
JFP 27, e27, 47 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000193

1

An algebra for distributed Big Data analytics

LEONIDAS FEGARAS

Department of Computer Science and Engineering, University of Texas at Arlington,

Arlington TX 76019, USA

(e-mail: fegaras@cse.uta.edu)

Abstract

We present an algebra for data-intensive scalable computing based on monoid homomor-

phisms that consists of a small set of operations that capture most features supported by

current domain-specific languages for data-centric distributed computing. This algebra is

being used as the formal basis of MRQL, which is a query processing and optimization

system for large-scale distributed data analysis. The MRQL semantics is given in terms of

monoid comprehensions, which support group-by and order-by syntax and can work on

heterogeneous collections without requiring any extension to the monoid algebra. We present

the syntax and semantics of monoid comprehensions and provide rules to translate them to

the monoid algebra. We give evidence of the effectiveness of our algebra by presenting some

important optimization rules, such as converting nested queries to joins.

1 Introduction

New frameworks in distributed processing have become essential tools to large-

scale data analysis. Among these frameworks, the Map-Reduce programming model

(Dean & Ghemawat, 2004) was one of the first to emerge as a generic, scalable, and

cost effective solution for Big Data processing on clusters of commodity hardware.

The Map–Reduce framework was inspired by functional programming. For each

Map–Reduce job, one needs to provide two functions: a map and a reduce. The

map function specifies how to process a single key-value pair to generate a set of

intermediate key-value pairs, while the reduce function specifies how to combine all

intermediate values associated with the same intermediate key. The Map–Reduce

framework uses the map function to process the input key-value pairs in parallel

by partitioning the data across a number of compute nodes in a cluster (the map

workers), which execute the map task in parallel without communicating with each

other. Then, the map results are repartitioned (shuffled) across a number of compute

nodes (the reduce workers) so that values associated with the same key are grouped

and processed by the same reduce worker. Finally, each reduce worker applies the

reduce function to every group in its assigned partition and stores the job results

into the distributed file system.

But, very soon, it became apparent that, because of its simplicity, the Map–Reduce

model has many limitations. One of its major drawbacks is that, to simplify reliability

and fault tolerance, it stores the intermediate results between the Map and Reduce

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

2 L. Fegaras

stages and between consecutive Map-Reduce jobs on secondary storage, rather

than in memory, which imposes a high overhead to complex workflows and graph

algorithms. This drawback makes this framework ill-suited for certain Big Data

workloads, such as real-time analytics, continuous queries, and iterative algorithms.

To address the inherent limitations of the Map–Reduce model, new alternative

frameworks have been introduced recently that perform better for a wider spectrum

of workloads. Currently, among them, the most promising frameworks that seem to

be good alternatives to Map–Reduce while addressing its drawbacks are Google’s

Pregel (Malewicz et al., 2010), Apache Spark (2017), and Apache Flink (2017),

which are in-memory distributed computing systems. We collectively refer to all

these data-intensive distributed computing environments as DISC (Data-Intensive

Scalable Computing) programming environments (Bryant, 2011). Some of these

DISC programming environments, notably Spark and Flink, provide a functional-

style API that consists of higher order operations, similar to those found in functional

programming languages. By adopting a functional programming style, not only do

these frameworks prevent interference among parallel tasks, but they also facilitate

a functional style in composing complex data analysis computations using powerful

higher order operations as building blocks. These benefits have already been explored

and capitalized in earlier data parallel languages, such as NESL (Blelloch, 1993),

and in database languages, such as LINQ and XQuery.

Even though, in principle, these DISC frameworks provide APIs that are simple to

understand, it is hard to develop non-trivial applications coded in a general-purpose

programming language. In addition, there are many configuration parameters to

adjust for better performance that overwhelm non-expert users. Because of the

complexity involved in developing and fine-tuning data analysis applications using

the provided APIs, most programmers prefer to use declarative languages, such

as Apache Hive (2017) and Pig (Olston et al., 2008), to code their distributed

applications, instead of coding them directly in an algorithmic language. For instance,

based on data from few years back, Hive was used for over 90% of Facebook

Map–Reduce jobs and Pig Latin was used for roughly 1/3 of all Yahoo! Map–

Reduce jobs. There are many reasons why programmers prefer domain-specific

declarative languages. First, it is hard to develop, optimize, and maintain non-trivial

applications coded in a non-declarative language. Second, given the multitude of the

new emerging DISC frameworks, such as Spark and Flink, it is hard to tell which one

of them will prevail in the near future. Data intensive applications that have been

coded in one of these paradigms may have to be rewritten as technologies evolve.

Hence, it would be highly desirable to express these applications in a declarative

language that is independent of the underlying distributed platform. Furthermore,

the evaluation of such applications can benefit from cost-based optimizations

and automatic parallelism provided by the DSL-based systems, thus relieving the

application developers from the intricacies of Big Data analytics and distributed

computing.

But what will be a good data model, algebra, and domain-specific language for

DISC applications? Data parallelism is achieved when each processor performs the

same task on different pieces of distributed data. This means that the task results

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 3

should not depend on how we divide the data among processors. Hence, if we want

to allow processors to work on groups of data in parallel, we would need to use

associative operations. Therefore, associativity is essential for data parallelism. By

using associative operations, the intermediate values can be grouped arbitrarily or

even aggregated in stages. This was evident even in the early data parallel languages,

such as NESL (Blelloch & Sabot, 1990).

A second observation is that a data model for data-centric distributed processing

must support both lists and bags (multisets). It needs to support lists because order

of data is important to some applications, such as for scientific applications that

work on vectors and matrices. But it also needs to support bags to take advantage

of the multitude of high-performance algorithms that can only apply when the order

of the result is insignificant. Without bags, for example, nested loops on collections

cannot be evaluated using joins, since a join may return the results in a different

order than the nested loop. By excluding joins, we restrict ourselves to suboptimal

evaluations. This observation too is evident in practical relational query languages,

such as SQL, for which the main collection type is a bag, not a list.

We present an algebra for data-intensive distributed processing based on monoid

homomorphisms. Monoids and monoid homomorphisms directly capture the most

important property required for data parallelism, namely associativity. They fully

support the functionality provided by current domain-specific languages for data-

centric distributed processing by directly supporting operations, such as group-

by, order-by, aggregation, and joins between heterogeneous collections. Formal

frameworks based on collection monads, such as monad comprehensions (Wadler,

1990), on the other hand, require special extensions (such as group-by, order-by,

aggregation, and monad morphisms) to achieve the same expressiveness (Gibbons,

2016). We believe that extending collection monads with all these additional

operations as well as with the laws that these operations need to obey would

unnecessarily complicate optimization. Monads and monad comprehensions have

been shown to be very valuable tools for many programming languages, most notably

Haskell. Supporting a domain-specific syntax in the form of monad comprehensions

in an existing functional programming language makes easier to express data-centric

queries deeply embedded in the language. This is a great idea for languages that

already support monads and monad comprehensions, because computations on data

collections can be combined with other monads. In this paper, though, we claim

that collection monoids and monoid homomorphisms are actually a better formal

basis for DISC query languages since they do not need any extensions to effectively

support the functionality of these languages.

The focus of our work is on the design of an effective algebra that can express most

features found in many current domain-specific languages for data-centric distributed

computing and, at the same time, can be easily translated to a wide spectrum of

efficient distributed operations, taking full advantage of the functionality provided

by the underlying DISC platform. This algebra is the formal basis of Apache

MRQL (2017), which is a query processing and optimization system for large-scale,

distributed data analysis. It is currently an Apache incubating project with many

developers and users worldwide.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

4 L. Fegaras

The contributions of this paper can be summarized as follows:

• We provide a formal framework for the monoid algebra based on collection

monoids and collection homomorphisms (Section 3).

• We present a novel algebra for distributed computing based on collection

homomorphisms, called the monoid algebra, which consists of a small set of

operations that capture most features supported by current domain-specific

languages for data-intensive distributed computing (Section 4).

• We give evidence on the effectiveness of the monoid algebra for expressing

distributed computations by providing a program expressed in this algebra that

simulates general Bulk Synchronous Parallel (BSP) computations efficiently,

requiring the same amount of data shuffling as a typical BSP implementation

(Section 5).

• We compare the monoid algebra with algebras based on monads and we

show that the monoid algebra does not require any extension in the form

of added non-homo-morphic operations to capture the functionality required

by practical DISC query languages, while algebras based on monads require

various extensions that must obey additional laws (Section 6).

• We present the syntax and semantics of monoid comprehensions and provide

rules to translate them to the monoid algebra (Section 7).

• We describe the MRQL syntax and provide rules to translate it to monoid

comprehensions (Section 8).

• To support our claim that the monoid algebra facilitates query optimization,

we present transformations for converting nested queries to joins (Section 9)

and for translating self-joins to group-bys (Section 10).

• We show the effectiveness of our optimizations through experiments on three

data analysis queries: PageRank, a nested join query, and k-means clustering

(Section 11).

• Finally, we show how to use the monoid algebra to convert batch data-analysis

queries to incremental stream-processing programs (Section 12).

2 Related work

Database and data-intensive distributed processing share many common goals and

motivations as they both need to work on large collections of data. In the 90s, there

was a need for new algebras and query languages that go beyond the limitations

of the relational model to capture the emerging object-oriented databases. During

that time, there was a prolific collaboration between the programming language and

database communities to develop formal frameworks and database query languages

that can handle complex objects and nested collections. One of the first data

models considered was based on monoids and monoid homomorphisms (Tannen

et al., 1991). Later, based on this theory, a monoid comprehension calculus was

introduced and used as a formal basis for ODMG OQL (Fegaras & Maier, 1995;

Fegaras & Maier, 2000). In the meantime, there was a substantial body of work on

extending monads and monad comprehensions to be used as a formal basis for the

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 5

emerging database query languages. Monad comprehensions were first introduced by

Wadler (1990) as a generalization of list comprehensions. They were first proposed

as a convenient database language by Trinder and Wadler (1991) and Trinder (1991),

who also presented algebraic transformations over these forms as well as methods

for converting comprehensions into joins. These monad comprehensions, which are

over data collections, such as lists, bags, and sets, are based on collection monads

(also called ringads (Gibbons, 2016)), which are monads extended with an empty

collection and a merge function. The monad comprehension syntax was also adopted

by Buneman et al. (1994) as an alternative syntax to monoid homomorphisms.

The monad comprehension syntax was used for capturing operations that involve

collections of the same type, while structural recursion was used for expressing

the rest of the operations, such as converting one collection type to another and

aggregations. One important extension toward bringing comprehensions closer to a

practical query language was the work on list comprehensions with group-by and

order-by (Wadler & Peyton Jones, 2007).

Our monoid algebra described in Section 4 extends our earlier work (Fegaras &

Maier, 1995; Fegaras & Maier, 2000) on monoid homomorphisms by supporting

three new operations that are very important for DISC frameworks: groupBy,

orderBy, and coGroup, which are expressed as monoid homomorphisms. It also

extends our earlier work on monoid comprehensions by providing declarative syntax

for expressing group-by and order-by operations in a comprehension. All these

extensions are captured as monoid homomorphisms. Section 6 gives a detailed

comparison between monoid comprehensions and monad comprehensions.

Monad comprehensions were generalized in Grust and Scholl (1999) to work

on mixed collections and to capture aggregation. The core primitive for data

processing in Grust and Scholl (1999) is the foldr operation, which is structural

recursion over the insert representation of collections types. The generalized com-

prehensions in Grust and Scholl (1999) are equivalent to monoid comprehensions,

even though monoid comprehensions are based on structural recursion on the

union representation of collections. Furthermore, the well-definedness conditions

for the left-commutative and left-idempotent properties of foldr are equivalent to

the commutativity and idempotence conditions for “well-formed” homomorphisms

in Fegaras and Maier (1995). Unlike monoid homomorphisms, foldr, and foldl

computations are hard to parallelize (Steele, 2009), although there are methods for

deriving cost-optimal list homomorphisms from a pair of foldr and foldl based on

the third homomorphism theorem (Gibbons, 1996).

DISC systems are data-parallel systems on clusters of shared-nothing computers

connected through a high-speed network. One of the earliest DISC frameworks

was the Map–Reduce model, which was introduced by Google in 2004 (Dean

& Ghemawat, 2004). The most popular Map–Reduce implementation is Apache

Hadoop (2017), an open-source project developed by Apache, which is used today

by many companies to perform data analysis. There are also a number of higher level

languages that make Map–Reduce programming easier, such as HiveQL (Thusoo

et al., 2009), PigLatin (Olston et al., 2008), SCOPE (Chaiken et al., 2008), and

Dryad/Linq (Isard & Yu, 2007). Apache Hive (Thusoo et al., 2009; Thusoo et al.,

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

6 L. Fegaras

2010) provides a logical RDBMS environment on top of the Map–Reduce engine,

well suited for data warehousing. Using its high-level query language, HiveQL,

users can write declarative queries, which are optimized and translated into Map–

Reduce jobs that are executed using Hadoop. HiveQL does not handle nested

collections uniformly: it uses SQL-like syntax for querying data sets but uses vector

indexing for nested collections. Unlike MRQL, HiveQL has many limitations. It

does not allow query nesting in predicates and select expressions, but allows a table

reference in the from-part of a query to be the result of a select query. Because of

these limitations, HiveQL enables users to plug-in custom Map–Reduce scripts into

queries. Although Hive uses simple rule-based optimizations to translate queries,

it has yet to provide a comprehensive framework for cost-based optimizations.

Apache Pig (Gates et al., 2009) resembles Hive as it provides a user-friendly scripting

language, called PigLatin (Olston et al., 2008), on top of Map–Reduce, which allows

explicit filtering, map, join, and group-by operations. Like Hive, PigLatin performs

very few optimizations based on simple rule transformations. PACT/Nephele (Battre

et al., 2010) is a Map-Reduce programming framework based on workflows, which

consist of high-order operators, such as map and reduce. These workflows are

converted to logical execution plans for Nephele, a general distributed program

execution engine. Even though PACT/Nephele workflow programs are very flexible

and are not limited to rigid Map–Reduce pairs, they are hard to program, since

programmers have to construct low-level workflows. SCOPE (Chaiken et al., 2008),

an SQL-like scripting language for large-scale analysis, does not support sub-queries

but provides syntax to simulate sub-queries using outer joins. Like Hive, because

of its limitations, SCOPE provides syntax for user-defined process/reduce/combine

operations to capture explicit Map–Reduce computations.

Recent DISC systems go beyond Map–Reduce by maintaining dataset partitions

in the memory of the compute nodes. These systems include the main memory Map–

Reduce M3R (Shinnar et al., 2012), Apache Spark (2017), Apache Flink (2017),

Piccolo (Power & Li, 2010), and distributed GraphLab (Low et al., 2012). An-

other alternative framework to the Map–Reduce model is the BSP programming

model (Valiant, 1990). The best-known implementations of the BSP model for Big

Data analysis are Google’s Pregel (Malewicz et al., 2010), Apache Giraph (2017),

and Apache Hama (2017).

One of the advantages of using DSL-based systems, such as Pig, Hive, and MRQL,

to develop DISC applications is that these systems support automatic program

optimization. Such program optimization is harder to do in an API-based system.

Some API-based systems though have found ways to circumvent this shortcoming.

The evaluation of RDD (Resilient Distributed Dataset) transformations in Spark,

for example, is deferred until an action is encountered that brings data to the master

node or stores the data into a file (Zaharia et al., 2012). Spark collects the deferred

transformations into a DAG and divides them into subsequences, called stages,

which are similar to Pig’s Map–Reduce barriers. Data shuffling occurs between

stages, while transformations within a stage are combined into a single RDD

transformation. Unlike Pig though, Spark cannot perform non-trivial optimizations,

such as moving a filter operation before a join, because the functional arguments

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 7

used in RDD operations are written in the host language and cannot be analyzed

for code patterns at run-time. Spark has addressed this shortcoming by providing

two additional APIs, called DataFrames and datasets (Armbrust et al., 2015). A

dataset combines the benefits of RDD (strong typing and powerful higher order

operations) with Spark SQL’s optimized execution engine. A DataFrame is a dataset

organized into named columns as in a relational table. SQL queries in datasets and

DataFrames are translated and optimized into RDD workflows at run time.

