
45

Potential approaches to quarkonia

45.1 The Schrödinger equation

As mentioned earlier, when the heavy quark mass m Q is much larger than the QCD scale
�QCD, the running coupling αs(m Q) is small implying that at this scale of the order of
the Compton wavelengh λ ∼ 1/m Q , one can safely use perturbative QCD for describing
the hadrons. In this case the heavy Q̄ Q bound states with the size λ/αs(m Q) � Rhad ∼ 1
fermi are hydrogen-like atoms to which ordinary quantum mechanics can be applied. In
the non-relativistic limit (NR), it is possible to show that the interaction between the two Q̄
and Q states can be described by a local potential V (�r ), where �r is the relative coordinate
between Q and Q̄ (spin is neglected for the moment). The energy levels and wave functions
of the bound states can be found by solving the Schrödinger equation in three-dimensions:

Enl�nlm(�r ) =
[
− h̄2

2µ
� + V (�r )

]
�nlm(�r ) (45.1)

where µ ≡ m Q/2 is the reduced mass of the system; �nlm(�r ) is the Schrödinger wave
function; V (�r ) is the interaction potential and Enl is the energy eigenvalue; n, l and m are
respectively the principal quantum number, angular orbital, and eigenvalue of lz on the
z-axis; h̄ = 1 in standard units:

� ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (45.2)

is the Laplacian. In the case of central pontential, the wave function can be decomposed
into its radial Rnl(r ) and spherical harmonic Ylm(θ, φ) components:

�nlm(�r ) = Rnl(r )Ylm(θ, φ) . (45.3)

In terms of the reduced wave function:

unl(r ) ≡ r Rnl(r ) , (45.4)

the Schrödinger equation becomes:

−d2unl

dr2
= − h̄2

2µ

[
Enl − V (r ) − l(l + 1)h̄2

2µr2

]
unl(r ) , (45.5)

464

https://doi.org/10.1017/9781009290296.058 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.058


45 Potential approaches to quarkonia 465

Fig. 45.1. Current situation of the charmonium system and transitions interpreted from some models.
Dashed lines are uncertain states. γ ∗ refers to processes involving virtual photons, including decays
into e+e− and µ+µ−.

with the boundary conditions:

unl(0) = 0 ,
dunl

dr

∣∣∣∣∣
u=0

= Rnl(0) , (45.6)

except that even parity solutions are inconsistent with the above boundary conditions. The
wave function is normalized such that:∫

d3�r |�nlm(�r )|2 =
∫ ∞

0
dr |unl(r )|2 = 1 . (45.7)

It shows that the system is now described by the effective potential:

Veff(r ) ≡ V (r ) + l(l + 1)h̄2

2µr2
, (45.8)

Obviously, the main uncertainty for a quantitative spectroscopy is the choice of the correct
Q̄ Q potential V (r ) as far as its exact form is not yet known from first principles. We show
in Fig. 45.1 the spectra of charmonium and in Fig. 45.2 those for the bottomium systems
from [16]

45.2 The QCD static Coulomb potential

First, the model has to recover the short distance QCD Coulomb static potential. The expres-
sion of this potential can be derived from the tree-level scattering amplitude of the process:

A[Q(p1, λ1, i1) + Q̄((p2, λ2, i2) → Q(p′
1, λ

′
1, i ′

1) + Q̄((p′
2, λ

′
2, i ′

2)] , (45.9)

shown at tree level in Fig. 45.3; i, j and λi are respectively colour and spinor indices.
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466 IX QCD non-perturbative methods

Fig. 45.2. Same as in Fig. 45.1 but for the Bottomium system.

In a covariant Feynman gauge, it is easy to obtain:

A = 1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1

(
g2

4π2

)
ū(p′

1, λ
′
1)γ µu(p1, λ1)

gµν

k2
v̄(p2, λ2)γ µv(p′

2, λ
′
2) , (45.10)

where λa are colour matrices. It can again be rearranged by using the relation:

v̄(p2, λ2)γµv(p′
2, λ

′
2) = −ū(p′

2, λ
′
2)γµu(p2, λ2) . (45.11)

The non-relativistic amplitude is related to A as:

TNR = 1

4
√

p10 p′
10 p20 p′

20

A . (45.12)

In the non-relativistic limit:

p0 ≡
√

�p2 + m2
Q 	 m Q + �p2

2m Q
+ �p4

8m2
Q

,

k2 = (p10 − p20)2 − �k2 	 −�k2 + �p2 − �p′2

4m2
Q

, (45.13)
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Q

Q

p2, λ2, i2

p1,
λ1,

i 1

p'1, λ'1, i '1

p' 2,
λ' 2,

i ' 2

Fig. 45.3. Tree-level diagram for Q̄ Q scattering.

and

1√
2p0

u(p, λ) 	
((

1 − �p2/4m2
Q

)
χ (λ)

(1/2m Q) �p · �σχ (λ)

