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1. Introduction. In a recent paper! some general properties of
y-matrices were proved and Dienes’ theorem on regular y-matrices 2
extended to semiregular y-matrices and the binomial series.® In
section 2 of this paper the previous results will be extended to certain
classes of Taylor series. Section 3 gives some new results on Borel’s
exponential summation, and section 4 introduces matrices efficient
for Taylor series on the circle of convergence and others efficient for
Dirichlet series on the line of convergence. A knowledge of the
definitions and results of the paper mentioned above is assumed.

2. On the y-sum of the Taylor series.

[2.1] If the semiregular y-matriz G sums the Taylor series Za,z* of the
Sfunciion f(z) at z = 2, to the value S, then it also sums the Taylor series
of the function F(z) = 27f(z) (p =1, 2, ...) at z = 2, to the sum z,*S.

Proof: By hypothesis lim X g, kakz{%——_ S, and, G being semiregular,
n=—>w k=0

@
; k
lim X g, ;.a25 =5,
n—>wo k=0

which multiplied by 2§ can be rewritten

(21) lim z g”’ k Clk_p23 = ZgS,
n—>w k=7p
But the Taylor series of F(z)is T a2ft? = X a;_, 2,
k=20 k=p

and so (2.1) proves the theorem.

Corollary. Under the conditions of the theorem, if P(z) is a polynomial
and F(z) = P(2) f(z), then G sums the Tuylor series of F(z) at z,to P(z,)8S.

! P. Vermes, ‘“On y.matrices and their application tothe binomial series,” these
Proceedings 8 (1947), 1.13.  This paper will be referred to as .M.

2 P. Dienes, The Taylor Series (Oxford), 1931, 418. This hook will be referred to
as T.8S.

3 .M, section 5.
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[2.1I) If a semiregular y-matriz G sums the Taylor series of a mero-
morphic function f(z) at a regular point z = z,, then the sum is the “right”
value f(z).

Proof: Let f(z) =Za,z* for |z | < R. By hypothesis if p> [ 2, |,
the only singularities of f(z) in the circle | z | < p are poles o; of order
m;, so that if F(z) = P(2)f(z), where P(z)=Il(z — a;)™ (the product
being taken over all poles in the circle | z | = p), F(z) is apalytic in
and on this circle. Hence the Taylor series of F(z) is convergent at z,,
and its GQ-sum therefore exists and is P(z,)f(z,). Applying the-
Corollary of [2.1] we have P(z,)f(z)) = P(z,)S, whence S = f{(z,).
Corollary. The theorem readily extends to gemeral Taylor series for

values of z, in the circle of meromorphy.

[2.1II) If the semiregular y-malrix G sums the series Za 2t in the

domain D to s(2), then the y-matriz H = Z A; G(”/ s A; sums the series to the -
i= 0 =90

same walue, provided that condition (b) of theorem [1LIIT] of y-M s
satisfied by the A, and that

(i) | Gn, k| = | n, k11 | for every nand k,
(i) | o:‘,f(z) | = | S Gnrsi? | < N(2) for every i, n, and a fixed z in D..
k=0

Moreover H is semiregular with respect to this series.*

Note: It will be seen in [3.I] that (i) and under certain con-
ditions (ii) hold for the Borel-matrix.

Proof: Since g::)k= Jnk+: We see by [1I] of y-M that all con-
ditions of [1.III] of y- M are satisfied. Hence H exists and is a.

y-matrix.
Since by hypothesis, for a fixed =, the series o2(z) = Zg,, ; a;2* con-

verges for every z in D, it converges absolutely in D, i.e.
PIR I M =Sn(|z\)isﬁniteinD
Also E Z])\g(‘>az"t—2|)\|2lg(‘)az"[

k=01i{=0
= Z_:I)\ I Z Ig,.,,al.z léSn(|zl) §0|A11=Sn(,zl)L

Since the last member is independent of p, the double series
(2.2) pn(2) = _Z R Aign(,i;akzk

t Here (" denotes the i-th diminutive of G, e.g. (3.1) of y - M.
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-converges absolutely for every z in D, and thus we can reverse the
order of summadtion, i.e.
(2.3) p(@)= 3 A E ggzr= T Aoiz).

n i=0 ‘r=0 ™k i=0 i n
Comparing the series on the right-hand side of (2.3) with the series
2| A | N = NL, we see that it converges uniformly for every =, so that

(2.4) Hm py(z)= % A lim o) = I As(z) = 1s(2),
f=—>® 1=0 nN=—>m i=0
.and it follows by (2.2) and (2. 4 that
1

(2.5) lim Z. Ry 2 = lim 2 : Z Ag®
( et n=>w k=0 [=0 ’q""," ?)-

t.e. H sums the sertes io s (2).