The closest work to ours is Emma (Alexandrov et al., 2016), which is a language for

parallel data analysis that is deeply embedded in Scala. Unlike our work, Emma does

not provide an SQL-like query syntax; instead, it uses Scala’s for-comprehensions

as the core language abstraction to query datasets. These for-comprehensions are

optimized and translated to abstract dataflows at compile time, and these dataflows

are evaluated at run time using just-in-time code generation. Using the host language

syntax for querying allows a deeper embedding of DSL code into the host language

but it requires that the host language supports meta-programming and provides a

declarative syntax for querying collections, such as for-comprehensions. Furthermore,

Scala’s for-comprehensions do not provide a declarative syntax for group-by. Emma’s

core primitive for data processing is the fold operation over the union representation

of bags, which is equivalent to a bag homomorphism. The fold well-definedness

conditions are similar to the preconditions for bag homomorphisms, as described

in Fegaras and Maier (1995). Scala’s for-comprehensions are translated to monad

comprehensions, which are desugared to monad operations, which, in turn, are

expressed in terms of fold. Non-monadic operations, such as aggregations, are

expressed as folds. Emma also provides additional operations, such as groupBy and

join, but does not provide algebraic operations for sorting, outer join (needed for

non-trivial query unnesting), and repetition (needed for iterative workflows). Unlike

MRQL, Emma does not provide general methods to convert nested correlated

queries to joins, except for simple nested queries in which the domain of a generator

qualifier is another comprehension. Another API-based distributed system that

supports run-time optimization is Summingbird (Boykin et al., 2014), which can

run on both Map–Reduce and Storm. Compared to Spark and Flink APIs, the

Summingbird API is intentionally restrictive to facilitate optimizations at run time.

It supports map, flatMap, filter, sumByKey, and join. The sumByKey operation,

which is similar to Spark’s reduceByKey, is a group-by followed by a reduction that

aggregates the grouped values using a semigroup (an associative binary operation).

Although the semigroup restriction excludes incorrect programs, Summingbird does

not address the main shortcoming of the API-based approaches, which is their

inability to analyze the functional arguments of the map-like computations at run

time to do complex optimizations.

3 Collection monoids and collection homomorphisms

The monoid algebra consists of a small number of higher order operators that can

be expressed as monoid homomorphisms defined using structural recursion based on

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

8 L. Fegaras

the union representation of bags and on the append representation of lists (Fegaras

& Maier, 1995; Fegaras & Maier, 2000).

In abstract algebra, a monoid is an algebraic structure equipped with a single

associative binary operation and a single identity element. More formally, given a

set S , a binary operator ⊗ from S × S to S , and an element e ∈ S , the structure

(S,⊗, e) is called a monoid if ⊗ is associative and has an identity e:

x⊗ (y ⊗ z) = (x⊗ y)⊗ z for all x, y, z ∈ S

x⊗ e = x = e⊗ x for all x ∈ S

Monoids may obey additional algebraic laws. The monoid (S,⊗, e) is commutative

if x ⊗ y = y ⊗ x, for all x, y ∈ S . It is idempotent if x ⊗ x = x, for all x ∈ S .

For example, (�,+, 0) is a commutative monoid on natural numbers. Given that a

monoid (S,⊗, e) can be identified by its operation ⊗, it is simply referred to as ⊗,

with 1⊗ to denote its identity e and the type �⊗ to denote the type of its carrier

set S . Given two monoids ⊗ and ⊕, a monoid homomorphism H from ⊗ to ⊕ is a

function from �⊗ to �⊕ that respects the monoid structure:

H(X ⊗ Y) = H(X) ⊕ H(Y) for all X and Y of type �⊗
H(1⊗) = 1⊕

Collection monoids. We are interested in specifying monoid homomorphisms on

data collections, such as lists, sets, and bags. Our treatment of collection types is

based on the work of Äıt-Kaci on collection monoids (Äıt-Kaci, 2013, Appendix

C). Let � be a binary operation that constructs a syntactic term from two other

syntactic terms, starting from a base set S . A syntactic algebra is the set T ∗ of

�-terms on the set S , defined inductively as the limit of ∪n�0T
n, where

Tn =

{
S if n = 0

{ t1 � t2 | t1 ∈ T i, t2 ∈ Tj, i + j = n− 1 } if n > 0

In other words, a term in the set T ∗ is a binary tree with � nodes and leaves

from S . We now consider equivalence classes of terms in T ∗ under some laws, with

the goal of defining collection monoids purely syntactically. These algebraic laws

are the associativity, commutativity, and idempotence laws. The monoid identity

law is captured by starting with T 0 = S ∪ {1�}, for some unique element 1�, and

by using the law x � 1� = x = 1� � x, for all x ∈ T ∗. These algebraic laws on

the purely syntactic algebra define congruence classes, where each class contains

equivalent terms under these algebraic laws. In other words, a syntactic monoid

becomes a quotient monoid whose domain is a collection of equivalence classes

that contain congruent terms modulo the algebraic laws. For example, the terms

1 � (2 � 3) and (1 � 2) � 3 from the syntactic monoid � over the base set �
belong to the same congruence class. Although the T ∗ definition is a well-formed

mathematical structure, it is not type-correct because it mixes elements of S with

term constructions. To make it type-correct, we wrap the elements in S with a unit

injection function �� of type S → T ∗. In addition, if we restrict the elements of

the base set S to be of the same type t, we can represent a collection monoid as a

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 9

T (α) 1 U (x) additional laws
list ++ [α] [] [x]
bag {{α}} {{}} {{x}} commutativity
set ∪ {α} {} {x} commutativity & idempotence

Fig. 1. Some collection monoids.

parametric data type ��(t) that represents a collection of values of type t. We call

this syntactic monoid a collection monoid. Figure 1 shows some well-known collection

types captured as collection monoids. For example, {{1}}	 {{2}}	 {{1}} constructs the bag

{{1, 2, 1}}.

Collection homomorphisms. Let ⊗ be a collection monoid and ⊕ be a monoid that

obeys all the laws of ⊗. A monoid homomorphismH(⊕, f) from a collection monoid

⊗ to a monoid ⊕ is the homomorphic extension of f that satisfiesH(⊕, f)◦�⊗ = f.

That is, for H =H(⊕, f), we have the following definition:

H(X ⊗ Y) = H(X) ⊕ H(Y) (1a)

H(�⊗(x)) = f(x) (1b)

H(1⊗) = 1⊕ (1c)

For a function f of type α → �⊕, the monoid homomorphism H(⊕, f) maps a

collection of type �⊗(α) to a value of type �⊕. In other words, H(⊕, f) collects all

the f-images of the elements of a collection of type �⊗(α) using the ⊕ operation.

For example, H(+, λx. 1)X over the bag X returns the number of elements in X,

while H(+, λx. {{x}})L over the list L converts the list to a bag.

The requirement that ⊕ must obey all the laws of ⊗ excludes non-homomorphic

functions on collection monoids. For example, the function bag2list from bags to

lists is not a monoid homomorphism from the monoid 	 to the monoid ++, because

otherwise it would have led to the conclusion:

bag2list(X) ++ bag2list(Y) = bag2list(X 	 Y) = bag2list(Y 	X)

= bag2list(Y) ++ bag2list(X)

which is false for some X and Y . Similarly, the function card from sets to naturals

is not a monoid homomorphism from the monoid ∪ to the monoid +, because

otherwise it would have led to the false conclusion:

1 = card({x}) = card({x} ∪ {x}) = card({x}) + card({x}) = 1 + 1 = 2

We use the partial order ⊗ � ⊕ between the monoids ⊗ and ⊕ to indicate that

⊕ obeys all the laws of ⊗. For example, ++ ≺ 	 (i.e., ++ � 	 but 	 � ++),

since 	 is commutative while ++ is not. Based on this partial order, we can form

a lattice of monoids. For the collection monoids list, bag, and set, this hierarchy

is part of the Boom hierarchy of types (Backhouse & Hoogendijk, 1993), which

begins at the level of trees and specializes to lists, bags, and sets based on the

associativity, commutativity, and idempotence properties of the union operation.

The Boom hierarchy of types forms the basis for a calculus of total functions that

is known as the Bird–Meertens formalism. In our framework, we exclude the tree

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

10 L. Fegaras

member of the Boom hierarchy because we are interested in parallel and distributed

computations, and we insist on associativity.

Binary homomorphisms. To capture binary equijoins, we would need to define binary

functions that are homomorphic on both inputs together. More specifically, we want

to define a function H from the collection monoids ⊕ and ⊗ to the monoid such

that

H(X ⊕X ′, Y ⊗ Y ′) = H(X,Y) H(X ′, Y ′) for all X, X ′, Y , and Y ′ (2)

Note that H may not be homomorphic on each input separately because H(X ⊕
X ′, Y) is not necessarily equal to H(X,Y) H(X ′, Y). With some abuse of

terminology, we call H a binary homomorphism. We now define a class of binary

homomorphisms that can be expressed as the union of two collection homomor-

phisms. LetH(, fx) be a collection homomorphism from ⊕ to andH(, fy) be

a collection homomorphism from ⊗ to , such that

fx(x) fy(y) = fy(y) fx(x) for all x and y (3)

A binary homomorphismH(, fx, fy) from the collection monoids ⊕ and ⊗ to the

monoid is defined as follows:

H(, fx, fy)(X,Y) � H(, fx)X H(, fy)Y for all X and Y (4)

For a function fx of type α → � and a function fy of type β → �, the monoid

homomorphismH(, fx, fy) maps a pair of collections of type �⊕(α) and �⊗(β) to

a value of type �. The additional algebraic law (3) implies that

H(, fx)X H(, fy)Y =H(, fy)Y H(, fx)X for all X and Y

which is required for asserting the associativity law (Equation (2)).

By considering the different cases for X and Y , Equation (4) is equivalent to the

following equations for H =H(, fx, fy):

H(X ⊕X ′, Y ⊗ Y ′) = H(X,Y)H(X ′, Y ′) (5a)

H(�⊕(x),�⊗(y)) = fx(x) fy(y) (5b)

H(�⊕(x), 1⊗) = fx(x) (5c)

H(1⊕,�⊗(y)) = fy(y) (5d)

H(1⊕, 1⊗) = 1 (5e)

provided that ⊕ � , ⊗ � , and Equation (3) are satisfied. Note that Equation (5b)

can also be derived from the other equations: H(�⊕(x),�⊗(y)) = H(�⊕(x)⊕1⊕, 1⊗⊗
�⊗(y)) = H(�⊕(x), 1⊗)H(1⊕,�⊗(y)) = fx(x)fy(y). Section 4 defines the coGroup

operation (a generalized join) as a binary homomorphism that satisfies Equation (3).

4 The monoid algebra

The main goal of our work is to translate declarative data analysis queries to efficient

programs that can run on various DISC platforms. Experience with the relational

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 11

types: t ::= basic | T⊕(t) | [t] | {{t}} | () | (t) | t1 × t2 | t1 + t2
variables: v
expressions:

e ::= cMap(λv.e2, e1) | groupBy(e) | orderBy(e) // operations on collections
| coGroup(e1,e2) | reduce(⊕,e) | repeat(λv.e2, e1,e3) // operations on collections
| (e1,e2) | π1(e) | π2(e) // products
| inL(e) | inR(e) | case e of inL(v1) ⇒ e1 | inR(v2) ⇒ e2 // sums
| e1 ⊕ e2 | 1⊕ | U⊕(e) // collection constructions
| if e1 then e2 else e3 | () | (e) | v | const | . . . // other operations

Fig. 2. Syntax of the monoid algebra.

database technology has shown that this translation process can be made easier if

we first translate the queries to an algebraic form that is equivalent to the query and

then translate the algebraic form to a physical plan consisting of physical operations

supported by the underlying DISC platform.

Our algebra consists of a very small set of operations that capture most features

of many query languages and can be translated to efficient physical plans that

can run on many DISC platforms. We intentionally use only one higher order

homomorphic operation in our algebra, namely cMap (flatten-map), which is a

monoid homomorphism from a collection monoid to a possibly different collection

monoid, to simplify normalization and optimization of algebraic terms. The cMap

operation captures data parallelism, where each processing node evaluates the same

code (the cMap functional argument) in parallel on its own data partition. The

groupBy operation, on the other hand, re-shuffles the data across the processing

nodes based on the group-by key, so that data with the same key are sent to the

same processing node. The coGroup operation is a groupBy over two collections,

so that data with the same key from both collections are sent to the same node

to be joined. By moving all computations to cMap, our algebra detaches data

distribution (specified by groupBy and coGroup) from data processing (cMap). This

separation simplifies program optimization considerably. For example, as we will see

in Section 9, query unnesting is done using just one rule, because there is only one

place that a nested query can occur: at the cMap functional argument. In terms of

divide-and-conquer computations, the groupBy and coGroup operations correspond

to the divide part and a cMap to the conquer part.

Figure 2 gives the syntax of the monoid algebra. A collection type in this algebra

is associated with a collection monoid ⊕ and is represented as �⊕(α). We use

the shorthands {{t}} for �	(t) and [t] for �++(t). The monoid algebra does not use

set collections and set homomorphisms, because, as we show next, a bag can be

converted to a set by removing duplicates from the bag using the groupBy operation.

The monoid algebraic operations are explained next.

The cMap operation. The first operation, cMap (better known as concat-map or

flatten-map), generalizes the select, project, join, and unnest operations of the nested

relational algebra. Given two collection monoids ⊕ and ⊗ with ⊗ � ⊕ and two

arbitrary types α and β, the operation cMap(f,X) maps a collection X of type �⊗(α)

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

12 L. Fegaras

to a collection of type �⊕(β) by applying the function f of type α→ �⊕(β) to each

element of X, yielding one collection for each element, and then by merging these

collections to form a single collection of type �⊕(β). It is expressed as follows as a

monoid homomorphism:

cMap(f,X) � H(⊕, f)X (6)

For X = �⊗(x1)⊗ · · · ⊗�⊗(xn), cMap(f,X) computes f(x1)⊕ · · · ⊕ f(xn), that is, it

replaces �⊗ with f and ⊗ with ⊕. For ⊕ = ⊗ = 	, cMap becomes a flatten-map

over bags:

cMap :: (α→ {{β}})→ {{α}} → {{β}}
cMap(f,X 	 Y) = cMap(f,X) 	 cMap(f, Y)

cMap(f, {{a}}) = f(a)

cMap(f, {{ }}) = {{ }}
That is, this cMap maps a bag {{x1, . . . , xn}} to f(x1) 	 · · · 	 f(xn). Many common

distributed queries can be written using cMaps over bags:

map :: (α→ β)→ {{α}} → {{β}}
map(f,X) = cMap(λx. {{f(x)}}, X)

flatten :: {{{{α}}}} → {{α}}
flatten(X) = cMap(λs. s, X)

��p :: ((α, β)→ boolean)→ {{α}} → {{β}} → {{(α, β)}}
X ��p Y = cMap(λx. cMap(λy. if p(x, y) then {{(x, y)}} else {{ }}, Y), X)

But cMap can also capture mappings between different collection types, such as

from lists to bags. For example, a list can be converted to a bag using the following

list homomorphism:

list2bag :: [α]→ {{β}}
list2bag(X) = cMap(λx. {{x}}, X)

Cascaded cMaps can be fused into a single nested cMap using the following law:

cMap(f, cMap(g, S))→ cMap(λx. cMap(f, g(x)), S) (7)

This law is proven in Theorem A.1 in the Appendix.