)
(45.14)

where the Pauli matrices �σ act on the two-component spinor χ (λi ). In the static limit, one
can retain only the leading term in Eq. (45.13), and obtains:

TNR(Born) 	 −1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1

(
g2

4π2

)
χ †(λ′

1)χ †(λ′
2)

1
�k2

χ (λ1)χ (λ2)

= −1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1
δλ1λ

′
1
δλ2λ

′
2

(
g2

4π2

)
1
�k2

. (45.15)

On the other hand, the non-relativistic amplitude can be related to the potential as:

TNR(Born) = − 1

4π2

∫
d3�r ei�k�rχ †(λ′

1)χ †V (�r )(λ′
2)

1
�k2

χ (λ1)χ . (45.16)

By identification, taking the inverse Fourier transform, and using:

1

4

∑
a

λa
i2i ′

2
λa

i1i ′
1
=

{−CF : Singlet
1

2Nc
= 1

6
: Octet

(45.17)

one obtains the expression.1

V (r � 1/�QCD) = −
(

CF ≡ 4

3

)
αs

r
: Singlet

=
(

1

2Nc

)
αs

r
: Octet , (45.18)

where the running of the QCD coupling and the form of the potential have been verified
on the lattice. Using this form of the potential, the eigenvalue of the previous Schrödinger

1 We shall only consider the singlet case in the following.
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468 IX QCD non-perturbative methods

equation in Eq. (45.5) is the so-called binding energy:

Enl = 2m Q − C2
Fα2

s

4n2
m Q . (45.19)

45.3 Potential models

The model dependence enters into the large distance part (r � 1/�QCD) of the potential.
Many phenomenological QCD-motivated forms of the potential have been proposed in the
literature [12,81–94].

45.3.1 Cornell potential

The simplest phenomenological form is the Cornell linear potential [82]:

V (r � 1/�QCD) 	 σr (45.20)

where σ is the QCD string tension.

45.3.2 Richardson potential

In the Richardson potential [83], the QCD coupling in the Coulomb potential is allowed
to run, and an interpolating formula for the Fourier transform of the potential has been
proposed:

Ṽ (q) = −4

3

(
48π2

33 − 2n f

)
1

q2 ln
(
1 + q2/�2

QCD

) . (45.21)

which behaves as:

Ṽ (q � �QCD) ∼ 1

q2 ln
(
q2/�2

QCD

) , V (q � �QCD) ∼ 1

q2
. (45.22)

The charmonium and upsilon spectroscopy fix the parameters to be:

�QCD ≈ 400 MeV , σ 	 (400 MeV)2 . (45.23)

45.3.3 Martin potential

Some more empirical models are the Martin potential [12,84–86]:

V (r ) ∼ A + Brn , (45.24)

where the different terms are fixed from the fit of the rich quarkonia families. The power of
the potential is found to be:

n 	 0.1 . (45.25)
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45 Potential approaches to quarkonia 469

Martin’s potential is neither Coulombic at short distance nor linear at long distance, but
is strongly constrained inside the region 0.1 ∼ 1 fermi. Its slight modification outside this
region does not affect the results as the wave function vanishes rapidly.

From the concavity properties of the potential [12,84–86]:

dV

dr
> 0 ,

d2V

dr2
< 0 =⇒ d

dr

(
1

r

dV

dr

)
< 0 , (45.26)

some impressive sets of inequalities can be derived. If n is the number of nodes of the radial
wave functions, and l the orbital angular momentum, one has for n ≥ 0:

E(n, l + 1) >
1

2
[E(n + 1, l) + E(n, l)] , (45.27)

which is satisfied by the observed masses:

Mϒ ′ − Mϒ > Mϒ ′ − Mϒ” . . . (45.28)

The flavour independence assumption leads to the concavity relation:

2E(Q̄q) > E(Q̄ Q) + E(Q̄q) , (45.29)

which is well satisfied by the observed masses. In particular, one expects to have:

MBc ≥ 1

2
[Mψ + Mϒ ] , (45.30)

while the lower bound can also be obtained [86]. Analogous inequalities have also been
derived among baryons and mesons.

However, despite the great phenomenological success of various types of potential mod-
els, some difficulties arise in attempting to relate them to field theory. Leutwyler and
Voloshin criticize the locality of the potentials [90], whilst Bell and Bertlmann [91–93]
do not see their flavour independence.

45.4 QCD corrections to the static Coulomb potential: Leutwyler–Voloshin model

In this section, we shall consider the Coulomb static potential given in Eq. (45.18) and we
shall investigate the different QCD corrections to it.