Also HM = ZX,GE+V/E); satisfies the conditions of this theorem,
Hence (2.5) applies to HY), showing that H is semiregular with respect
1o Ba;z¥. This concludes the proof.

Corollary. If ZX;= 0, the matriz ZA\,GD (which is not a y-matriz) sums
the series to zero.

This follows from (2.4).

[20V] We suppose that f(z) = Za,z* in a circle T round the origin, that

the semiregular y-matrix G sums the series to s(z) in thc domain D, and

that conditions (i) and (ii) of [2.III) are satisfied. If the function F(z)

18 regular in a circle C with centre at the origin, then G swums the Taylor

-series of F(z)f(2) about the origin to the sum F(z)s(z) in the domain CD.
Proof: By hypothesis F(z) = Zbz' in C, whence

) &
F2)f(z)= X 2* £ a,_;b;in CT;

E=0 =0
-and if we write ¢; =0 for t= —1, —2, —3,...

(2.6) F(a)f(z)= Z 2* X a,_b; in CT.
By hypothesis

2.7) lim X g, a,2°=3(2) in D, and hence in CD.
n—>w k=0
Since the series 2b,zi converges absolutely in CD, we can apply [2.1II]
or its corollary with A;=b;z2' and l= F(z) to (2.7); and we have a8 in
(2.2) and (2.4)
lim pn(2) = lim 2 E bzgn k+|akz = F(z)s(z) in CD.
n=—>w

n=>x k=04{=0
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Writing k& — ¢ for k, we have

lim £ g,.2* X ba,_;= F(2)3(2) in CD,
n—>w ki i=0
and again putting a; =0 for t= —1, — 2, ..., we have
(2.8) lim ¥ g, ;2 § ay_bi = F(2)s(z) in CD.
> k=0 =

The left-hand side is the G-sum of the series (2 6). Thus (2.8)
proves the theorem.

3. Borel’s exponential summation.
This is a summation method by the y-matrix

(3.1) g,,,,,_k'J. “t’"dt—-l—e—"<1+n+ —+. )kn =0,1,2,.

The following well-known properties® will be used in this section:

Gn & = Gn, x+1= 0 for every n and £k,
Gn, >0 a8 k—> « for every fixed n.

When G sums the series Zc,, the order of summation and integration
can be interchanged,? <.e.

(3.2) (B)sumof T c,— lim 3 fi,j ettt
k=0 > k=0 K

) n ® cptk °° ¢ t*
= ] J 2 ) dt —j ~t a
. n_l;nw <k 0k'> ¢ k—O kt at.
G is semiregular, and Hardy gave an example of a series summable

by this method but with respect to which the summation is not
regular.?

R 13
Using the notation 4 w,(f) = T ol
k=0 k!’
we see from (3.2) that when G sums the series Zc;, uy(t) is an integral
function of ¢, and so uy(f) can be integrated repeatedly, giving

© th+i .
3.3 w(ty= » S =0,1,2,.
( ) J() k=0(k+j)!, .7
where u;(t) is an integral function of {&. We also see that
1
(3.4) . uj+ l(t) = j u;,(t)dt, j Ed O, 1, 2, Y
0
1 T.8. 401. 2 T.8. 401.
3 T.8. 419-420. 4 T.8. 403-404.
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Since @ is semiregular, if n—>w

o« @®
(3.8) o= Z g, 6—>s implies ol = In. &4 jC—>S.
k=0 k=0

Finally, we know that Za;2" is summable by @, if z is an inner point
of the ‘ polygon of summability,”! to the ‘“right” sum. @ is in-
efficient outside the polygon.

[3.I] If Z¢, is summatle (B), then | of | is bounded for every n and j
whenever | u,(t) | is bounded for 0 <t < .
Proof: By (3.1), (3.2), (3.3), (3.4) and (3.5)

ol = re-tu,-(t)dt = j" e=tu;_y(t)dt + [e -tuj(t)]O,
Y 0 n

(3.6) From (3.4) u;(0)=0 forj=1, 2, 3,..., and so by repeated
integration by parts

(3.7) ol =02 —e " "[u;(n) + u; _1(n) + ... + u(n)].

By (3.5) | 62 | <K, for every n. Also applying Taylor’s theorem to
u;(n) and considering (3.4) and (3.6), we have u;(n) = u,(Q;)n/j! where
0= Q;=n. Hence

g
o

SKy+e " [n 'uo(Q1) i +Z—? !uo(Qz) ! + ... +JZL‘,-" ’ uo(Qj) I ],

and, since by hypothesis | uy(t) | < K for 0 < ¢ < o,
2
‘ai’ §K0+e-"[n —}—%-}-...—}-%’]Kgl{o_}-]{,

which proves the theorem.