The groupBy operation. Given an arbitrary type κ that supports value equality (=),

an arbitrary type α, and a collection X of type �⊕(κ× α), the operation groupBy(X)

groups the elements of X by their first component (the key) and returns a bag of

type {{κ×�⊕(α)}}. It can be expressed as follows as a monoid homomorphism:

groupBy(X) � H(�⊕, λ(k, v). {{(k,�⊕(v))}})X (8)

The parametric monoid �⊕ merges groups associated with the same key using the

monoid ⊕. It is expressed as follows using a set-former notation for bags:

X �⊕ Y ={ (k, a⊕ b) ||| (k, a) ∈ X, (k′, b) ∈ Y , k = k′ } (join between X and Y)

	 { (k, a) ||| (k, a) ∈ X, ∀(k′, b) ∈ Y : k′ �= k } (⊆ X not joined with Y) (9)

	 { (k, b) ||| (k, b) ∈ Y , ∀(k′, a) ∈ X : k′ �= k } (⊆ Y not joined with X)

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 13

That is, X �⊕ Y is a full outer join between X and Y . If the two arguments

of �⊕ have distinct keys, then so does its result; and therefore, so does the result

of groupBy. It is easy to see that, on key-value collections with distinct keys, the

operation �⊕ is associative with identity {{ }}. For a bag X of type {{κ×α}}, groupBy(X)

returns a bag of type {{κ× {{α}}}}. In that case, the groupBy definition is equivalent to

the following equations:

groupBy(X 	 Y) = groupBy(X) �	 groupBy(Y)

groupBy({{(k, a)}}) = {{(k, {{a}})}}
groupBy({{ }}) = {{ }}

For example, groupBy({{(1, “a”), (2, “b”), (1, “c”)}}) returns {{(1, {{“a”, “c”}}), (2, {{“b”}})}}.
The groupBy result, which is of type {{κ×{{α}}}}, can be viewed as an indexed set (also

known as a key-value map or a dictionary), which implements a partial function

from κ to {{α}}. In contrast to standard indexed sets, in which the second map

overrides the first when two maps are combined, our combining operator �⊕ merges

the ranges of overlapping maps using the monoid ⊕.

The monoid �⊕ is commutative and/or idempotent if ⊕ is commutative and/or

idempotent. Note also that, for a bag X, groupBy(X) is different from nest(X),

defined as

nest(X) = cMap(λ(k, x). {{(k, cMap(λ(k′, x′). if k = k′ then {{x′}} else {{ }}, X))}}, X)

Although both operations have the same type, the nest result may contain duplicate

entries for a key k. Unlike nest, unnesting a groupBy over a bag X returns the input

bag X:

unnest(groupBy(X)) = X (10)

where unnest(X) = cMap(λ(k, s). cMap(λx. {{(k, x)}}, s), X). Equation (10) is proven

in Theorem A.2 in the Appendix. This law does not hold for lists, since groupBy

converts a list to a bag. In addition, two cascaded groupBys can be fused to one

groupBy using the law:

groupBy(groupBy(X)) = cMap(λ(k, s). {{(k, {{s}})}}, groupBy(X)) (11)

This law is proven in Theorem A.3 in the Appendix.

Finally, the introduction of the groupBy operation justifies the reason for not

using set collections and set homomorphisms; a bag X can be converted to a set

(i.e., a bag with no duplicates) using a groupBy:

distinct(X) = cMap(λ(k, s).{{k}}, groupBy(cMap(λx. {{(x, x)}}, X))) (12)

The orderBy operation. If we order a bag of type {{κ× α}} by its key κ (which must

support a total order �), we should get a list of type [κ× {{α}}], rather than [κ× α],

because, in general, there may be multiple values of type α associated with the same

key, and these values have to be put into a bag for this operation to be unambiguous.

Hence, we have chosen to define the orderBy operation in a way similar to groupBy:

orderBy(X) � H(⇑⊕, λ(k, v). [(k,�⊕(v))])X (13)

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

14 L. Fegaras

where ⊕ is a monoid. The monoid ⇑⊕ merges two sorted sequences of type [κ×�⊕(α)]

to create a new sorted sequence. It can be expressed as follows using a set-former

notation for lists (equivalent to list comprehensions):

(X1 ++ X2) ⇑⊕ Y = X1 ⇑⊕ (X2 ⇑⊕ Y) (14a)

[(k, v)] ⇑⊕ Y = [(k′, w) ||| (k′, w) ∈ Y , k′ < k]

++ [(k, v ⊕ (⊕/[w ||| (k′, w) ∈ Y , k′ = k]))] (14b)

++ [(k′, w) ||| (k′, w) ∈ Y , k′ > k]

[] ⇑⊕ Y = Y (14c)

where ⊕/s reduces the lists s of type [�⊕(α)] to a value of type �⊕(α) using ⊕. That

is, Equation (14b) inserts the pair (k, v) into the sorted list Y , deriving a sorted list.

Theorem A.4 in the Appendix shows that, when applied to sorted sequences, the

operation ⇑⊕ is a monoid with identity []. In addition, even though ++ ≺ 	, we

have 	 � ⇑	 since ⇑	 is commutative, which makes orderBy a homomorphism for

both lists and bags. Finally, although a list of type [κ× α] is sorted to a list of type

[κ× [α]], it can always be flattened to a [κ× α].

The reduce operation. Aggregations are captured by the operation reduce(⊕, X),

where ⊗ � ⊕, which aggregates a collection X of type �⊗(t) using the non-collection

monoid ⊕ of type t:

reduce(⊕, X) � H(⊕, λx. x)X (15)

For example, reduce(+, {{1, 2, 3}}) = 6.

The coGroup operation. Although a join can be expressed as a nested cMap,

we provide a special homomorphic operation for equi-joins and outer joins. The

operation coGroup(X,Y) between a collection X of type �⊕(κ× α) and a collection

Y of type �⊗(κ × β) over their first component of type κ (the join key) returns

a collection of type {{κ × (�⊕(α) × �⊗(β))}}. It can be expressed as a binary

homomorphism as follows:

coGroup(X,Y) � H(�⊕�⊗,
λ(k, x). {{(k, (�⊕(x), 1⊗))}}, (16)

λ(k, y). {{(k, (1⊕,�⊗(y)))}}) (X,Y)

where � is the same monoid we used for groupBy, but is now parameterized

by the product of two collections monoids, ⊕ � ⊗. The product of two monoids

⊕ � ⊗ is a monoid with identity (1⊕, 1⊗) and a binary operation ⊕ � ⊗, such that

(x1, y1)(⊕ �⊗)(x2, y2) = (x1 ⊕ x2, y1 ⊗ y2). For bags, the coGroup operation has type

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 15

{{κ× α}} × {{κ× β}} → {{κ× ({{α}} × {{β}})}} and is equivalent to

coGroup(X1 	X2, Y1 	 Y2) = coGroup(X1, Y1) �	�	 coGroup(X2, Y2)

coGroup({{(k, a)}}, {{(k′, b)}}) = {{(k, ({{a}}, {{b}}))}} if k = k′

coGroup({{(k, a)}}, {{(k′, b)}}) = {{(k, ({{a}}, {{ }})), (k′, ({{ }}, {{b}}))}} if k �= k′

coGroup({{(k, a)}}, {{ }}) = {{(k, ({{a}}, {{ }}))}}
coGroup({{ }}, {{(k, b)}}) = {{(k, ({{ }}, {{b}}))}}

coGroup({{ }}, {{ }}) = {{ }}

For example, coGroup({{(1, “a”), (2, “b”), (1, “c”)}}, {{(1, “d”), (2, “e”), (3, “f”)}}) returns

{{(1, ({{“a”, “c”}}, {{“d”}})), (2, ({{“b”}}, {{“e”}})), (3, ({{ }}, {{“f”}}))}}.
From Equation (2), for X = X ⊕ 1⊕ and Y = 1⊗ ⊗ Y , we have

coGroup(X,Y) = coGroup(X, 1⊗) �⊕�⊗ coGroup(1⊕, Y) (17)

Finally, it can be proven by induction that

coGroup(X, 1⊗) = cMap(λ(k, s). {{(k, (s, 1⊗))}}, groupBy(X)) (18a)

coGroup(1⊕, Y) = cMap(λ(k, s). {{(k, (1⊕, s))}}, groupBy(Y)) (18b)

The repeat operation. This is the only non-homomorphic operation in the monoid

algebra. It is a fix-point operation that is used to capture data analysis algorithms

that require iteration, such as data clustering and PageRank. Given a collection X

of type �⊕(α), a function f of type �⊕(α) → �⊕(α × boolean), and an integer n,

repeat(f,X, n) returns a collection of type �⊕(α) and is defined as follows:

repeat(f,X, n) � let s = f(X)

in if n � 0 ∨ ¬reduce(∨,Π2(s))

then Π1(s)

else repeat(f,Π1(s), n− 1)

where Π1(s) = cMap(λ(x, b).�⊕(x), s) returns a collection of type �⊕(α) that contains

the first elements of s, and, similarly, Π2(s) returns the second elements of s. The

repetition stops if the number of remaining repetitions is zero or when all the

boolean values returned by s are false.

4.1 Type rules

Figure 3 gives some of the type rules for the monoid algebra. Each type rule has two

parts separated by a horizontal line: the part above the line contains the premises

and the part below the line is the conclusion. We use the judgment Γ � e : t to

indicate that e has type t under the environment Γ, which binds variables to types.

The notation v : t ∈ Γ checks if there is a binding from v to t in Γ, while Γ, v : t

extends the environment Γ with a new binding from v to t.

In abstract algebra, the composition of monoid homomorphisms is also a monoid

homomorphism. The type rules of the monoid algebra though, shown in Figure 3,

allow terms that are not always monoid homomorphisms. More specifically, the

type of the groupBy operation in Equation (19g) is a bag (a �), instead of a ��⊕ .

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

16 L. Fegaras

v : t ∈ Γ

Γ � v : t
(19a)

Γ � e1 : t1 Γ � e2 : t2
Γ � (e1, e2) : t1 × t2

(19b)

Γ � e : t1 × t2

Γ � πi(e) : ti
(19c)

Γ � e1 : �⊕(t) Γ � e2 : �⊕(t)

Γ � e1 ⊕ e2 : �⊕(t)
(19d)

Γ � e : �⊗(t) t = �⊕ ⊗ � ⊕
Γ � reduce(⊕, e) : t

(19e)

Γ � e1 : �⊗(t1) Γ, v : t1 � e2 : �⊕(t2) ⊗ � ⊕
Γ � cMap(λv. e2, e1) : �⊕(t2)

(19f)

Γ � e : �⊕(t1 × t2)

Γ � groupBy(e) : {{t1 × �⊕(t2)}}
(19g)

Γ � e : �⊕(t1 × t2)

Γ � orderBy(e) : [t1 × �⊕(t2)]
(19h)

Γ � e1 : �⊕(t× t1) Γ � e2 : �⊗(t× t2)

Γ � coGroup(e1, e2) : {{t× (�⊕(t1)× �⊗(t2))}}
(19i)

Γ � e3 : int Γ � e1 : �⊕(t)
Γ, v/�⊕(t) � e2 : �⊕(t× boolean)

Γ � repeat(λv. e2, e1, e3) : �⊕(t)
(19j)

Fig. 3. Some type rules for the monoid algebra.

Similarly, the type of the coGroup operation in Equation (19i) is a bag, instead of

a ��⊕�⊗ . That is, given that 	 ≺�	, we have down-coerced (in terms of the monoid

order) the results of groupBy and coGroup by erasing their distinct-key laws. This is

equivalent to coercing a set to a bag. These coercions were necessary to allow us to

capture non-homomorphic queries. Without this coercion, most terms of the form

cMap(f, groupBy(X)) would not have been type-correct, indicating that cMap does

not always distribute over �	. For example, the term cMap(λ(k, x). {{x}}, groupBy(X))

would not have been type-correct because this cMap would be a homomorphism

from �	 to 	, which is invalid because �	� 	. By down-coercing the groupBy result,

terms of the form cMap(f, groupBy(X)) are accepted as type-correct but may not

be homomorphisms.

5 The monoid algebra as a formal basis for data-centric distributed Computing

Data parallelism is a form of parallel processing in which the same task operates on

different data in parallel. By processing data in parallel, we can achieve a parallel

speedup. The result of a data-parallel computation though must be independent

of the way we divide the data into partitions and the way we combine the partial

results of processing these partitions to obtain the final result. These requirements

suggest that data-parallel computations should be associative so that they can apply

to data partitions in parallel and can successively combine the intermediate results of

computations in arbitrary ways. Data placement is an essential part of a data-parallel

algorithm, since the mapping of data to processors determines the locality of data

access, which is the dominant factor for the performance of data-parallel programs.

DISC frameworks are essentially data-parallel frameworks on clusters of shared-

nothing computers connected through a high-speed network. These clusters are

typically built on top of cheap commodity hardware, with inconsistent performance

across processing nodes, for which failure is not uncommon. Due to the volume of

data, complex data analysis programs can involve thousands of nodes and can take

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 17

hours to complete. Since the probability of a failure occurring during a long-running

data analysis task is relatively high, DISC frameworks support fault tolerance so that

a task does not have to restart if one of the processing nodes fails. DISC frameworks

achieve data locality by distributing the data across the processing nodes through a

distributed file system and by sending the computation to the processing nodes that

hold a copy of the data locally. Finally, in contrast to traditional database query

processing, DISC systems organize computations for sequential reads (full scans),

not random access, to take advantage of the high data throughput of these scans in

a distributed file system.

In this section, we give evidence to support our claim that the monoid algebra is

a good basis for DISC computations. Mapping monoid algebra terms to distributed

operations supported by a DISC platform is a very complex process that needs to

consider alternative algorithms to implement each algebraic operation, to take into

account the available hardware resources, to adjust various configuration parameters

for good performance, etc. In this section though, to support our claim on the

appropriateness of the monoid algebra for DISC computations, we provide a naive

data-parallel execution model for the monoid algebra that has a decent performance

on a typical DISC platform. Although the cost of execution may depend on many

factors, we simplify our analysis by considering only the amount of data shuffled

among compute nodes across the network, since this is the dominant cost factor for

data-centric distributed processing. Furthermore, we assume that, in case of nested

collections, only the operations on the outer collection may cause data shuffling

because each inner collection is stored entirely in a single processing node. Using

Spark’s terminology, we classify the monoid algebraic operations on outer collections

into two categories: those that cause data shuffling (called transformations with wide

dependencies in Spark), namely groupBy, orderBy, coGroup, and reduce, and those

that do not, namely cMap. We define a stage to be a sub-series of operations that

contains exactly one operation that requires data shuffling. In other words, the

number of stages in a term is equal to the number of transformations with wide

dependencies. The repeat algebraic operation is a fix-point operation that repeats

the evaluation of its functional argument, and, thus, may consists of multiple stages.

For example, a Map-Reduce job (Dean & Ghemawat, 2004), which consists of

a map function m of type k1 × α → {{k2 × β}} and a reduce function r of type

k2 × {{β}} → {{k3 × γ}}, is expressed in the monoid algebra as follows:

mapReduce(m, r)(X) = cMap(r, groupBy(cMap(m,X)))

That is, this term requires one stage only because it uses one operation that causes

data shuffling (groupBy).

To show the effectiveness of the monoid algebra for expressing DISC computa-

tions, we compare its naive evaluation with a typical implementation of the BSP

programming model (Valiant, 1990). A BSP computation consists of a sequence of

supersteps. Each superstep is evaluated in parallel by every peer participating in

the BSP computation. A superstep consists of three phases: a local computation, a

process communication, and a barrier synchronization. During the local computation

phase of a superstep, each peer has access to the messages sent by other peers

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

18 L. Fegaras

during the previous superstep. It can also send messages to other peers during

the process communication phase, to be read at the next superstep. The barrier

synchronization phase synchronizes all peers to make sure that they have received

all the sent messages before the next superstep. The cost of a BSP computation

depends on the cost of the longest running local computation, the cost of global

communication between the processors, and the cost of the barrier synchronization.

We are interested in a data-centric BSP framework for which data shuffling caused

by the global communication is the dominant cost factor. Therefore, our comparison

is based on two metrics: the number of supersteps and the total amount of data

shuffled during all supersteps.

In an earlier work (Fegaras, 2012), we have shown that any term in the monoid

algebra can be evaluated in BSP mode (more specifically, in Apache Hama (2017))

using just one superstep per stage. We now show the reverse: we translate any BSP

program to a monoid algebra term in such a way that the number of stages required

to execute this term is equal to the number of supersteps needed to execute the BSP

program, and, more importantly, both programs shuffle the same amount of data

across the network. BSP is a general model for synchronous parallel processing.