45.4.1 Relativistic corrections

In this case, the interaction betwen the Q and Q̄ can be described by the Breit-fermi potential
describing the positronium e+e− bound state (see e.g. Schwinger [319], Bertstetski et al.
[53]). It gives the relativistic corrections:

V (0)(r ) = V (0)
stat(r ) + V (0)

rel (45.31)
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470 IX QCD non-perturbative methods

where:

V (0)
rel ≡ V (0)

orb + V (0)
tens + V (0)

L S + V (0)
H F , (45.32)

which corresponds respectively to the purely orbital (spin independent + kinetic energy),
tensor, spin-orbit and hyperfine potentials. They read:

V (0)
orb = − 1

4m3
Q

�2 + CFαs

m2
Q

1

r
�

V (0)
tens = CFαs

4m2
Q

1

r3
S12

V (0)
LS = 3CFαs

2m2
Q

1

r3
�L · �S

V (0)
HF = 4πCFαs

3m2
Q

�S2δ(�r ) . (45.33)

Here �L, �S and S12 are respectively the orbital angular momentum, total spin and tensor
operators defined as:

�L = −i�r × � , �S = 1

2
(σ1 + σ2) , S12 = 2

∑
i j

(
2

rir j

r2
− δi j

)
Si S j . (45.34)

In Eq. (45.33), one should notice that r−1 and � do not commute, which is not important
as one only considers diagonal matrix element of r−1� between the � states. Another
peculiar point is that one has to take the expectation values of terms containing �L �S and S12

to be zero between states with zero angular momentum as their angular average vanishes.
This is despite the fact that the factor 1/r3 is singular at the origin.

Noting that, in the Coulombic approximation, from the average value:

〈�k2/m2
Q

〉
nl

=
(

CFαs

2n

)2

, (45.35)

one can, for example, deduce the shift of the spin-independent energy levels:

E (0)
nl → E (0)

nl + [
δrel Enl ≡ 〈

V (0)
orb

〉
nl

]
, (45.36)

with:

δrel Enl =
(

CFαs

m2
Qa3

) (
2l + 1 − 4n

(2l + 1)n4

)
− 2

m3
Qa4

[
1

(2l + 1)n4
− 3

8n5

]
, (45.37)

where:

a ≡ 2

m QCFαs
, (45.38)

is the Bohr radius. Analogously, the hyperfine splittings can be obtained from 〈V (0)
H F 〉n0,
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45 Potential approaches to quarkonia 471

which in the case n = 1 gives:

Mϒ − Mηb = δH F E10 ≡ 〈
V (0)

H F

〉
10 = 8CFαs

3m2
Qa3

. (45.39)

45.4.2 Radiative and non-perturbative corrections

Radiative corrections to the previous lowest order relativistic corrections are known.
The readers can find a compilation of the results obtained within the M S scheme in, for
example, [46].

A priori, one may expect that non-perturbative corrections to the static potential have
complicated structure. However, as the heavy quarks move in a short distance region
〈�k2〉 ∼ a � 1/�QCD, one can be convinced that the first known leading non-perturbative
correction in 1/m Q is due to the gluon condensate. Treating the interaction Hamiltonian as
a perturbation to the Coulomb potential and using a dipole approximation:

HI = −g

2

(
λa

q − λa
q̄

)�x �Ea , (45.40)

where �Ea is the colour electric field which is related to the gluon condensate as:

〈0|g2 �Ea �Ea|0〉 = −π〈G2〉 , (45.41)

the energy levels are determined by the quadratic Stark-effect of the chromoelectric field:

δNP Enl = 〈�nl|0|HI
1

E (0)
n − H (8)

Coul

HI |0〉|�nl〉 = π

18
〈αs G2〉〈�nl|�x 1

E (0)
n − H (8)

Coul

�x |�nl〉 ,

(45.42)

which contributes to the level shift as [90]:

δN P Enl = m Q
εnln6π〈αs G2〉
(m QCF α̃s)4

, (45.43)

where:

εnl = 2

9

1

n3(2l + 1)
[(l + 1)[F(n, l) − F(−n, l)] + l[F(n, −l − 1) − F(−n, −l − 1)]] ,

(45.44)

with:

F(n, l) = 2n[n2 − (l + 1)2] + (n + l + 2)(n + l + 1)

×
[

(n − l)(n + l + 3)

9n + 16
+ 4

(2n − l)2

9n + 8

]
. (45.45)

Some particular values are:

ε10 = 624

425
, ε20 = 1051

663
, ε21 = 9929

9945
. (45.46)
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472 IX QCD non-perturbative methods

The main feature of the result is that the level shift grows like n6, showing that, even for
heavy quarks, the non-perturbative corrections are important for excited states.

45.4.3 Validity range

The validity of the previous result can only be realized if the shift is much smaller than the
Schrödinger binding energy in Eq. (45.19), which needs that n2/m Q � 1. Taking n = 1,
this leads to the condition:

m Q � 5 GeV , (45.47)

indicating that the model is quite inaccurate when applied to the bottomium system.

