRu − uTRv − 2uTRw − vTRw − wTRw + vTRu + wTRv)

+ 2(uTSu + uTSv + uTSw + vTSv + vTSw + wTSw),

where to obtain the final equality we repeatedly use that QT = Q and ST = S. The entries of
u, v, and w are integers and the entries of Q, R, and S are all of the form a/det (A) for a ∈Z,
by the adjoint formula for a matrix inverse. Therefore, since | det (A)| = |H1(�4(P(U)))|, we
have our desired result.

Theorem 1·1 for n ≡ 4 mod 8 follows quickly from this result together with
Proposition 3·5.

Proof of Theorem 1·1 for n ≡ 4 mod 8. Let P be a pattern with winding number n
equivalent to 4 mod 8. Then P does not induce a homomorphism of the concordance group.

Proof. Write n = 4k for some odd k. If lk�2(P(U))(η2, tη2) �= 0, then by applying Theorem
1·3 with m = 2 we are done. So assume that lk�2(P(U))(η2, tη2) = 0. By Proposition 3·5, this
implies that lk�4(P(U))(η4, tη4) = 0 as well. However, by Lemma 3·6, we know that there is
a ∈Z such that

lk�4(P(U))(η4, t2η4) = k + 2a

|H1(�4(P(U)))| �= 0,

since |H1(�4(P(U)))| is odd. Theorem 1·3 with m = 4 then gives the desired result.
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