Most DISC frameworks, including Map–Reduce, Spark, and Flink, require similar

peer synchronization between stages. Asynchronous HPC frameworks, such as MPI,

on the other hand, are not typically used as a basis for DISC systems because it is

very hard to achieve fault tolerance on such frameworks. Furthermore, asynchronous

programs may cause deadlocks and livelocks, while synchronization barriers cannot

create circular data dependencies. By showing that our monoid algebra can capture

data-centric BSP computations efficiently, we give a strong evidence that it can also

capture most of the current DISC systems efficiently.

There are many different ways of implementing the BSP model, since this model

does not fully specify the computation phase. In a functional setting, we can specify

the computation as a pure function to be executed locally by each BSP peer. This

compute function may be of the type id× {{m}} × σ → {{id×m}} × σ × boolean, where

id is the type of the peer id, m is the message type, and σ is the state type. Each peer

retains a local state of type σ. At each superstep, each peer, with id id and local state

state, receives a bag of incoming messages ms and calls compute(id, ms, state), which

returns a bag of outgoing messages of type {{id × m}}, a new state, and a boolean

value. The compute function is evaluated repeatedly by each peer until the returned

boolean value is true for all peers. Using pseudo-code, the BSP process is as follows:

for each peer i do: // do in parallel at each peer

msgs ← { }
state[i] ← initial state[i]

repeat

(new msgs, state[i], exit[i]) ← compute(i,msgs,state[i])

send new msgs to peers

wait for barrier synchronization

msgs ← receive messages from peers

until for all peers j: exit[j]

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 19

For a data-centric BSP computation, the initial state[i] of a peer i may contain

partitions of the input datasets stored locally at the peer i. Note that a peer is

a virtual computational unit; multiple peers may be assigned to a single com-

putation node, or the code and data of a single peer may be distributed across

multiple computation nodes. We now simulate this program using the monoid

algebra:

repeat(λP .

cMap(F, groupBy(cMap(λ(id, ms, s). let (ps, s′, exit) = compute(id, ms, s)

in {{(id, inL((s′, not exit)))}}
	 cMap(λ(i, m). {{(i, inR(m))}}, ps),

P))),

cMap(λ(id, s). {{(id, {{ }}, s)}}, Peers))

The repetition will stop when the exit value returned by compute is true for all peers

(since the max number of repetitions is unbounded). The initial repetition dataset is

Peers, which has type {{id×σ}} and associates an initial local state to each peer. Since

each initial state is local to each peer in the original BSP program, we assume that

the dataset Peers is already partitioned and distributed across the peers. Function

F is from id × {{(σ × boolean) + m}} to {{(id × {{m}} × σ) × boolean}}, with F(id, vs)

equal to

cMap(λ(s, exit). {{((id, cMap(λv. case v of inL(w)⇒ {{ }} | inR(m)⇒ {{m}}, vs), s), exit)}}
cMap(λv. case v of inL(w)⇒ {{w}} | inR(m)⇒ {{ }}, vs)

We can see that the evaluation of each repetition step requires one stage only because

there is only one groupBy operation in the repeat step. Therefore, the number of

stages is equal to the number of supersteps. Furthermore, the data processed by

groupBy consist of the new local states and the outgoing messages. But each new

state is sent to the same node that generated the state, since it is grouped by the

same id. This means that the only data shuffled across the network are the outgoing

messages to other peers, which are equal to the data shuffled by the original BSP

program.

It is now easy to show that our monoid algebra can also capture vertex-centric

graph-parallel programs efficiently. Vertex-centric graph-parallel programming is a

new popular framework for large-scale graph processing, introduced by Google’s

Pregel (Malewicz et al., 2010) and now available as an open-source project by

Apache Giraph (2017). A common characteristic of these frameworks is that they

are all based on the BSP model. In a vertex-centric specification, a graph is a bag of

vertices, {{N}}, where the type N of a vertex can be specified as id× α×{{id×β}}. That

is, a vertex has a unique id, a state of type α, and a bag of outgoing edges, where

each edge is associated with a destination vertex id and a state of type β. Then, a

vertex-centric program is a function from {{N}} to {{N}}, which, not only can change

the vertex and edge states of the graph, but can also change the graph topology

by removing existing edges and adding new edges. This specification can be easily

captured by a BSP program for which an id corresponds to a vertex, rather than a

peer. In this case, the BSP state type σ associated with a vertex is equal to the type

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

20 L. Fegaras

N. Based on our simulation of general BSP programs, graph-parallel programs too

can be implemented efficiently using our monoid algebra.

6 Comparison of the monoid algebra with algebras based on monads

Before we discuss how the monoid algebra compares with algebras based on monads,

let us discuss what features a practical data-centric query language should support.

Although the relational data model is based on sets of records, practical relational

query languages are based on multisets (bags). SQL, for example, has mostly bag

semantics, with the exception of a few operations that remove duplicates, such

as, the “select distinct” and “union distinct” syntax, which have set semantics,

and the “order by” clause, which creates a sorted bag (a list). The reason that

practical database query languages are mostly based on bag semantics is that

removing duplicates after every operation is very expensive and often unnecessary.

In addition, some operations may depend on the multiplicity of values, such as

counting occurrences of values in a collection. Another problem with sets is that

set operations defined using structural recursion on the union representation of sets

must be idempotent. That is, non-idempotent operations, such as most aggregations,

cannot be expressed as set homomorphisms, as we can see from the definition

sum(X ∪ Y) = sum(X − Y) + sum(Y). Some formal models and languages, such

as FAD (Bancilhon et al., 1987), have addressed this problem by using structural

recursion on the disjoint union (�), defined only for disjoint sets, so that sum(X �
Y) = sum(X) + sum(Y), provided that X ∩ Y = ∅. But such preconditions may

complicate equational reasoning and optimization.

DISC frameworks too are mostly based on bag semantics, but they also support

a small number of sorting and duplicate-removal operations. In Map–Reduce,

for example, the map phase is over a distributed bag of key-values pairs, while

the reduce phase is over a distributed indexed set, which, in our framework, is

represented as the carrier of the monoid �	. In Spark, the only collection type

is the RDD, which is a bag of values, but many Spark methods are from the

RDD subclass PairRDDFunctions, which represents a bag of key-value pairs. Spark

supports operations, such as groupByKey, reduceByKey, sortBy, and cogroup, that

can be directly translated to the monoid algebra. Like most practical database query

languages and DISC frameworks, the monoid algebra does not support sets; instead,

one may use the groupBy operation to remove duplicates from a bag.

The rest of this section compares the monoid algebra with algebras based on

monads and shows that monad algebras have a number of shortcomings as a formal

basis for practical query languages for DISC systems. Most notably, monad algebras

require extensions to capture coercions between collections, aggregations, sorting,

grouping, and outer joins. The monoid algebra does not have these shortcomings.

In general, adding extensions to fill up the missing functionality requires the

introduction of extra laws, which may complicate the basic formal framework

and make optimization harder.

Collection monads (also called ringads) are monads (Wadler, 1990) extended with

an empty value and a merge function that form a monoid. Thus, a collection monad

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 21

must provide the following functions:

map : (α→ β)→M(α)→M(β) empty : M(α)

unit : α→M(α) merge : M(α)→M(α)→M(α)

concat : M(M(α))→M(α)

The monad extension operator ext of type (α → M(β)) → M(α) → M(β), which

is equivalent to the bind operation >>= of type M(α) → (α → M(β)) → M(β), is

derived from the other monad operations as ext(f) = concat ◦map(f). That is, the

type of ext is more restrictive than the type of cMap of the monoid algebra, which

is (α→M(β))→ N(α)→M(β), provided that the monoid of the collection type M

obeys all the laws of the monoid of the collection type N. Hence, cMap is more

expressive than ext because every ext operation can be expressed as a cMap using

ext(f)X = cMap(f,X), while a cMap from a collection N to a different collection

M cannot be expressed as an ext.

Monad comprehensions (Wadler, 1990) are a declarative syntax for expressing

monad operations that generalizes list comprehensions. Monad comprehensions

can be easily translated to monad operations using rules similar to those for

translating list comprehensions (Wadler, 1987). One important extension toward

bringing comprehensions closer to a practical query language was the work on list

comprehensions with group-by and order-by (Wadler & Peyton Jones, 2007). This

work was generalized by Giorgidze et al. (2011) to support order-by and group-by

syntax in any monad comprehension. Our monoid comprehensions support order-by

and group-by syntax over heterogeneous collections without requiring any extension

to the basic monoid homomorphism framework.

One difficulty in using collection monads and monad comprehensions as a

practical query language is that, without extending them, we cannot mix different

collection monads in the same monad comprehension, for example, to join a bag

with a list or to sort a bag into a list. This problem has been addressed by

expressing conversion between lists, bags, and sets, as monad morphisms, thus

supporting heterogeneous monad comprehensions (Wong, 2000). Based on the

analysis in Gibbons (2016), these coercions between monad collections are monad

morphisms if they are from poorer to richer members of the Boom hierarchy of

types. Furthermore, these coercions must be monoid homomorphisms and must

obey the monad morphism laws. Other coercions, such as from a bag to a list,

are not “obvious” and should be defined explicitly (Gibbons, 2016). Another

extension that is required is the support for aggregations, since all practical query

languages support total aggregation and group-by with aggregation. Aggregations

on a collection monad can be defined as algebras for that monad. These aggregations,

in addition to obeying the monad algebra laws, must be monoid homomorphisms

(Gibbons, 2016).

The most important shortcoming of algebras based on monads is that they cannot

capture grouping and sorting on bags without extending the algebra with additional

operators that must obey certain laws. Although it is possible to express the

group-by operation on a set X as a monad comprehension on sets (the subscript

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

22 L. Fegaras

Set identifies the comprehension type):

{{{ (k, {{{ a ||| (k′, a) ∈ X, k′ = k }}}Set) ||| (k,) ∈ X }}}Set

expressing the group-by operation on a bag would require a special extension to

monads, such as an operation that removes duplicates from a bag. If we instead use

the bag2set coercion to remove duplicates, given that coercions are necessary for

capturing heterogeneous comprehensions, then the group-by operation on a bag X

would be

{{{ (k, {{{ a ||| (k′, a) ∈ X, k′ = k }}}Bag) ||| k ∈ bag2set({{{ k ||| (k,) ∈ X }}}Bag)}}}Set

Since bag2set creates a set, the outer monad comprehension must now be a set

comprehension. But deriving a set comprehension for group-by instead of a bag

comprehension is problematic because it prevents us from applying non-idempotent

operations, such as count, to the result. Furthermore, we cannot down-coerce the

resulting set to a bag without introducing an additional non-obvious operation.

Hence, the group-by operation would require a special extension to monads, such

as an operation that removes duplicates from a bag. For example, the SQL-like

comprehensions in Giorgidze et al. (2011) require various library additions to support

order-by and group-by syntax in any monad comprehension. For group-by, the

required addition is a new operation mgroupWith of type (α→ τ)→ mα→ m(mα),

which takes an explicit group-by key function of type α→ τ.

The monoid algebra and monoid comprehensions do not require any extensions

in the form of added non-homomorphic operations to capture practical data-

centric query languages (except for the fix-point operation “repeat”, which is also

required for frameworks based on monads, if they need to capture iteration). Monoid

comprehensions can work on heterogeneous collections, support group-by and order-

by syntax in comprehensions for all collection types, and capture aggregations,

without any extension to the formal framework on collection monoids and monoid

homomorphisms. Monads on the other hand require numerous extensions to support

the same features (monoidal structure, coercion functions as monad morphisms, and

monoid homomorphisms for aggregations). Given the necessity of extending monads

with monoid homomorphisms to capture practical data-centric query languages, as

well as all the additional laws that these added operations must obey, it seems

simpler to use monoid homomorphisms as a formal model for data-centric query

languages instead of monads.

7 Monoid comprehensions

Our primary query language for distributed data analysis is MRQL, to be described

in Section 8, which is, as we will see, equivalent to monoid comprehensions. Since

MRQL has a lot of syntactic sugar, we have decided to present our type and

translation rules based on monoid comprehensions first, and then translate MRQL

to monoid comprehensions.

The syntax and semantics of our monoid comprehensions have been influenced

by previous work on list comprehensions with order-by and group-by (Wadler

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 23

patterns: p ::= v | (p1, . . . , pn) | inv(p)
qualifiers: q ::= p ∈ e | let p = e | e | group by p [: e] | order by p [: e]
expressions: e ::= . . . // monoid algebra expressions (in Fig. 2)

| {{{e ||| q1, . . . , qn}}} // monoid comprehensions
| ⊕/e // reductions

Fig. 4. Syntax of monoid comprehensions.

& Peyton Jones, 2007). Monoid comprehensions were first introduced in Fegaras

and Maier (1995), but they are extended here to include well-behaved group-

by and order-by qualifiers. Monoid comprehensions can work on heterogeneous

collection types and are extended with group-by and order-by syntax that works on

heterogeneous comprehensions. They do not support some extensions used in monad

comprehensions, such as parallel (zip) qualifiers, because they are not suitable for

bags, parenthesized qualifiers, because they are equivalent to nested comprehensions,

refutable patterns, and user-defined group-by and order-by functions (Wadler &

Peyton Jones, 2007).

Before we describe monoid comprehensions formally, let us consider an example

of a monoid comprehension with group-by syntax. If we represent a sparse matrix

M as a bag of triples, (v, i, j), for v = Mij , then the matrix multiplication between

the two sparse matrices X and Y can be expressed as follows:

{{{ (+/z, i, j) ||| (x, i, k) ∈ X, (y, k′, j) ∈ Y , k = k′, let z = x ∗ y, group by (i, j)}}}

which retrieves the values Xik ∈ X and Ykj ∈ Y for all i, j, k, and it sets z = Xik ∗Ykj .

The group-by operation lifts each pattern variable defined before the group-by

(except the group-by keys) from some type t to {{t}}, indicating that each such

variable must now contain all the values associated with the same group-by key

value. Consequently, after we group the values by the indexes i and j, the variable

z is lifted to a bag of numerical values Xik ∗ Ykj , for all k. Hence, +/z, which is a

shorthand for reduce(+, e), will sum up all these values, deriving
∑

k Xik ∗Ykj for the

ij element of the resulting matrix.

Figure 4 describes the monoid comprehension syntax. The ⊕/e syntax is a

shorthand for reduce(⊕, e). The domain e of a generator qualifier p ∈ e must

be of a collection type �⊕(t), associated with a collection monoid ⊕. The generator

draws elements from this collection and, each time, it binds the irrefutable pattern

p to an element. The generator domains in a monoid comprehension can be of

different collection types. The result of a monoid comprehension is a collection

whose collection monoid is the maximum collection monoid (in terms of the monoid

order) of all collection monoids used in the comprehension generators. A let-binding

let p = e binds the pattern p to the result of e. A qualifier e, called a filter, is a

predicate of type boolean.

The group-by and order-by qualifiers use a pattern p and an optional expression

e. If e is missing, it is taken to be p. The group-by operation groups all the pattern

variables in the same comprehension that are defined before the group-by (except

the variables in p) by the value of e (the group-by key), so that all variable bindings

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

24 L. Fegaras

that result to the same key value are grouped together. After the group-by, p is

bound to a group-by key and each one of these pattern variables is lifted to a

collection of values. Note that patterns in a comprehension with group-by are very

important; they fully determine which parts of the data are lifted to collections after

the group-by operation.

An order-by qualifier works in the same way as a group-by qualifier but it produces

a sorted result (a list). If there is a following group-by qualifier or a generator over

a bag, then the order is lost because the list becomes a bag. The special parametric

type Inv(t), which has a single data constructor inv(v) for a value v of type t, inverts

the total order of a t value from � to �. For example,

{{{ (x, y) ||| (x, y) ∈ S, order by (inv(x), y)}}}

orders (x, y) ∈ S by major order x (descending) and minor order y (ascending).

Here, x and y are not lifted to bags because they are pattern variables in

(inv(x), y).