45.4.4 Some phenomenological applications

Collecting all different corrections, the vector-pseudoscalar mass-difference is [46]:

Mϒ − Mηb = 8CFαs

3m2
Qa3

[1 + δαs + δN P ]2

×
(αs

π

) {
1 +

[
−β1

(
ln

aµ

2
− 1

)
+ 21

4
(ln CF α̃s + 1) + bH F

]

+ 1161

8704

π〈αs G2〉
m4

Q α̃6
s

}
, (45.48)

where:

bH F = 11CA − 9CF

18
, δαs = −3β1

2

(αs

π

) (
ln

aµ

2
− γE

)
,

δN P = 1

2

[
270 459

108 800
+ 1 838 781

2 890 000

]
π〈αs G2〉

m4
Q α̃6

s

. (45.49)

The leptonic width of the ϒ is:

�(ϒ → e+e−) = �(0) × [1 + δαs + δN P ]2

(
1 − 4CFαs

π

)
, (45.50)

where:

�(0) = 16π

(
Qbα

Mϒ

)2

|ψ(0)|2 . (45.51)

The wave function is found to be:

|ψ(0)|2 = 2
[
m QCF α̃3

s (µ2)
]
, (45.52)

Using:

�QCD(n f = 4, 3 loops) = (0.23 ± 0.06) GeV , 〈αs G2〉 = (0.06 ± 0.02) GeV4 ,

(45.53)
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45 Potential approaches to quarkonia 473

they lead to the numerical predictions:

Mϒ − Mηb = (47 ± 13) MeV , �(ϒ → e+e−) 	 (1.1 ± 0.3) keV . (45.54)

The electronic width is quite inaccurate but agrees within the errors with the data (1.32 ±
0.04) keV. The prediction for the mass splitting will be compared with the other QCD-based
predictions in subsequent chapters. Some other predictions for the mass splittings are also
available [46], which in general are in good agreement with the data. This method has been
also used in [90,94,46] for extracting the values of the quark pole masses. We quote below
the corresponding values of the M S running masses:

m̄b
(
m2

b

) = 4440+43
−28 MeV , m̄c

(
m2

c

) = 1531+132
−127 MeV , (45.55)

which are systematically higher than predictions from QCD spectral sum rules methods
(see however, [602] and the next chapter on quark masses).

45.5 Bell–Bertlmann equivalent potentials

‘Equivalent’ potential reproducing the Leutwyler–Voloshin spectrum has been proposed
in [93]. Using the form of the Stark effect in Eq. (45.42), in the static limit (m Q → ∞)
where one can neglect the kinetic term p2/m Q , the energy denominator becomes a potential
difference:

E (0)
n − H 8

coul

m Q→∞→ V 0
coul − V 8

coul = 9β

8

1

r
, (45.56)

which leads to the cubic potential:

Vstatic = 4π

81β
〈αs G2〉r3 . (45.57)

This potential accounts for large quantum numbers, as the distance in a Coulombic state
behaves as:

〈r〉Coul
n ∼ n2 . (45.58)

Corrections of order 1/m Q to this potential approximate low quantum numbers. There-
fore, one arrives at the ‘equivalent’ potential [93]:

δV (r ) = 4π

81β
〈αs G2〉

[
r3 − 304

81

r2

m Qβ
+ 53

10

r

(m Qβ)2
− 113

100

1

(m Qβ)3

]
, (45.59)

which differs from the effective potential models as it is flavour dependent.
Another ‘equivalent’ potential has been proposed in [91–93] for interpreting the QCD

spectral sum rule non-relativistic moments (see Part X, QCD spectral sum rules):

R(τN ) = − d

dτN
ln

[
M(τN ) ≡

∫
d E e−EτN Im�(E)

]
τ→∞−→ E0 , (45.60)
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in a potential theory, where E0 is the energy of the ground state. Im�(E) is the spectral
function which can be parametrized within the potential theory as:

Im�(E) = 3

8m2
Q

∑
n

4π |ψn(0)|2δ(E − En) , (45.61)

which shows that the moments M is nothing but the time-dependent Green function:

M(τN ) = 3

8m2
Q

4π〈�x |e−HτN |�x〉|�x=0 , (45.62)

where H ≡ p2/m Q + V is the total Hamiltonian of the system. Perturbing the kinetic term
by the potential with respect to the time τN :

e−HτN = e
− p2

m Q
τN −

∫ τN

0
dτ ′

N e
− p2

m Q
(τN −τ ′

N )
V e

− p2

m Q
τ ′

N , (45.63)

one obtains for a power-like potential: V = ∑
n vnrn:

M(τN ) = 3

8m2
Q

4π

(
m Q

4πτN

)3/2
[

1 −
∑

n

vn�
(n

2
+ 1

)
m Q

(
τN

m Q

)n/2+1
]

. (45.64)

An identification of this term with the QCD moments in Eq. (49.45) leads to the ‘equivalent’
potential:

V (r ) = −4

3

αs

r
+ π

144
〈αs G2〉m Qr4 , (45.65)

which differs from the effective potential models and from the previous Leutwyler–Voloshin
‘equivalent’ potential. The main feature of the BB ‘equivalent’ potentials is that they are
flavour dependent in contrast to the effective potential models.