Examples. The divergent series X(— 2)* is summable (B), and
uy(t) =e~%is bounded in (0, ). The convergent series X(4)* is
summable (B), and wu,(t) =e! is not bounded. But u;n) and o}
are positive; hence by (3.7) o/ is bounded, so that the condition of this
theorem is not necessary.

[3.IX] Borel’s y-matrizx is regular with respect to all Taylor series in the
polygon of summability.

Proof: When z, = 0 the proof is trivial. If z,==0 is in the
polygon of summability, then

1.1.8. 305.
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(3.8) lim I g,.a:2) =ay+ T g, 2,25 exists and is equal to f(z,).
n=>pn k=0 k=1

The function F(z) = {f(z) — a,}/z has singularities at the same finite

points as f(z) and at no other points. Hence it has the same polygon

of summability. Thus G sums theseries for F(z), a;+a.,2 + az2? + ...,

at z,, t.e.
. hd 1
m 2 g, 102" =1 = F(z)) = — {f(zo) - ao] ’
n—>w k=1 % j
whence
(3.9) Hm T g, ;-1a8:2; = f(ze) —a
n—>gp k=1

‘Comparing (3.8) and (3.9) we have for z, in the polygon of summability
(3.10) lim 2 g,0:8 3 lim T g, 5042k,

n=—->w k=1 D k=1
which proves the theorem, since the semiregularity of G would be
represented by (3.10) with the arrows reversed.

4. y-matrices efficient on the boundaries of convergence-domains.
Given a sequence.py, p;, ps, - .. Satisfying the conditions

0 < p, <1 for every n, pn—>lasn—> o,
we construct the matrix R: Tar=ptl (k,mn=0,1,2,...).

Then we have:

[4.I] R is a regular y-matriz, which sums every Taylor series at those
points zy of its circle of convergence for which the function represented by
the series tends to a limiting value when z2—>z, along the radius.

Proof: By definition

@ <]
| Tar—Tar+1] = 2 (Pne—Tnr+1) =pa<1 for every =», and
=0 k=0

lim 7, ;, =1 for every fixed k. Thus R is a y-matriz.

n—>wm
o«

Also lim X r,;,,65 lim {p, E T 40} == lim E Tn, kChe
n=>wo k=0 n=>w k=0 n—>o k=0

Hence R ¢s regular. 1f z, is on the circle of convergence of Xa,:*,
tepresenting f(z),
On= I TpWi2f= pn L ilpnzo)* converges to Paf(pnZo)-
k=0 k=0
Hence lim o, = lim f(p,2,) whenever the limit on the right-hand side
n—>aw Pn—>1
exists. This proves the last statement.
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Ezxamples. (a) If p, = ¥»+1 0 <0< 1, then r, , = E+ i+ D

@) I py=(n+B)~Pr+D p>0,8>0,
then 7, , = (n -- p) —P& +DO+1),

The matrix B can be constructed independently of the series to which
it applies. A somewhat similar construction can be used for a par-
ticular class of Dirichlet series, given in the usual notation as

(4.1) Za;exp{— A(k)s}, representing the function f(s) where s=o+1¢,
where A(k)—> with £, 0<Ak) < Mk =+ 1).

Given the class of series characterized by {A(k)}, we construct the
matrix L as follows:

We define a sequence 0 < p(1) < u(2) < .. .. where u(n)—>w , and make

(4.2) L., = exp{ — pA(k)/u(n)}, p>0, nk=1,23,....

[4.1T] If the series (4.1) has a finite abscissa of convergence s,, then the
y-matriz L given by (4.2) sums the sertes at all points s, = o, + it of ils
line of convergence at which f(sy + 0) exists, and the sum s f(sy -+ 0).
Proof: By (4.2) I, +>1, x+1> 0 for every n, k= 1,
and la, >0 for a fixed n as bk—w
I,.»—>1 for a fixed k as n—>o .

o

Hence Zlhe—liisr1]l = Z ao—lnes) =l 1= 1.
k=1 k=1

Thus L is a y-matrix. Also for sy = oq + ¢

w

b0 eXP{—AK)so}= I a; exp [ — ME){so + p/u(n)}]

1 k=1
= f{so + p/nin) 1,
and therefore S,—>f(s, + 0) as n-> whenever the limit exists. This
concludes the proof.
EBxample. TFor the class of special Dirichlet series
Za;/k* = Za, exp (— s log k) the matrix L is given by

S, =

k

I tM48

Ly, = exp { — plog kfu(n)} = k —»km,

BirgBECK COLLEGE,
UNIVERSITY OF LONDON.
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