7.1 Translation of monoid comprehensions to the monoid algebra

Group-by and order-by qualifiers may appear in multiple places in the same

comprehension as well as in nested comprehensions. For all these cases, only

the pattern variables that precede the group-by or order-by qualifier in the same

comprehension must be lifted to collections, and if multiple group-by and order-

by qualifiers exist, these variables will have to be lifted multiple times to nested

collections. These transformations can be easier expressed if they are done in two

steps. The first step is to eliminate all group-bys and order-bys from comprehensions

by looking at each comprehension in its entirety, so that only the preceding

pattern variables are lifted to collections. The second step is to translate the

resulting comprehensions to the monoid algebra by translating each qualifier in

a comprehension from left to right.

The first step is to translate the group-by and order-by qualifiers to groupBy and

orderBy operations, respectively. We use the notation q to represent a sequence

of qualifiers in a comprehension. Let Vp
q be a flat tuple that contains all pattern

variables in q that do not appear in p, defined as follows (the order of v1, . . . , vn is

unimportant):

Vp
q = (v1, . . . , vn) where vi ∈ (V�q�−P�p�)

V�p ∈ e, q� = P�p� ∪V�q�

V�let p = e, q� = P�p� ∪V�q�

V�group by p : e, q� = P�p� ∪V�q�

V�order by p : e, q� = P�p� ∪V�q�

V�e, q� = V�q�

P�(p1, . . . , pn)� = P�p1� ∪ · · · ∪ P�pn�

P�v� = {v}

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 25

Γ � e : �⊗(t) t = �⊕ ⊗ � ⊕
Γ � ⊕/e : t

(21a)

Γ � e′ : t

Γ � {{{ e′ ||| }}} : [t]
(21b)

Γ � e : boolean Γ � {{{ e′ ||| q }}} : �⊗(t)

Γ � {{{ e′ ||| e, q }}} : �⊗(t)
(21c)

Γ � e : �⊗(t)
Γ, p/t � {{{ e′ ||| q }}} : �⊕(t′)

Γ � {{{ e′ ||| p ∈ e, q }}} : �max(⊕,⊗)(t′)
(21d)

Γ � e : t Γ, p/t � {{{ e′ ||| q }}} : �⊗(t′)

Γ � {{{ e′ ||| let p = e, q }}} : �⊗(t′)
(21e)

Fig. 5. Type rules for monoid comprehensions.

Then, group-by and order-by qualifiers can be eliminated from a monoid compre-

hension using the following rules:

{{{ e′ ||| q1, group by p : e, q2 }}} → {{{ e′ ||| (p, s) ∈ groupBy({{{ (e,Vp
q1

) ||| q1 }}}), (20a)

∀v ∈ Vp
q1

: let v = {{{ v ||| Vp
q1
∈ s}}}, q2 }}}

{{{ e′ ||| q1, order by p : e, q2 }}} → {{{ e′ ||| (p, s) ∈ orderBy({{{ (e,Vp
q1

) ||| q1 }}}), (20b)

∀v ∈ Vp
q1

: let v = {{{ v ||| Vp
q1
∈ s}}}, q2 }}}

Here, ∀v ∈ Vp
q1

: let v = {{{ v ||| Vp
q1
∈ s}}} embeds a let-binding for each variable v

in Vp
q1

so that this variable is lifted to a collection that contains all v values in the

current group. (The monoid of this collection is the maximum monoid in q1.) Note

that, if e is missing in group by p : e or order by p : e, then e is set to be equal to

p, which means that the pattern variables in p may have been defined in q1. This is

the case that we need to subtract P�p� from V�q1� in Vp
q1

, because the variables

in p are group-by variables and should not be lifted to collections. Theorem A.5 in

the Appendix shows that Rules (20a) and (20b) can be applied to a comprehension

with multiple group-by and order-by qualifiers in any order.

The type rules for monoid comprehensions without group-by or order-by qualifiers

are shown in Figure 5. We use the notation Γ, p/t, for a pattern p, to bind

the pattern variables in p to types. Equation (21d) indicates that the collection

monoid of a comprehension with a generator is max(⊕,⊗). That is, the monoid

of a comprehension with multiple generators is the maximum monoid of all

generator domains in the comprehension, starting with the monoid ++ for the

empty comprehension (Equation (21b)).

Comprehensions with group-by and order-by qualifiers can be type-checked if we

consider each comprehension in its entirety, before the type rules in Figure 5 are

applied:

Γ � {{{ (e,Vp
q1

) ||| q1 }}} : �⊕(t0 × (t1 × . . .× tn))

Γ, p/t0,Vp
q1
/(�⊕(t1)× · · · × �⊕(tn)) � {{{ e′ ||| q2 }}} : �⊗(t)

Γ � {{{ e′ ||| q1, group by p : e, q2 }}} : �max(,⊗)(t)
(22a)

Γ � {{{ (e,Vp
q1

) ||| q1 }}} : �⊕(t0 × (t1 × . . .× tn))

Γ, p/t0,Vp
q1
/(�⊕(t1)× · · · × �⊕(tn)) � {{{ e′ ||| q2 }}} : �⊗(t)

Γ � {{{ e′ ||| q1, order by p : e, q2 }}} : �⊗(t)
(22b)

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

26 L. Fegaras

The only difference between Equations (22a) and (22b) is in the monoid of the

resulting type, which is max(,⊗) for group-by and max(++,⊗) = ⊗ for order-by.

In both cases, each pattern variable vi in q1 of type ti is lifted to a collection of type

�⊕(ti).

The second step is to translate comprehensions without group-by or order-by

qualifiers to the monoid algebra. We tag each comprehension with a collection

monoid, as {{{ e ||| q }}}⊕, to enforce a minimum collection monoid for the compre-

hension. Initially, the minimum monoid is ++ to indicate there is no minimum

restriction. The translation rules, which are similar to the translation rules for

monad comprehensions (Wadler, 1987), are

⊕/e→ reduce(⊕, e) (23a)

{{{ e′ ||| p ∈ e, q }}}⊕ → cMap(λp.{{{ e′ ||| q }}}max(⊕,⊗), e) where e : �⊗(t) (23b)

{{{ e′ ||| let p = e, q }}}⊕ → let p = e in {{{ e′ ||| q }}}⊕ (23c)

{{{ e′ ||| e, q }}}⊕ → if e then {{{ e′ ||| q }}}⊕ else 1⊕ (23d)

{{{ e′ ||| }}}⊕ → �⊕(e′) (23e)

When we translate a generator in a comprehension in Equation (23b), the minimum

collection monoid ⊕ of the comprehension is refined to max(⊕,⊗), where ⊗ is the

collection monoid of the generator domain. That way, the unit in Equation (23e),

which determines the final monoid of the comprehension, will be the maximum

monoid of all generator domains in the comprehension.

For example, consider this monoid comprehension for a list X of type [int× int]:

{{{ (a, c) ||| (a, b) ∈ X, order by a, c ∈ b}}}

Here, the order-by expression e in Equation (22b) is equal to the order-by pattern

a. In addition, Vp
q1

= b. Hence, {{{ (e,Vp
q1

) ||| q1 }}} in Equation (22b) is equal to

{{{ (a, b) ||| (a, b) ∈ X }}}, which has type [int × int]. Therefore, the type of the order-by

comprehension is equal to the type of {{{ (a, c) ||| c ∈ b}}} under the type bindings a : int

and b : [int], which is [int × int]. This comprehension is translated to the monoid

algebra using Equation (20b) as follows:

{{{ (a, c) ||| (a, s) ∈ orderBy({{{ (a, b) ||| (a, b) ∈ X }}}), let b = {{{ b ||| b ∈ s}}}, c ∈ b}}}
= {{{ (a, c) ||| (a, s) ∈ orderBy({{{ (a, b) ||| (a, b) ∈ X }}}), c ∈ s}}}
= cMap(λ(a, s). cMap(λc. [(a, c)], s),

orderBy(cMap(λ(a, b). {{(a, b)}}, X)))

If X were a bag, then the previous comprehension would have the type {{int× int}},
since the type bindings are a : int and b : {{int}}, which means that the order is lost.

The comprehension {{{ (a, b) ||| (a, b) ∈ X, order by a}}}, though, returns a list of type

[int× {{int}}] that preserves the order.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 27

types: t ::= basic | named-type | bag(t) | list(t) | (t1, . . . , tn) A1 : t1, . . . ,An : tn
patterns: p ::= v | ∗ | (p1, . . . , pn) A1 : p1, . . . ,An : pn

qualifiers: q ::= p in e | p = e
expressions: e ::= select [distinct] e from q1, . . . , qn // select query

[where ep]
[group by p [: e] [having eh]]
[order by po [: eo]

| repeat v = e step e [limit n] // repetition
| some q1, . . . , qn : ep // existential quantification
| all q1, . . . , qn : ep // universal quantification
| e1 union e2 // bag union
| aggregation(e) // named aggregation
| if e1 then e2 else e3 | let p = e in e
| (e1, . . . ,en) A1 : e1, . . . ,An : en e#i | e.A
| {e1, . . . ,en} | [e1, . . . ,en] | f (e1, . . . ,en) | e1[e2] | (e) | v | const | . . .

Fig. 6. The MRQL syntax.

As another example, matrix multiplication is translated to the monoid algebra as

follows:

{{{ (+/z, i, j) ||| (x, i, k) ∈ X, (y, k′, j) ∈ Y , k = k′, let z = x ∗ y, group by (i, j)}}}
= {{{ (reduce(+, z), i, j) ||| ((i, j), s) ∈ groupBy({{{ ((i, j), (x, k, y, k′, z))

||| (x, i, k) ∈ X, (y, k′, j) ∈ Y , k = k′, let z = x ∗ y }}}),
let x = {{{ x ||| (x, k, y, k′, z) ∈ s}}}, . . . , let z = {{{ z ||| (x, k, y, k′, z) ∈ s}}}}}}

= {{{ (reduce(+,{{{ z ||| (x, k, y, k′, z) ∈ s}}}), i, j)
||| ((i, j), s) ∈ groupBy({{{ ((i, j), (x, k, y, k′, x ∗ y))

||| (x, i, k) ∈ X, (y, k′, j) ∈ Y , k = k′ }}})}}}
= cMap(λ((i, j), s). {{(reduce(+, cMap(λ(x, k, y, k′, z). {{z}}, s)), i, j)}},

groupBy(cMap(λ(x, i, k). cMap(λ(y, k′, j).

if k = k′ then {{((i, j), (x, k, y, k′, x ∗ y))}} else {{ }}, Y), X)))

Monoid comprehensions without group-by or order-by qualifiers can be normal-

ized using the well-known law on comprehensions:

{{{ e ||| q1, p ∈ {{{ e′ ||| q3 }}}, q2 }}} → {{{ e ||| q1, q3, let p = e′, q2 }}} (24)

after renaming the variables in {{{ e′ ||| q3 }}} to prevent variable capture. We prove this

law in Theorem A.6 in the Appendix.

8 MRQL: A query language for Big Data analytics

Data analysts and database users are more familiar with SQL-like syntax than

comprehensions. Our monoid algebra has been used as the basis for Apache

MRQL (2017), which is a query processing and optimization system for large-

scale, distributed data analysis. MRQL was originally developed by the author

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

28 L. Fegaras

(Fegaras et al., 2012), but is now an Apache incubating project with many developers

and users worldwide. The MRQL language is an SQL-like query language for large-

scale data analysis on computer clusters. The MRQL query processing system

can evaluate MRQL queries in four modes: in Map–Reduce mode using Apache

Hadoop, in BSP mode using Apache Hama, in Spark mode using Apache Spark,

and in Flink mode using Apache Flink. The MRQL query language is powerful

enough to express most common data analysis tasks over many forms of raw in-situ

data, such as XML and JSON documents, binary files, and CSV documents. The

design of MRQL has been influenced by XQuery and ODMG OQL, although it

uses SQL-like syntax. In fact, when restricted to XML, MRQL is as powerful as

XQuery. With MRQL, users are able to express complex data analysis tasks, such

as PageRank, k-means clustering, matrix factorization, etc., using SQL-like queries

exclusively, while the MRQL query processing system is able to compile these queries

to efficient Java code that can run on various DISC platforms.

The MRQL data model consists of lists, bags, records, tuples, algebraic data types

(union types), parametric types, and basic types, such as integers and booleans.

These types can be freely nested, thus supporting nested relations and hierarchical

data. For example, XML data can be represented as a recursive algebraic data type

with two data constructors, Node and CData:

data XML = Node: < tag: String, attributes: { (String ,String) },
children: list (XML) >

| CData: String

It is interesting to see how MRQL processes instances of hierarchical data types, such

as XML and JSON, in parallel. This actually addresses the main criticism against

monoid homomorphisms, as they require data constructors to be associative. In

distributed processing, each processing node is assigned a data split that consists

of data fragments. Thus, hierarchical data, defined as algebraic data types, must be

fragmented into manageable pieces, so that the algebraic data type T becomes a list

of fragments, list(T). MRQL provides a customizable fragmentation technique to

suit a wide range of application needs. The MRQL expression used for parsing an

XML document is source(xml,path,tags,xpath), where path is the document path,

tags is a bag of synchronization tags, and xpath is the XPath expression used for

fragmentation. Given a data split from the XML document, this operation skips

all text until it finds the opening of a synchronization tag and then stores the text

upto the matching closing tag into a buffer. The buffer then becomes the current

context for xpath, which returns a sequence of XML objects. The XML processing

framework for MRQL is described in Fegaras et al. (2011).

The MRQL syntax is defined in Figure 6. Note that the curly bracket syntax,

{e1, . . . , en}, constructs a bag, not a set, since sets are not supported in MRQL. The

MRQL syntax is translated to monoid comprehensions using the transformations in

Figure 7. Without loss of generality, to simplify the translation rules, we have taken

the MRQL query parts after the “from” keyword to be general qualifiers, although

the order they can appear in an MRQL query can only be the order shown in

Figure 6.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 29

Fig. 7. Some translation rules from MRQL to monoid comprehensions.

For example, matrix multiplication can be translated as follows:

E�select (sum(z), i, j) from (x, i, k) in X, (y, k′, j) in Y , z = x ∗ y
where k = k′ group by (i, j)�

= {{{ (sum(z), i, j) ||| Q�(x, i, k) in X�, Q�(y, k′, j) in Y �, Q�z = x ∗ y�,
Q�where k = k′�, Q�group by (i, j)�}}}

= {{{ (+/z, i, j) ||| (x, i, k) ∈ X, (y, k′, j) ∈ Y , let z = x ∗ y, k = k′, group by (i, j)}}}

Figure 8 gives some of the type rules for the MRQL select queries. They are

directly derived from the type rules for monoid comprehensions. Some select queries

in the type rules use regular quantifiers q while others use general qualifiers Q so that

those with general qualifiers are matched first. The parametric types T , T1, and T2

in Figure 8 are collection types (lists or bags). The max function in Equation (25c)

returns the max collection type, based on the order list ≺ bag.

MRQL supports a number of predefined aggregation functions, such as count

and sum, but it also provides syntax to define new aggregations as monoids:

aggregation aggr name (plus, zero) : t

where aggr name is the name of the aggregation, t is the type, plus is an associative

function of type (t, t) → t, and zero is the identity of plus. Then, aggr name(e)

is translated to reduce(plus, e). The MRQL system will type-check the monoid

components of this definition but will not enforce the monoid properties.

9 Converting nested cMaps to joins

The translation rules from comprehensions to the monoid algebra, presented in

Section 7.1, do not generate coGroup operations because these rules do not include

cases that match joins, such as {{{ (x, y) ||| x ∈ X, y ∈ Y , p(x, y)}}}, for some join

predicate p(x, y). Such comprehensions with multiple generators were translated

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

30 L. Fegaras

Γ � (select (e,Vp

Q
) from Q) : T ((t0, (t1, . . . , tn)))

Γ, p/t0,Vp

Q
/(T (t1), . . . , T (tn)) � e′ : t

Γ � (select e′ from Q group by p : e) : bag(t)
(25a)

Γ � (select (e,Vp

Q
) from Q) : T ((t0, (t1, . . . , tn)))

Γ, p/t0,Vp

Q
/(T (t1), . . . , T (tn)) � e′ : t

Γ � (select e′ from Q order by p : e) : list(t)
(25b)

Γ � e : T1(t)

Γ, p/t � (select e′ from q) : T2(t
′)

T = max(T1, T2)

Γ � (select e′ from p in e, q) : T (t′)
(25c)

Γ � e : t

Γ, p/t � (select e′ from q) : T (t′)

Γ � (select e′ from p = e, q) : T (t′)
(25d)

Γ � e : boolean

Γ � (select e′ from Q) : T (t)

Γ � (select e′ from Q having e) : T (t)
(25e)

Γ � e : boolean

Γ � (select e′ from q) : T (t)

Γ � (select e′ from q where e) : T (t)
(25f)

Fig. 8. Some type rules for MRQL.

to nested cMaps. In this section, we present a general method for identifying

any possible equi-join (a join whose join predicate takes the form k1(x) = k2(y),

for some key function k1 and k2), including joins across deeply nested queries.