45.6 Stochastic vacuum model

We have seen previously that for excited states the Voloshin–Leutwyler approach [90]
cannnot be applied as n2/m Q is no longer smaller than 1. It has been noted in [603], that
this is due to the fact that the correlators 〈Gµν(x)Gαβ(x)〉 have been taken to be independent
of x , although they should decrease exponentially for large spacelike x . Splitting the field
strength Ga

µν into a chromomagnetic piece Ba and a chromoelectric one Ei
a = G0i , one can

show that in the non-relativistic limit, the spin-independent piece of the splitting will only
involve Ei

a . Therefore, the non-perturbative correlator reads:

〈E(x)E(0)〉 = 1

12

[
δi j�(x) + xi x j

∂

xµ

∂

xµ

D1(x2)

]
(45.66)

with:

�(x) ≡ D(x2) + D1(x2) + x2 ∂

xµ

∂

xµ

D1(x2) . (45.67)
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If one neglects the x dependence of the correlator, the only surviving part is:

�(0) = 2π〈αs G2〉 . (45.68)

Therefore, Eq. (45.66) indicates that one can derive the Voloshin–Leutwyler formula for
small n, but one can also obtain another potential for large n if one takes into account the
x dependence of the correlator.

Defining the correlation time TQ for quarks as:

〈xi (τ1)x j (τ2)〉nl = δi j

3
〈�x2

nl〉 exp

[
−|τ1 − τ2|

TQ

]
, (45.69)

and the one TG for gluons:

〈
Ei

a(τ1)E j
b(τ2)

〉
E

= δi j

3

δab

8
〈E2〉 exp

[
−|τ1 − τ2|

TG

]
, (45.70)

one can also find that the sum rule approach within the Bell–Bertlmann ‘equivalent’ potential
is applicable for TG � TQ [604]. These features are the basis of the stochastic model
discussed in details in [605,51].

45.6.1 The model

One assumes that the quarks and the gluons background fields fluctuate stochastically
according to a Markov process. Let us consider the stochastic variable ξ (t) depending on
one or several variables t . It will be distributed according to some distribution which fixes
the vacuum expectation values:

〈ξ (t)〉 , 〈ξ (t1)ξ (t2)〉 , . . . (45.71)

The cumulants or linked clusters are defined by:

〈
P exp

∫
dt [ξ (t)]

〉
= exp

[ ∫
dt 〈〈ξ (t)〉〉 + 1

2!

∫ ∫
dt1dt2 〈〈ξ (t1)ξ (t2)〉〉 + · · ·

]
,

(45.72)

where the path ordering prescription:

�(t, t ′, C) ≡
〈
P exp

∫
C

dt [ξ (t)]

〉
= lim

ti+1−ti →0

N+1∏
i=1

exp

[
ξ

(
ti+1 + ti

2

)
(ti+1 − ti )

]
,

(45.73)

with ti are ordered points on the path C with tN = t ′ and t1 = t , should be introduced if the
stochastic variable ξ (t) are non-commuting. In the case of commuting stochastic variables
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476 IX QCD non-perturbative methods

which we shall consider here, an expansion of Eq. (45.72) gives:

〈〈ξ (t)〉〉 = 〈ξ (t)〉 ,

〈〈ξ (t1)ξ (t2)〉〉 = 〈ξ (t1)ξ (t2)〉 − 〈〈ξ (t1)〉〉〈〈ξ (t2)〉〉 ,

... (45.74)

A centered Gaussian process is a process where only the n = 2 cumulants occur, that is,
all expectation values can be determined by the correlators with n = 2:

〈ξ (t)〉 = 〈ξ (t1)ξ (t2)ξ (t3)〉 = · · · = 0 ,

〈ξ (t1)ξ (t2)〉 = 〈〈ξ (t1)ξ (t2)〉〉 ,

... (45.75)

It can be shown [605,51] that assumptions where the contributions of low frequency fields
can be described by a functional integral (stochastic process) with converging clusters leads
to an area law of the Wilson loop and then to linear confinement for static sources.

For that purpose, we consider the Wegner–Wilson loop in a pure gauge theory:

W [C] =
∫

DAµ e− 1
4 G2

µν (x) exp

[
ig

∫
C

Aµ(x)dxµ

]
. (45.76)

Denoting:

〈...〉A =
∫

· · ·
∏
k<µ

d Aµ e− 1
4 G2

µν (x) , (45.77)

these low frequency contributions to the Wilson loop are defined as:

W [C]A =
〈
exp

[
ig

∫
C

Aµ(x)dxµ

]〉
A

=
〈
exp

[
ig

∫
F

Gµν(x)dσµν(x)

]〉
A

. (45.78)

F is an area whose border is the loop C ; dσµν(x) (µ < ν) is the surface element of F at
point x , and Gµν is the field strength. One has used the Stokes theorem which transforms
the line into surface integral. These low frequency contributions are given by the cluster
expansion:

W [C]A = exp

[
− g2

2!

∫
dσµν(x)dσαβ(x ′) 〈〈Gµν(x)Gαβ(x ′)〉〉 + · · ·

]
, (45.79)

〈Gµν〉 = 0 due to Lorentz invariance. Lorentz and translational invariances also yield the
most general decomposition:

〈Gµν(x1)Gαβ(x ′
1)〉A = 1

12
〈G2〉

{
(δµαδνβ − δµβδνα)D(x2)κ +

[(
1

2

∂

∂xµ

(xαδνβ − xβδνα)

+ 1

2

∂

∂xν

(xβδµα − xαδµβ)

)
D1(x2)(1 − κ)

]}
, (45.80)
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where 〈G2〉 ≡ 〈Gµν(0)Gµν(0)〉 and κ a parameter. One can insert this expression into the
cluster expansion in Eq. (45.79). Assuming that the correlator falls off for |x − x ′| > λ and
using |F | � λ2, one obtains:

W [C]A 	 exp[−κ(g2G2〉λ2|F |K [1 + O(1/F)]] , (45.81)

where the constant K depends on the shape of the scalar function D(x2). To leading order
(two-cluster) of the cluster expansion, one can notice that the result is proportional to κ

as D1 in Eq. (45.80) does not contribute to the term proportional to the area loop. The
assumption of a convergent cluster expansion thus leads to the area law of the Wilson loop
if the tensor structure with D in Eq. (45.80) does not vanish. Thus leading apparently to a
natural linear confinement for Abelian theory as well. However, one can show that the use
of the Maxwell equations for QED:

∂αεαµνβGµν = 0 , (45.82)

implies that:

κ = 0 , (45.83)

and hence that we have no area law and then no confinement. For QCD, we have instead:

∂αεαµνβGa
µν = −igεαµνβ fabc Ab

µ Ac
ν �= 0 , (45.84)

indicating that there is no reason why κ should be equal to zero. A lattice measurement
shows that, for QCD, the correlator D(x2) is dominant as one finds [606]:

κ ≈ 0.74 . (45.85)

45.6.2 Application to the static potential

We shall discuss here the application of the model to static potential.2 Let us consider the
gauge-invariant non-local operator:

O(x, x ′) ≡ Q̄(x)φ(x, x ′)Q(x ′) , (45.86)

where Q(x) is the heavy quark field, and φ(x, x ′) is the string along the straightline:

φ(x, x ′) = P exp

[
ig

∫
C

Aµ[x + λ(x ′ − x)]
(
x ′ − x

)
µ

dλ

]
. (45.87)

Applying the previous operator to the vacuum state of hadrons leads to a gauge- and
Lorentz-invariant state composed of a quark at a position x and an antiquark at a position
x ′. The evolution of this operator is given by the Green’s function:

G(x, x ′; y, y′) =
∫

DADQDQ̄ e−SO(x, x ′)O†(y, y′) . (45.88)

2 Some other applications of the model can be found in more specialized reviews (see e.g. [51]).
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The QCD action is:

S =
∫

dx Q̄(x)[iγµ (∂µ + ig Aµ) − m Q]Q(x) + SY M , (45.89)

with:

SY M ≡ (1/4)Ga
µνGµν

a . (45.90)

Doing the integration over fermion fields, one obtains:

G(x, x ′; y, y′) =
∫

DA e−SY M Det[A]Tr[S(x ′, y′; A)φ(y′, y)S(y, x ; A)] , (45.91)

where:

S(x, y, A) = δ(x − y)

[iγµ (∂µ + ig Aµ) − m Q]
, (45.92)

is the quark propagator in external field; Det[A] is the functional determinant from
the quark field integration, and describes internal fermion loops as power series of g. Using
iγ0 = γ4, one obtains to leading order in 1/m Q and g:

S(x, y, A) 	 φ(x, y)δ(�x − �y) ×
[

e−m Q (x4−y4)θ (x4 − y4)

(
1 + γ0

2

)

+ e−m Q (y4−x4)θ (y4 − x4)

(
1 − γ0

2

)]
+ O

(
1

m Q

)
(45.93)

Therefore, to this approximation, the Green’s function becomes:

G[(�x, 0), (�x ′, 0); (�y, T ), (�y′, T )] 	 δ(�x − �y)δ(�x ′ − �y′)e−2m Q T

×
∫

DA e−SY M Tr[φ(y, x)φ(x, x ′)φ(x ′, y′)φ(y′, y)]

≡ δ(�x − �y)δ(�x ′ − �y′)e−2m Q T Tr W [L] , (45.94)

where the Wegner–Wilson loop has been defined in Eq. (45.76). The second loop
integral entering in Eq. (45.76) is defined along the rectangle with corners [(�x, 0),
(�x ′, 0), (�y′, T ), (�y, T )]. Using the fact that the Green’s function scales like e−En T , where En

is the energy of the system, one can deduce:

En = − lim
T →∞

1

T
ln Tr W [L] + 2m Q . (45.95)