It is exactly because of these deeply nested queries that we have introduced

the coGroup operation, because, as we will see, nested queries over bags are

equivalent to outer joins. Translating nested cMaps to coGroups is crucial for good

performance in distributed processing. The only way to evaluate a nested cMap,

such as cMap(λx. cMap(λy. h(x, y), Y), X), in a distributed environment, where both

collections X and Y are distributed, is to broadcast the entire collection Y across

the processing nodes so that each processing node would join its own partition of X

with the entire dataset Y . This is a good evaluation plan if Y is small. By mapping

a nested cMap to a coGroup, we create opportunities for more evaluation strategies,

which may include the broadcast evaluation. For example, one good evaluation

strategy for large X and Y joined via the key functions k1 and k2, is to partition

X by k1, partition Y by k2, and shuffle these partitions to the processing nodes so

that data with matching keys will go to the same processing node. This is called a

distributed partitioned join. While related approaches for query unnesting (Fegaras

& Maier, 2000; Holsch et al., 2016) require many rewrite rules to handle various

cases of query nesting, our method requires only one and is more general as it

handles nested queries of any form and any number of nesting levels.

Consider the following nested query over the bags X and Y :

select x from x in X

where x.D > sum(select y.C from y in Y where x.A=y.B)

which is equivalent to the comprehension:

{{{ x ||| x ∈ X, x.D > +/{{{ y.C ||| y ∈ Y , x.A = y.B }}}}}}

A typical method for evaluating this nested query in a relational database system is

to first group Y by y.B:

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 31

select y.B, sum(y.C) from y in Y group by y.B

and then to join the result of this group-by query with X on x.A=y.B using a

left-outer join, keeping all those matches for which x.D is less than the sum. The

outer join is necessary because, otherwise, we may dismiss an x that has no matches

in Y with x.A=y.B. Using the monoid algebra, we want to translate this query to

cMap(λ(k, (xs, ys)). cMap(λx. if x.D > reduce(+, ys) then {{x}} else {{ }}, xs)
coGroup(cMap(λx. {{(x.A, x)}}, X),

cMap(λy. {{(y.B, y.C)}}, Y)))

That is, the query unnesting is done with a left-outer join, which is captured

concisely by the coGroup operation without the need for using an additional group-

by operation or handling null values. We generalize this unnesting technique to

convert pairs of nested cMaps to joins.

We consider patterns of algebraic terms of the form

cMap(λx. g(cMap(λy. h(x, y), e2)), e1)

for some terms e1 and e2 and some term functions g and h (i.e., terms that

contain their arguments as subterms). This pattern is equivalent to the monoid

comprehension

{{{ z ||| x ∈ e1, z ∈ g({{{w ||| y ∈ e2, w ∈ h(x, y)}}})}}}
For the cases we consider, the term e2 should not depend on x, otherwise it would

not be a join, and the terms e1 and e2 should not be lists, otherwise the derived join

may destroy the list order. This pattern matches any pair of nested cMaps on bags,

including those derived from nested queries, such as the previous MRQL query,

and those derived from join-like comprehensions, such as {{{ e′ ||| . . . , x ∈ e1, . . . , y ∈
e2, . . . , k1(x) = k2(y), . . . }}}. Thus, the method presented here detects and converts any

possible join to a coGroup. But, it may also match a term in multiple ways, such

as the term derived from {{{ e ||| x ∈ X, y ∈ Y , z ∈ Z, . . . }}}, which is translated to a

triple-nested cMap. In that case, any match order can be used, because the derived

coGroups can be optimized further by using cost-based rewrite rules that exploit

the associativity and commutativity properties of coGroup on bags.

Let F(X,Y) = cMap(λx. g(cMap(λy. h(x, y), Y)), X). To transform this term to a

join, we need to derive a join predicate from h(x, y). More specifically, we need to

derive two join key functions k1 and k2 such that k1(x) �= k2(y) implies h(x, y) = {{ }}.
This is equivalent to the condition h(x, y) = {{{ z ||| k1(x) = k2(y), z ∈ h(x, y)}}}. Then,

if there are such functions k1 and k2, we can do the following transformation on

F(X,Y):

F(X,Y) → cMap(λ(k, (xs, ys)). F(xs, ys),

coGroup(cMap(λx. {{(k1(x), x)}}, X), (26)

cMap(λy. {{(k2(y), y)}}, Y)))

This law is proven in Theorem A.7 in the Appendix. This is the only transformation

rule needed to derive any possible join from a query and unnest nested queries.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

32 L. Fegaras

For example, {{{ a ||| (a, b) ∈ X, a > +/{{{ c ||| (b′, c) ∈ Y , b′ = b}}}}}}, which is translated

to

cMap(λ(a, b). if a > reduce(+, cMap(λ(b′, c). if b′ = b then {{c}} else {{ }}, Y))

then {{a}} else {{ }}, X)

is transformed to

cMap(λ(k, (xs, ys)). cMap(λ(a, b). if a > reduce(+, cMap(λ(b′, c). {{c}}, ys))
then {{a}} else {{ }}, xs),

coGroup(cMap(λ(a, b). {{(b, (a, b))}}, X),

cMap(λ(b, c). {{(b, (b, c))}}, Y)))

where the cMap inside the reduce was simplified, given that b′ = b.

The main challenge in applying this transformation is to derive the join key

functions, k1 and k2, from the term function h. If cMaps are normalized first

using Equation (7), then the only place these key functions can appear is in

a cMap functional argument. Then, the body of the cMap functional argument

can be another cMap, in which case we consider the latter cMap, or a term

if p(x, y) then e else {{ }}, in which case we derive the keys from p(x, y), such that

k1(x) �= k2(y) ⇒ ¬p(x, y). If p(x, y) is already in the form k1(x) = k2(y), then in

addition to deriving the keys k1 and k2, we can simplify the term F(xs, ys) in

Equation (26) by replacing the term if p(x, y) then e else {{ }} with e, as we did in the

nested query example.

10 Other optimizations

Based on the naive implementation of the monoid algebraic operators given in

Section 5, the most expensive operation would be the coGroup, followed by the

groupBy, since they both require shuffling the data across the processing nodes.

The cMap operation, on the other hand, does not require any data shuffling, and

can be performed in parallel at each processing node. Therefore, it is important to

minimize the number of groupBy and coGroup operations and convert coGroups

to groupBys, when possible.

First, consider a very important optimization: translating a self-join to a single

group-by. Self-joins are actually very common in data analysis queries, especially

in graph analysis. Many graph algorithms are repetitive self-joins over the graph,

following a breadth-first search pattern. For example, the PageRank algorithm

computes the importance of the web pages in a web graph based exclusively on the

topology of the graph. For a graph with vertices V and edges E, the PageRank Pi

of a vertex vi ∈ V is calculated from the PageRank Pj of its incoming neighbors

vj ∈ V with (vj , vi) ∈ E using the recursive rule:

Pi =
∑

(vj ,vi)∈E

Pj

‖{ vk ||| (vj , vk) ∈ E }‖

If we represent a vertex vi as a record of type 〈 id: long, adjacent: bag(long) 〉,
where adjacent contains the destination vertices vj , such that (vi, vj) ∈ E, then the

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 33

following MRQL query computes one step of the PageRank algorithm over the web

graph Graph:

select < id: n.id , rank: n.rank, adjacent: m.adjacent >

from n in (select < id: a, rank: sum(in rank) >

from n in Graph

a in n.adjacent,

in rank = n.rank/count(n.adjacent)

group by a),

m in Graph

where m.id = n.id

The inner select query calculates the new PageRanks while the outer select query

reconstructs the graph to prepare it for the next repetition step. If it is implemented

naively in a DISC platform, the algebraic term of this query would require two

stages, one for the group-by and another for the self-join. But here, not only the

join is a self-join, but also the join key is equal to the group-by key. It is well known

though that a PageRank step can be computed using a single stage (Lin & Dyer,

2010). Consequently, we would like to derive an algebraic term that contains one

groupBy only.

The first transformation applies when a coGroup is over a groupBy and the

groupBy key is the same as the join key. Then the groupBy can be eliminated since

the coGroup is equivalent to a groupBy on both inputs:

coGroup(cMap(λ(k, s). {{(k, f(s))}}, groupBy(X)), Y) (27)

→ cMap(λ(k, (xs, ys)). {{(k, ({{f(xs)}}, ys))}}, coGroup(X,Y))

The correctness of this transformation is proven in Theorem A.8 in the Appendix.

The second transformation converts a coGroup over the same input bag into a

groupBy:

coGroup(cMap(f,X), cMap(g,X))

→ cMap(λ(k, s). {{(k, (cMap(λv. case v of inL(a)⇒ {{a}} | inR(b)⇒ {{ }}, s),
cMap(λv. case v of inL(a)⇒ {{ }} | inR(b)⇒ {{b}}, s)))}},

groupBy(cMap(λx. cMap(λ(k, a). {{(k, inL(a))}}, f(x))

	 cMap(λ(k, b). {{(k, inR(b))}}, g(x)), X)))

The correctness of this transformation can be proven using Theorem A.9 in the

Appendix by substituting cMap(f,X) for X and cMap(g,X) for Y in the theorem.

Note that neither of these transformation reduces the amount of the shuffled data;

in the first transformation, the left coGroup input over the groupBy result is already

shuffled on the join key, while the resulting groupBy in the second transformation

shuffles the input values twice, as is done by the coGroup. Both transformations

though reduce the time needed for barrier synchronization, since the first one

eliminates one stage and the latter one converts a coGroup to a groupBy, which has

less synchronization overhead. Based on these two transformations, the PageRank

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

34 L. Fegaras

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.5 1 1.5 2 2.5

T
ot

al
 T

im
e

(s
ec

s)

A) PageRank on 18 VCores, Graph Size (GB)

optimized
not optimized

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.5 1 1.5 2 2.5

T
ot

al
 T

im
e

(s
ec

s)

B) PageRank on 9 VCores, Graph Size (GB)

optimized
not optimized

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

T
ot

al
 T

im
e

(s
ec

s)

C) Nested, Data Size (GB)

18 VCores
9 VCores

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

T
ot

al
 T

im
e

(s
ec

s)

D) K-Means, Data Size (MB)

18 VCores
9 VCores

Fig. 9. Evaluation of PageRank, a nested query, and k-means clustering.

step is transformed to a term with one groupBy operation. The derived code is very

similar to the code one may have written to implement the PageRank in a DISC

framework using one stage per step.

11 Performance evaluation

The platform used for our evaluations is a small cluster of 10 nodes, built on the

Chameleon cloud computing infrastructure, www.chameleoncloud.org. Our virtual

cluster consists of 10 m1.medium instances running Ubuntu Linux, each one with 4

GB RAM, 40 GB HDD, and 2 VCores at 2.3 GHz. For our experiments, we used

Apache Hadoop 2.6.0 (Yarn), Apache Flink 1.0.3, and Apache MRQL 0.9.8. The

cluster front-end was used exclusively as a NameNode and ResourceManager, while

the remaining nine compute nodes were used as DataNodes and NodeManagers.

There was a total of 18 VCores and a total of 36 GB of RAM available for Flink

tasks. The HDFS file system was formatted with the block size set to 128 MB and

the replication factor set to 3. Each dataset used in our experiments was stored as a

single HDFS file. Our experiments were run on two different cluster sizes: one with

18 and another with 9 VCores. Each experiment was evaluated six times under the

same data and configuration parameters. Each data point in the plots in Figure 9

represents the mean value of six experiments while the vertical error bar at each line

point represents the minimum and maximum values among these six experiments.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 35

Our first experiment is to evaluate the PageRank algorithm described in Section 10.

To evaluate the effectiveness of the optimizations described in Section 10, we

evaluated PageRank in two modes: with and without these optimizations. When

these optimizations are used, the evaluation of PageRank requires only one stage per

iteration, while, when these optimizations are turned off, the evaluation of PageRank

requires two stages per iteration. The graphs used in our experiments were synthetic

data generated by the RMAT (Recursive MATrix) Graph Generator (Chakrabarti

et al., 2011) using the Kronecker graph generator parameters a = 0.30, b = 0.25,

c = 0.25, and d = 0.20. The number of distinct edges generated were 10 times the

number of graph vertices. We used 10 datasets RMAT-i, for i = 1 . . . 10, of size

i ∗ 0.231 GB, with i ∗ 106 vertices and i ∗ 107 edges. That is, the largest dataset

was 2.31 GB. The PageRank repeat query used 10 iterations. The results of the

PageRank evaluation for 18 VCores are shown in Figure 9(a) and for 9 VCores are

shown in Figure 9(b). With the optimizations turned on, the average speedup for 18

VCores was 28.6% and for 9 VCores was 22.1%.

The second experiment is to evaluate the nested query described in Section 9.

Our system translates this query to a simple coGroup, which is implemented as a

distributed partitioned join. Most other DISC query systems either do not permit

such a query nesting, or, if they do, they evaluate this query as a cross product,

by broadcasting the dataset used in the inner query to all the processing nodes.

We did not evaluate the latter case because the broadcast dataset is too large to

fit in the main memory of a processing node. We used 10 pairs of datasets X–i

and Y–i, for i = 1 . . . 10, where each dataset has i ∗ 2 ∗ 107 tuples and is of size

i ∗ 0.914 GB. That is, the largest input has a total size 9.14 GB. We used a many-

to-many join with a maximum of 2 ∗ 10 matches for each join key. The results of

the nested query evaluation are shown in Figure 9(c). These results indicate that,

when evaluating this nested query, there is little difference between 9 and 18 VCores,

using more than nine cores will not improve performance. This result may look

surprising because one may expect that adding more cores will increase the degree

of parallelism and hence decrease run-time, given that the amount of data shuffling

during coGroup is independent of the number of cores. But when the number

of cores increases, the cost for scheduling the data shuffling processes increases

and may equalize the performance gain from increasing the degree of parallelism.

In fact, there is an optimal number of cores for evaluating the groupBy and

coGroup operations on data of certain size; beyond that number, performance may

degrade.

The last experiment is to evaluate the following MRQL query that implements

the k-means clustering algorithm by repeatedly deriving k new centroids from the

old ones:

repeat centroids = ...

step select (< X: avg(s.X), Y: avg(s.Y) >, true)

from s in Points

group by k: (select c from c in centroids

order by distance(c,s))[0]

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

36 L. Fegaras

where Points is a dataset of points on the X–Y plane, centroids is the current

set of centroids (k cluster centers), and distance is a function that calculates the

Euclidean distance between two points. The initial value of centroids (the ... value)

is a bag of k random points. The inner select-query in the group-by part assigns the

closest centroid to a point s (where [0] returns the first tuple of an ordered list).

The outer select-query in the repeat step clusters the data points by their closest

centroid, and, for each cluster, a new centroid is calculated from the average values

of its points. Most SQL-like DISC query systems do not allow nested queries in the

group-by clause, but this time the naive evaluation plan, which is broadcasting the

inner bag (the centroids), is the best strategy because there are only k centroids. The

datasets used for the k-means query consist of random (X,Y) points in four squares

that have X in [2, 4] or [6, 8] and Y in [2, 4] or [6, 8]. Thus, the four centroids

are expected to be (3, 3), (3, 7), (7, 3), and (7, 7). We used 10 datasets KMeans-i, for

i = 1 . . . 10, where each datatset has i ∗ 106 points and is of size i ∗ 30.8 MB. That is,

the largest dataset is 308.1 MB. The k-means query uses 10 iterations. The results of

evaluating the k-means clustering query are shown in Figure 9(d). As in the previous

nested query, when evaluating the k-means query over these datasets, there is little

difference between the results for 9 and 18 VCores. Like for the previous nested

query, the explanation for this unexpected result is that the cost overhead of data

shuffling equalizes the performance gain from increasing the degree of parallelism.