The term 2m Q is the rest energy of the two quarks, while the first term can be identified
with the potential V (�x − �x ′) of the system. Evaluating the rectangular Wegner–Wilson loop
using a strong coupling or lattice calculations, one finds in terms of the string tension σ

[491]:

V (�x − �x ′) = σ (�x − �x ′) . (45.96)
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Using the cluster decomposition in Eq. (45.79), one obtains, from the area law of the
Wegner–Wilson loop, the spin-independent part of the potential:

V0(r ) = 1

24Nc
〈g2G2〉

[
r
∫ r

0
dρ

∫ +∞

−∞
dτ D(τ 2 + ρ2)

+
∫ r

0
ρdρ

∫ +∞

−∞
dτ

[
−D(τ 2 + ρ2) + 1

2
D1(τ 2 + ρ2)

] ]
, (45.97)

where:

lim
r→∞ V0(r ) ∼ σr , (45.98)

corresponding to the standard linear potential. At short distance:

lim
r→0

V0(r ) ∼ r2 , (45.99)

which recovers the form expected from renormalon calculations (see previous chapter on
renormalons).

However, one should notice that this result is only valid for:

T −1 � En , (45.100)

which corresponds to the regime where r is small but the state is located on average at a
large distance from the centre of mass. Collecting the previous result, the full non-relativistic
potential, from the stochastic model, is:

V (r ) = −CF
αs

r
+ V0(r ) . (45.101)

To this expression one can add spin-dependent corrections to order 1/m2
Q (see e.g. [51]),

which can also be expressed in terms of the correlators D(x) and D1(x). One should notice
that the spin-dependent part of the confining potential is known phenomenologically to be
specifically different from the Coulomb potential, while good results are obtained if one
assumes that the confining potential leads to the same spin-dependent force as a scalar
exchange [607]. Radiative corrections can also be included into the Coulombic potential.
Predictions for the higher excited mass splittings using the model are quite sucessful.

45.7 Non-relativistic effective theories for quarkonia

In a previous section, we have anticipated the different regimes (short and long distances)
appearing in the Q̄ Q system. In the present approach, it is convenient to introduce two UV
scales �1,2 which characterize such regimes, and which are ordered by the heavy quark
velocity v � 1:

� The quark mass m Q is called the hard scale.
� The momentum m Qv is the soft scale (S).
� The binding energy m Qv2 is the ultrasoft scale (US).

https://doi.org/10.1017/9781009290296.058 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.058
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Therefore, one can have the regime hierarchy:

m Qv2, �QCD � �1 � m Qv � �2 � m Q . (45.102)

In this way, �1 is the cut-off of the quark energy and of the gluon energy and momentum,
whilst �2 is the cut-off of the relative momentum �p of the quark-antiquark system. For a
Coulombic system, one has:

v ∼ αs . (45.103)

As the two scales are largely separated, one can (in principle) integrate out the UV scales
step by step: after integrating out the heavy quark mass m Q , one obtains the usual non-
relativistic QCD (NRQCD) effective theory [608]. The Lagrangian of NRQCD is written in
terms of an expansion in 1/m Q . Potential NRQCD (pNRQCD) is obtained by integrating out
from NRQCD the soft scale S [609]. In this way, the Lagrangian of pNRQCD is expressed
as an expansion in terms of 1/m Q and of the relative coordinate �r (multipole expansion) of
the Q̄ and Q.

The integration of the degrees of freedom is done using matching conditions (see e.g.
[610,611,612,613] for details), namely by comparing the shell amplitudes order by order
in QCD and NRQCD. The matching from QCD to NRQCD can always be done perturba-
tively since, by definition of the heavy quark, m Q � �QCD. The matching from NRQCD
to pNRQCD can only be carried out perturbatively when m Qv � �QCD. This condition is
assumed to be satisfied in the following discussion. Therefore, the matching coefficients in
both NRQCD and pNRQCD can be computed order by order in αs . The non-analytical
behaviour in 1/m Q appears through logs in the matching coefficients of the NRQCD
Lagrangian:

CH ∼ Aαs

(
ln

m Q

µ
+ B

)
, (45.104)

where µ denotes the matching scale between QCD and NRQCD. In practice, one can
choose:

�2
2

m Q
� �1 , (45.105)

If one denotes by �mp any scale below �1, the relevant small dimensionless scales
involved in the analysis are:

p

m Q
,

1

rm Q
, and �mpr � 1 . (45.106)

Decomposing the Q̄ Q state into a singlet S( �R, �r , t) and an octet O( �R, �r , t) states
( �R ≡ (�x1 + �x2)/2, r ≡ (�x1 + �x2), the minimal form in terms of the derivatives of the
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pNRQCD Lagrangian reads:

LpNRQCD = −1

4
Ga

µνGµν a

+ Tr

{
S†

(
i∂0 − p2

m Q
+ p4

4m3
Q

−V (0)
s (r ) − V (1)

s

m Q
− V (2)

s

m2
Q

+ · · ·
)

S

+ O†
(

i D0 − p2

m
− V (0)

o (r ) + · · ·
)

O

}

+ gVA(r )Tr{O†r · E S + S†r · E O} + g
VB(r )

2
Tr{O†r · E O + O†Or · E} ,

(45.107)

where the dots indicate higher-order potentials in the 1/m Q expansion; p ≡ �p; E is the
chromoelectric field. One has neglected the centre-of-mass variables R and only kept O(r )
terms in the multipole expansion.