12 Current work: Incrementalization

Recently, MRQL was extended to support the processing of continuous MRQL

queries over streams of batch data (that is, data that come in continuous large

batches). These extensions have been implemented on top of the Spark Streaming

engine (Zaharia et al., 2013). A more recent extension (Fegaras, 2016), called

Incremental MRQL, extends the MRQL streaming engine with incremental stream

processing capabilities to analyze data in incremental fashion, so that existing results

on current data are reused and merged with the results of processing the new data.

In many cases, incremental data processing can achieve better performance and

may require less memory than batch processing for many common data analysis

tasks. It can also be used for analyzing Big Data incrementally, in batches that

can fit in memory, thus enabling us to process more data with less hardware. In

addition, incremental data processing can be useful to stream-based applications

that need to process continuous streams of data in real time with low latency.

There is a substantial body of work on incrementalization, including self-adjusting

computation (Acar et al., 2009), which translates batch programs into programs

that can automatically respond to changes to their data. Our incremental processing

framework is able to statically transform any batch MRQL query to an incremental

stream processing query that returns accurate results, not approximate answers. This

is accomplished by retaining a minimal state during the query evaluation lifetime

and by returning an accurate snapshot answer at each time interval that depends

on the current state and the latest batches of data.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 37

The main idea of our approach is to convert an MRQL query q to a homo-

morphism so that q(S 	 ΔS) = q(S) ⊗ q(ΔS), for some monoid ⊗, where S is

the current data and ΔS is the new data. Then, we can maintain q(S) as a state

through streaming and combine it with q(ΔS) to derive a new state. Unfortunately,

although our algebraic operators are homomorphic, their composition may not

be (see Section 4.1). We have developed a general technique for transforming any

algebraic term to a homomorphism. This is accomplished by lifting the term so

that it propagates the groupBy and coGroup keys to the output. This is known as

lineage tracking. That way, the query results are grouped by a key combination that

corresponds the groupBy and coGroup keys used in deriving these values during

query evaluation. If we also group the new data in the same way, then computations

on existing data (the current state) can be combined with the computations on the

new data by joining the data on these keys. In fact, the merging of the query result

on the new data with the current state is done with �⊗, for some derived monoid

⊗. This full outer join is implemented efficiently as a distributed partitioned join, by

keeping the state partitioned on the lineage keys and shuffling only the new results

to processing nodes to be combined locally with the state using �⊗. The reader is

referred to Fegaras (2016) for more details.

13 Conclusion

We have presented an algebra that is expressive enough to capture most com-

putations supported by current data-centric distributed processing platforms. The

main evidence of its effectiveness comes from its use in MRQL, which can run

complex data analysis queries on a variety of distributed platforms, such as Map–

Reduce, Spark, Flink, and Hama. Monoid homomorphisms capture associativity

directly, which is essential for data parallelism. Monoid comprehensions extend list

comprehension with heterogeneous collections, and group-by and order-by syntax,

without the need of incorporating additional operations into the algebra. Our current

work on incremental computing gives further evidence of the effectiveness of monoid

homomorphisms, by giving a simple solution to the incrementalization problem by

transforming queries to homomorphisms.

Acknowledgments

We thank the anonymous reviewers for their careful reading of our manuscript and

their many insightful comments and suggestions to improve the quality of the paper.

The performance results presented in this paper were obtained using the Chameleon

testbed supported by the National Science Foundation.

References

Acar, U. A., Blelloch, G. E., Blume, M., Harper, R. & Tangwongsan, K. (2009) An experimental

analysis of self-adjusting computation. ACM Trans. Program. Lang. Syst. (TOPLAS) 32(1),

3:1–53.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

38 L. Fegaras

Aı̈t-Kaci, H. (2013) An abstract, reusable & extensible programming language design

architecture. In In Search of Elegance in the Theory and Practice of Computation, Springer

2013, LNCS 8000, pp. 112–166. Available at http://hassan-ait-kaci.net/pdf/hak-

opb.pdf.

Alexandrov, A., Katsifodimos, A., Krastev, G. & Markl, V. (2016) Implicit parallelism through

deep language embedding. SIGMOD Record 45(1), 51–58.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan,

T., Franklin, M. J., Ghodsi, A. & Zaharia, M. (2015) Spark SQL: Relational data

processing in Spark. In International Conference on Management of Data (SIGMOD).

pp. 1383–1394.

Apache Flink. (2017) Available at: http://flink.apache.org/, accessed January 2, 2017.

Apache Giraph. (2017) Available at: http://giraph.apache.org/, accessed January 2, 2017.

Apache Hadoop. (2017) Available at: http://hadoop.apache.org/, accessed January 2,

2017.

Apache Hama. (2017) Available at: http://hama.apache.org/, accessed January 2,

2017.

Apache Hive. (2017) Available at: http://hive.apache.org/, accessed January 2, 2017.

Apache MRQL (incubating). (2017) Available at: http://mrql.incubator.apache.org/

The MRQL syntax is described at http://wiki.apache.org/mrql/

LanguageDescription, accessed January 2, 2017.

Apache Spark. (2017) Available at: http://spark.apache.org/, accessed January 2,

2017.

Backhouse, R. & Hoogendijk, P. (1993) Elements of a relational theory of datatypes. In Formal

Program Development, IFIP TC2/WG 2.1 State of the Art Seminar, Springer-Verlag 1993,

LNCS, vol. 755, pp. 7–42.

Bancilhon, F., Briggs, T., Khoshafian, S. & Valduriez, P. (1987) FAD, a powerful and simple

database language. In Proceedings of the International Conference on Very Large Data

Bases. pp. 97–105.

Battre, D., Ewen, S., Hueske, F., Kao, O., Markl, V. & Warneke, D. (2010) Nephele/PACTs:

A programming model and execution framework for web-scale analytical processing. In 1st

ACM Symposium on Cloud Computing (SOCC’10). pp. 119–130.

Blelloch, G. (1993) NESL: A nested data-parallel language. Technical report, Carnegie Mellon

University. CMU-CS-93-129.

Blelloch, G. & Sabot, G. (1990) Compiling collection-oriented languages onto massively

parallel computers. J. Parallel Distrib. Comput. 8(2), 119–134.

Boykin, O., Ritchie, S., O’Connell, I. & Lin, J. (2014) Summingbird: A framework for

integrating batch and online MapReduce computations. Proc. VLDB Endowment (PVLDB)

7(13), 1441–1451.

Bryant, R. E. (2011) Data-intensive scalable computing for scientific applications. Comput.

Sci. Eng. 13(6), 25–33.

Buneman, P., Libkin, L., Suciu, D., Tannen, V. & Wong, L. (1994) Comprehension syntax.

SIGMOD Record 23(11), 87–96.

Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey, B., Shakib, D., Weaver, S. & Zhou, J.

(2008) SCOPE: Easy and efficient parallel processing of massive data Sets. Proc. VLDB

Endowment (PVLDB) 1(2), 1265–1276.

Chakrabarti, D., Zhan, Y. & Faloutsos, C. (2004) R-MAT: A recursive model for graph

mining. In SIAM International Conference on Data Mining (SDM). pp. 442–446.

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 39

Dean, J. & Ghemawat, S. (2004) MapReduce: Simplified data processing on large clusters. In

Symposium on Operating System Design and Implementation (OSDI).

Fegaras, L. (2012) Supporting bulk synchronous parallelism in map-reduce queries. In

International Workshop on Data Intensive Computing in the Clouds (DataCloud).

Fegaras, L. (2016) Incremental query processing on big data streams. IEEE Trans. Knowl. Data

Eng. 28(11), 2998–3012. Available at: https://lambda.uta.edu/tkde16-preprint.pdf.

Fegaras, L., Li, C., Gupta, U. & Philip, J. J. (2011) XML query optimization in map-reduce.

In International Workshop on the Web and Databases (WebDB).

Fegaras, L., Li, C. & Gupta, U. (2012) An optimization framework for map-reduce

queries. In International Conference on Extending Database Technology (EDBT).

pp. 26–37.

Fegaras, L. & Maier, D. (1995) Towards an effective calculus for object query languages. In

International Conference on Management of Data (SIGMOD). pp. 47–58.

Fegaras, L. & Maier, D. (2000) Optimizing object queries using an effective

calculus. ACM Trans. Database Syst. (TODS) 25(4), 457–516. Available at:

https://lambda.uta.edu/tods00.pdf.

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston, C., Reed,

B., Srinivasan, S. & Srivastava, U. (2009) Building a high-level dataflow system on

top of map-reduce: the pig Experience. Proc. VLDB Endowment (PVLDB) 2(2), 1414–

1425.

Gibbons, J. (1996) The third homomorphism theorem. J. Funct. Program. 6(4), 657–665.

Gibbons, J. (2016) Comprehending ringads: For Phil Wadler on the occasion of his 60th

birthday. In A List of Successes That Can Change the World. Springer 2016, LNCS, vol.

9600, pp. 132–151.

Giorgidze, G., Grust, T., Schweinsberg, N. & Weijers, J. (2011) Bringing back monad

comprehensions. In Haskell Symposium, pp. 13–22.

Grust, T. & Scholl, M. H. (1999) How to comprehend queries functionally. J. Intell. Inform.

Syst. 12(2–3), 191–218.

Holsch, J., Grossniklaus, M. & Scholl, M. H. (2016) Optimization of nested queries using the

NF2 algebra. In ACM SIGMOD International Conference on Management of Data. pp.

1765–1780.

Isard, M. & Yu, Y. (2009) Distributed data-parallel computing using a high-level programming

language. In ACM SIGMOD International Conference on Management of Data. pp. 987–

994.

Lin, J. & Dyer, C. (2010) Data-Intensive Text Processing with MapReduce. Morgan & Claypool

Publishers.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C. & Hellerstein, J. M. (2012)

Distributed GraphLab: A framework for machine learning and data mining in the cloud.

Proc. VLDB Endowment (PVLDB) 5(8), 716–727.

Malewicz, G., Austern, M. H., Bik, A. J.C., Dehnert, J. C., Horn, I., Leiser, N. & Czajkowski, G.

(2010) Pregel: A system for large-scale graph processing. In ACM SIGMOD International

Conference on Management of Data. pp. 135–146.

Olston, C., Reed, B., Srivastava, U., Kumar, R. & Tomkins, A. (2008) Pig Latin: A not-

so-foreign language for data processing. In ACM SIGMOD International Conference on

Management of Data. pp. 1099–1110.

Power, R. & Li, J. (2010) Piccolo: Building fast, distributed programs with partitioned tables.

In Symposium on Operating System Design and Implementation (OSDI).

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

40 L. Fegaras

Shinnar, A., Cunningham, D., Herta, B. & Saraswat, V. (2012) M3R: Increased

performance for in-memory hadoop jobs. Proc. VLDB Endowment (PVLDB) 5(12), 1736–

1747.

Steele, G. L. Jr. (2009) Organizing functional code for parallel execution or, foldl and foldr

considered slightly harmful. In ICFP. pp. 1–2.

Tannen, V. B., Buneman, P. & Naqvi, S. (1991) Structural recursion as a query language. In

International Workshop on Database Programming Languages: Bulk Types and Persistent

Data (DBPL). pp. 9–19.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Antony, S., Liu, H., Wyckoff, P. &

Murthy, R. (2009) Hive: A warehousing solution over a map-reduce framework. Proc.

VLDB Endowment (PVLDB) 2(2), 1626–1629.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,

H. & Murthy, R. (2010) Hive: A petabyte scale data warehouse using hadoop. In IEEE

International Conference on Data Engineering (ICDE). pp. 996–1005.

Trinder, P. & Wadler, P. (1989) Improving list comprehension database queries. In TENCON.

pp. 186–192.

Trinder, P. W. (1991) Comprehensions, a query notation for DBPLs. In International

Workshop on Database Programming Languages (DBPL). pp. 55–68.

Valiant, L. G. (1990) A bridging model for parallel computation. Commun. ACM (CACM)

33(8), 103–111.

Wadler, P. (1990) Comprehending monads. In ACM Symposium on Lisp and Functional

Programming. pp. 61–78.

Wadler, P. (1987) List comprehensions. In The Implementation of Functional Programming

Languages, Peyton Jones, S. (ed.). Prentice Hall, Chapter 7.

Wadler, P. & Peyton Jones, S. (2007) Comprehensive comprehensions (comprehensions with

‘Order by’ and ‘Group by’). In Haskell Symposium. pp. 61–72.

Wong, L. (2000) Kleisli, a functional query system. J. Funct. Program. 10(1), 19–56.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker,

S. & Stoica, I. (2012) Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI).

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S. & Stoica, I. (2013) Discretized streams:

Fault-tolerant streaming computation at scale. In Symposium on Operating Systems

Principles (SOSP).

Appendix A: Proofs

Theorem A.1 (cMap Fusion)

For all f, g, and S:

cMap(f, cMap(g, S)) = cMap(λx. cMap(f, g(x)), S) (7)

Proof

We prove this theorem from the cMap definition using structural induction. Let S

be a collection of type �⊕(α), for some collection monoid ⊕. The theorem is true

for S = 1⊕ and for S = �⊕(x), for all x. Assuming that it is true for S = X and

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 41

S = Y (induction hypothesis), we prove that it is also true for S = X ⊕ Y :

cMap(f, cMap(g,X ⊕ Y))

= [from Equation (6), for some collection monoid ⊗]

cMap(f, cMap(g,X)⊗ cMap(g, Y))

= [from Equation (6), for some collection monoid]

cMap(f, cMap(g,X)) cMap(f, cMap(g, Y))

= [from induction hypothesis]

cMap(λx. cMap(f, g(x)), X) cMap(λx. cMap(f, g(x)), Y)

= [from Equation (6)]

cMap(λx. cMap(f, g(x)), X ⊕ Y)

�

Theorem A.2 (groupBy Unnesting)

Unnesting a groupBy over a bag X returns the input bag X :

{{{ (k, v) ||| (k, s) ∈ groupBy(X), v ∈ s}}} = X

Proof

We prove this theorem using structural induction. The theorem is true for an empty

bag and for a singleton bag X. The inductive step

{{{ (k, v) ||| (k, s) ∈ groupBy(X 	 Y), v ∈ s}}} = X 	 Y

can be proven as follows. Let X ′ = groupBy(X) and Y ′ = groupBy(Y). Then, for

M(X ′, Y ′) = {{{ (k, a) ||| (k, a) ∈ X ′, (k′, b) ∈ Y ′, k = k′ }}} (A 1)

	 {{{ (k, a) ||| (k, a) ∈ X ′, ∀(k′, b) ∈ Y ′ : k′ �= k }}}

we have

M(X ′, Y ′) =X ′ (A 2)

because for each group-by key k, there is at most one (k, a) ∈ X ′ and at most one

(k, b) ∈ Y ′. Then, we have

{{{ (k, v) ||| (k, s) ∈ groupBy(X 	 Y), v ∈ s}}}
= [from the groupBy def.]