The structure of the potentials up to O(1/m2) are:

� To order 1/m0
Q , one has the Coulomb potential.

V (0)
s (r ) ≡ −CF

α̃s(r )

r
. (45.108)

� To order 1/m Q , and using dimensions plus time reversal V (1)
s (r ), one can only have the following

structure:

V (1)
s ≡ −CF CA D(1)

s

2r 2
, CA = Nc . (45.109)

� To order 1/m2
Q , and using the present accuracy for the matching, one obtains the following potential:

V (2)
s = −CF D(2)

1,s

2

{
1

r
, p2

}
+ CF D(2)

2,s

2

1

r 3
L2 + πCF D(2)

d,sδ
(3)(r) +

4πCF D(2)
S2,s

3
S2δ(3)(r)

+ 3CF D(2)
L S,s

2

1

r 3
L · S + CF D(2)

S12,s

4

1

r 3
S12(r̂) . (45.110)

Note that p appears analytically in the potentials, with a power (pn), which is constrained
by the power in 1/m Q . The different matching coefficients : α̃, D(1), D(2) . . . in pNRQCD
can be obtained by performing the matching between NRQCD and pNRQCD. A detailed
description of the procedure can be found in [609,612,613]. They read:

α̃s(r, µ) = αs(r )

{
1 + (a1 + 2γEβ0)

αs(r )

4π
+

[
γE

(
a1β0 + β1

2

)

+
(

π2

12
+ γ 2

E

)
β2

0 + a2

4

]
α2

s (r )

4 π2
+ C3

A

12

α3
s (r )

π
ln rµ

}
. (45.111)
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In terms of the β function defined in the first part of the this book (Table 11.1), they read
for SU (n) f flavours:

β0 ≡ −2β1 = 11 − 2

3
n f , β1 ≡ −8β2 = 2

(
51 − 19

3
n f

)
. (45.112)

The one- and two-loop coefficients a1, a2 have been obtained in [614]. They read:

a1 = 31

9
CA − 20

9
TF n f , (45.113)

a2 =
(

4343

162
+ 4π2 − π4

4
+ 22

3
ζ3

)
C2

A

−
(

55

3
− 16ζ3

)
CF TF n f + 400

81
T 2

F n2
f

−
(

1798

81
+ 56

3
ζ3

)
CATF n f , (45.114)

respectively. For SU (3)c, one has TF = 1/2:

α̃s = αM S
s

{
1 +

(
αM S

s

π

)
(2.6 − 0.3n f )

+
(

αM S
s

π

)2

(53.4 − 7.2n f + 0.2n2
f ) + · · ·

}
. (45.115)

which shows that the convergence of the QCD series is not good. The other coefficients are
[615,611–613,616]:

D(1)
s = α2

s (r )

{
1 + 2

3
(4CF + 2CA)

αs

π
ln rµ

}
,

D(2)
1,s = αs(r )

{
1 + 4

3
CA

αs

π
ln rµ

}
;

D(2)
2,s = αs(r ) ,

D(2)
d,s 	 αs(r )

{
1 + αs

π

[
2CF

3
+ 17CA

3

]
ln m Qr + 16

3

αs

π

(
CA

2
− CF

)
ln rµ

}
,

D(2)
S2,s 	 αs(r )

(
1 − 7CA

4

αs

π
ln m Qr

)
,

D(2)
L S,s 	 αs(r )

(
1 − 2CA

3

αs

π
ln m Qr

)
,

D(2)
S12,s

	 αs(r )
(

1 − CA
αs

π
ln m Qr

)
. (45.116)

The previous results can e.g. be used to compute the O(m Qα5
s ) corrections to the heavy

quarkonium spectrum. The N 3L L correction to the energy shift of the ϒ(1S) is found to
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be [609]:

δEn=1; l=0; j=1 	 1730

81π
mbα

4
s (µ)αs(µ′) ln [1/αs(µ′)] 	 (80 ∼ 100) MeV , (45.117)

where we note that µ is the matching scale from QCD to NRQCD: m Qv < µ < m Q ,
while m Qv2 < µ′ < m Qv is the one from NRQCD to pNRQCD. One should notice that
the correction is relatively large, and the perturbative series has a bad convergence. This
convergence might be improved by working with a renormalon-free quark mass definition
other than the pole mass, which will then facilitate the main motivation of the approach for
exploring the dynamics of the quark-antiquark bound states using the perturbative approach.
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