{{{ (k, v) ||| (k, s) ∈ (X ′ �	 Y ′), v ∈ s}}}
= [from Equation (9)]

{{{ (k, v) ||| (k, s) ∈ ({{{ (k, a 	 b) ||| (k, a) ∈ X ′, (k′, b) ∈ Y ′, k = k′ }}}
	 {{{ (k, a) ||| (k, a) ∈ X ′, ∀(k′, b) ∈ Y ′ : k′ �= k }}}
	 {{{ (k, b) ||| (k, b) ∈ Y ′, ∀(k′, b) ∈ X ′ : k′ �= k }}}), v ∈ s}}}

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

42 L. Fegaras

= [from Equation (24)]

{{{ (k, v) ||| (k, a) ∈ X ′, (k′, b) ∈ Y ′, k = k′, v ∈ (a 	 b)}}}
	 {{{ (k, v) ||| (k, a) ∈ X ′, ∀(k′, b) ∈ Y ′ : k′ �= k, v ∈ a}}}
	 {{{ (k, v) ||| (k, b) ∈ Y ′, ∀(k′, b) ∈ X ′ : k′ �= k, v ∈ b}}}

= [by expanding the qualifier v ∈ (a 	 b)]

{{{ (k, v) ||| (k, a) ∈ X ′, (k′, b) ∈ Y ′, k = k′, v ∈ a}}}
	 {{{ (k, v) ||| (k, a) ∈ X ′, (k′, b) ∈ Y ′, k = k′, v ∈ b}}}
	 {{{ (k, v) ||| (k, a) ∈ X ′, ∀(k′, b) ∈ Y ′ : k′ �= k, v ∈ a}}}
	 {{{ (k, v) ||| (k, b) ∈ Y ′, ∀(k′, b) ∈ X ′ : k′ �= k, v ∈ b}}}

= [from Equation (A 1)]

{{{ (k, v) ||| (k, a) ∈M(X ′, Y ′), v ∈ a}}} 	 {{{ (k, v) ||| (k, b) ∈M(Y ′, X ′), v ∈ b}}}
= [from Equation (A 2)]

{{{ (k, v) ||| (k, a) ∈ X ′, v ∈ a}}} 	 {{{ (k, v) ||| (k, b) ∈ Y ′, v ∈ b}}}
= [from induction hypothesis]

X 	 Y

�

Theorem A.3 (groupBy Fusion)

For any collection X of type �⊕(κ× α):

groupBy(groupBy(X)) = cMap(λ(k, s). {{(k, {{s}})}}, groupBy(X)) (11)

Proof

We prove this theorem using structural induction. The theorem is true for an empty

and for a singleton collection X. The inductive step for X = X1 ⊕X2 can be proven

as follows:

groupBy(groupBy(X)) = groupBy(groupBy(X1 ⊕X2))

= [from groupBy def.]

groupBy(groupBy(X1) �⊕ groupBy(X2))

= [from groupBy def.]

groupBy(groupBy(X1)) ��⊕ groupBy(groupBy(X2))

= [from induction hypothesis]

cMap(λ(k, s). {{(k, {{s}})}}, groupBy(X1)) ��⊕ cMap(λ(k, s). {{(k, {{s}})}}, groupBy(X2))

= [from � def.]

{ (k, {{a}} �⊕ {{b}}) ||| (k, a) ∈ groupBy(X1), (k, b) ∈ groupBy(X2) } 	 · · ·

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 43

= [from groupBy def.]

cMap(λ(k, s). {{(k, {{s}})}}, groupBy(X1 ⊕X2))

= cMap(λ(k, s). {{(k, {{s}})}}, groupBy(X))

where the · · · are terms that have been omitted for brevity. �

Theorem A.4 (⇑⊕ is a Monoid)

In the domain of sorted key-value sequences, the operation ⇑⊕, defined in

Equations (14a)–(14c), is a monoid with identity [].

Proof

From Equation (14c), [] ⇑⊕ Y = Y . We prove X ⇑⊕ [] = X using induction on the

sorted sequence X. It is true for X = [] and X = [(k, v)]. Let X = X1 ++ X2, where

X1 and X2 are sorted sequences. Then, X = X1 ⇑⊕ X2, since X is a sorted sequence.

Assuming X2 ⇑⊕ [] = X2 (induction hypothesis), we have

X ⇑⊕ [] = (X1 ++ X2) ⇑⊕ []

= [from Equation (14a)]

X1 ⇑⊕ (X2 ⇑⊕ [])

= [from induction hypothesis]

X1 ⇑⊕ X2 = X

Let X1 and X2 be two sorted sequences. Then, in (X1 ++ X2) ⇑⊕ Y , the sequence

X1++X2 in the domain of ⇑⊕ must be sorted, which implies that X1++X2 = X1 ⇑⊕ X2.

From Equation (14a), (X1 ++ X2) ⇑⊕ Y = X1 ⇑⊕ (X2 ⇑⊕ Y), which implies the

associativity law (X1 ⇑⊕ X2) ⇑⊕ Y = X1 ⇑⊕ (X2 ⇑⊕ Y). �

Theorem A.5

The group-by and order-by elimination rules in Equations (20a) and (20b) are conflu-

ent, that is, if there are multiple group-by and order-by qualifiers in a monoid compre-

hension, the order that these qualifiers are eliminated using these rules is

insignificant.

Proof

We prove this theorem for two group-bys in the same comprehension:

{{{ e ||| q1, group by p1 : e1, q2, group by p2 : e2, q3 }}}
= [from Equation (20a) applied to the first group by]

{{{ e ||| (p1, s1) ∈ groupBy({{{ (e1,Vp1

q1
) ||| q1 }}}),

∀v ∈ Vp1

q1
: let v = {{{ v ||| Vp1

q1
∈ s1 }}}, q2,

group by p2 : e2, q3 }}}

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

44 L. Fegaras

= [from Equation (20a) with q = q1, group by p1 : e1, q2]

{{{ e ||| (p2, s2) ∈ groupBy({{{ (e2,Vp2

q2
) ||| (p1, s1) ∈ groupBy({{{ (e1,Vp1

q1
) ||| q1 }}}),

∀v ∈ Vp1

q1
: let v = {{{ v ||| Vp1

q1
∈ s1 }}}, q2 }}}),

∀v ∈ Vp2

q2
: let v = {{{ v ||| Vp2

q2
∈ s2 }}}, q3 }}}

= [from Equation (20a) applied to the inner comprehension]

{{{ e ||| (p2, s2) ∈ groupBy({{{ (e2,Vp2

q2
) ||| q1, group by p1 : e1, q2 }}},

∀v ∈ Vp2

q2
: let v = {{{ v ||| Vp2

q2
∈ s2 }}}, q3 }}}

which is equal to the original term with the second group-by translated first. �

Theorem A.6 (Comprehension unnesting)

Monoid comprehensions without group-by or order-by qualifiers satisfy

{{{ e ||| q1, p ∈ {{{ e′ ||| q3 }}}, q2 }}} = {{{ e ||| q1, q3, let p = e′, q2 }}} (24)

for all qualifiers q1, q2, and q3, for any pattern p, and for all expressions e and e′.

Proof

It is sufficient to prove

{{{ e ||| p ∈ {{{ e′ ||| q3 }}}, q2 }}} = {{{ e ||| q3, let p = e′, q2 }}}

since both comprehensions in Equation (24) start with the same qualifiers q1. We

prove this equation using induction over the first qualifier of q3, which we assume is

a generator qualifier (the proof for the other qualifiers types is easier). That is, we

assume the law is true for q′3 and we prove it for q3 = p3 ∈ e3, q
′
3 (comprehension

subscripts have been omitted):

{{{ e ||| p ∈ {{{ e′ ||| q3 }}}, q2 }}} = {{{ e ||| p ∈ {{{ e′ ||| p3 ∈ e3, q
′
3 }}}, q2 }}}

= [from Rule (23b)]

{{{ e ||| p ∈ cMap(λp3.{{{ e′ ||| q′3 }}}, e3), q2 }}}
= [from Rule (23b)]

cMap(λp.{{{ e ||| q2 }}}, cMap(λp3.{{{ e′ ||| q′3 }}}, e3))

= [from Equation (7)]

cMap(λp3. cMap(λp.{{{ e ||| q2 }}}, {{{ e′ ||| q′3 }}}), e3)

= [from Rule (23b)]

cMap(λp3.{{{ e ||| p ∈ {{{ e′ ||| q′3 }}}, q2 }}}, e3)

= [from Rule (23b)]

{{{ e ||| p3 ∈ e3, p ∈ {{{ e′ ||| q′3 }}}, q2 }}}
= [from induction hypothesis]

{{{ e ||| p3 ∈ e3, q
′
3, let p = e′, q2 }}} = {{{ e ||| q3, let p = e′, q2 }}} �

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 45

Theorem A.7 (Nested cMaps to a coGroup)

Let F(X,Y) be a nested cMap over bags

F(X,Y) = cMap(λx. g(cMap(λy. h(x, y), Y)), X)

= {{{ z ||| x ∈ X, z ∈ g({{{w ||| y ∈ Y , w ∈ h(x, y)}}})}}}

for some term functions g and h. If there are term functions k1 and k2 such that

h(x, y) = if (k1(x) = k2(y)) then h(x, y) else {{ }}, then F(X,Y) is equal to

cMap(λ(k, (xs, ys)). F(xs, ys),

coGroup(cMap(λx. {{(k1(x), x)}}, X), cMap(λy. {{(k2(y), y)}}, Y)))

Proof

It can be proven (with a proof similar to that of Equation (10)) that, if a coGroup

is over bags, then each of the coGroup inputs can be derived from the coGroup

result:

{{{ (k, x) ||| (k, (s1, s2)) ∈ coGroup(X,Y), x ∈ s1 }}} = X (A 3)

{{{ (k, y) ||| (k, (s1, s2)) ∈ coGroup(X,Y), y ∈ s2 }}} = Y (A 4)

The theorem precondition is equivalent to h(x, y) = {{{ z ||| k1(x) = k2(y), z ∈ h(x, y)}}}.
For X ′ = cMap(λx. {{(k1(x), x)}}, X) and Y ′ = cMap(λy. {{(k2(y), y)}}, Y), we have

F(X,Y) = {{{ z ||| x ∈ X, z ∈ g({{{w ||| y ∈ Y , w ∈ h(x, y)}}})}}}
= [from the precondition]

{{{ z ||| x ∈ X, z ∈ g({{{w ||| y ∈ Y , w ∈ {{{ z ||| k1(x) = k2(y), z ∈ h(x, y)}}}}}})}}}
= [from Equation (24)]

{{{ z ||| x ∈ X, z ∈ g({{{w ||| y ∈ Y , k1(x) = k2(y), w ∈ h(x, y)}}})}}}
= [from the X ′ and Y ′ def.]

{{{ z ||| (k, x) ∈ X ′, z ∈ g({{{w ||| (k′, y) ∈ Y ′, k = k′, w ∈ h(x, y)}}})}}}
= [from Equation (A 3)]

{{{ z ||| (k, (xs, ys)) ∈ coGroup(X ′, Y ′), x ∈ xs,

z ∈ g({{{w ||| (k′, y) ∈ Y ′, k = k′, w ∈ h(x, y)}}})}}}
= [from Equation (A 4)]

{{{ z ||| (k, (xs, ys)) ∈ coGroup(X ′, Y ′), x ∈ xs,

z ∈ g({{{w ||| (k′, (xs′, ys′)) ∈ coGroup(X ′, Y ′), y ∈ ys′, k = k′, w ∈ h(x, y)}}})}}}
= [the qualifier (k′, (xs′, ys′)) ∈ coGroup(X ′, Y ′) can be removed because it is

over the same key k′ = k as in (k, (xs, ys)) ∈ coGroup(X ′, Y ′)]

{{{ z ||| (k, (xs, ys)) ∈ coGroup(X ′, Y ′), x ∈ xs, z ∈ g({{{w ||| y ∈ ys, w ∈ h(x, y)}}})}}}

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

46 L. Fegaras

= [from Equation (24)]

{{{ c ||| (k, (xs, ys)) ∈ coGroup(X ′, Y ′), c ∈ {{{ z ||| x∈xs, z∈g({{{w ||| y ∈ ys, w∈h(x, y)}}})}}}}}}
= [from the F def.]

{{{ c ||| (k, (xs, ys)) ∈ coGroup(X ′, Y ′), c ∈ F(xs, ys)}}}
= [from Equations (23b)–(23e)]

cMap(λ(k, (xs, ys)). F(xs, ys), coGroup(X ′, Y ′)) �

Theorem A.8 (coGroup–groupBy Fusion)

For all bags X and Y :

coGroup(cMap(λ(k, s). {{(k, f(s))}}, groupBy(X)), Y)

= cMap(λ(k, (xs, ys)). {{(k, ({{f(xs)}}, ys))}}, coGroup(X,Y))

Proof

First, for all bags X and Y , we have

coGroup(X,Y)

= [from Equation (17)]

{{{ (k, (xs, ys)) ||| (k, (xs, ys)) ∈ (coGroup(X, {{ }}) �	�	 coGroup({{ }}, Y))}}}
= [from Equations (18a) and (18b)]

{{{ (k, (xs, ys)) ||| (k, (xs, ys)) ∈ ({{{ (k, (xs, {{ }})) ||| (k, xs) ∈ groupBy(X)}}}
�	�	 {{{ (k, ({{ }}, ys)) ||| (k, ys) ∈ groupBy(Y)}}})}}}

= [from Equation (9)]

{{{ (k, (xs, ys)) ||| (k, (xs, ys)) ∈ ({{{ (k, (xs, ys)) ||| (k, xs) ∈ groupBy(X),

(k′, ys) ∈ groupBy(Y), k = k′ }}} 	 · · ·)}}}
={{{ (k, (xs, ys)) ||| (k, xs) ∈ groupBy(X), (k′, ys) ∈ groupBy(Y), k = k′ }}} 	 · · ·

Using this equation, we have

cMap(λ(k, (xs, ys)). {{(k, ({{f(xs)}}, ys))}}, coGroup(X,Y))

={{{ (k, ({{f(xs)}}, ys)) ||| (k, (xs, ys)) ∈ coGroup(X,Y)}}}
= [from the previous equation for coGroup]

{{{ (k, ({{f(xs)}}, ys)) ||| (k, xs) ∈ groupBy(X), (k′, ys) ∈ groupBy(Y), k = k′ }}} 	 · · ·
= [from Equation (11)]

{{{ (k, (f(xs), ys)) ||| (k, xs) ∈ groupBy(groupBy(X)), (k′, ys) ∈ groupBy(Y), k=k′ }}} 	 · · ·
= [from the previous equation for coGroup]

coGroup(cMap(λ(k, s). {{(k, f(s))}}, groupBy(X)), Y)

where the · · · are terms that have been omitted for brevity. �

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

An algebra for distributed Big Data analytics 47

Theorem A.9 (coGroup to groupBy)

For all bags X and Y :

coGroup(X,Y) = cMap(λ(k, s). {{(k, (l′(s), r′(s)))}},
groupBy(l(X) 	 r(Y)))

where

l(X) = cMap(λ(k, a). {{(k, inL(a))}}, X)

r(Y) = cMap(λ(k, b). {{(k, inR(b))}}, Y)

l′(s) = cMap(λv. case v of inL(a)⇒ {{a}} | inR(b)⇒ {{ }}, s)
r′(s) = cMap(λv. case v of inL(a)⇒ {{ }} | inR(b)⇒ {{b}}, s)

Proof

We use the following two equations which can be proven by induction on bags X

and Y :

groupBy(X) = {{{ (k, l′(s)) ||| (k, s) ∈ groupBy(l(X))}}}
groupBy(Y) = {{{ (k, r′(s)) ||| (k, s) ∈ groupBy(r(Y))}}}

Based on these equations, we have

coGroup(X,Y)

= [from the proof of Theorem A.8]

{{{ (k, (xs, ys)) ||| (k, xs) ∈ groupBy(X), (k′, ys) ∈ groupBy(Y), k = k′ }}} 	 · · ·
= [from the previous equations]

{{{ (k, (xs, ys)) ||| (k, xs) ∈ {{{ (k, l′(s)) ||| (k, s) ∈ groupBy(l(X))}}},
(k′, ys) ∈ {{{ (k, r′(s)) ||| (k, s) ∈ groupBy(r(Y))}}}, k = k′ }}} 	 · · ·

= [from Equation (24)]

{{{ (k, (l′(s1), r′(s2))) ||| (k, s1) ∈ groupBy(l(X)),

(k′, s2) ∈ groupBy(r(Y)), k = k′ }}} 	 · · ·
= [from Equation (9)]

{{{ (k, (l′(s), r′(s))) ||| (k, s) ∈ (groupBy(l(X)) �	 groupBy(r(Y)))}}}
= [from the groupBy def.]

{{{ (k, (l′(s), r′(s))) ||| (k, s) ∈ groupBy(l(X) 	 r(Y))}}}

where the · · · are terms that have been omitted for brevity. �

https://doi.org/10.1017/S0956796817000193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000193

