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Abstract

The storage of bagasse, which is principally cellulose, presents many problems for the sugar
industry, one of which is bagasse loss due to spontaneous combustion. This is an expensive
problem for the industry as bagasse is used as a fuel by sugar mills, and for cogeneration
of electricity. Self-heating occurs in the pile through an oxidation mechanism as well as a
moisture dependent reaction. The latter reaction is now known to exhibit a local maximum,
similar to the heat release curves found in cool-flame problems. Bagasse typically contains
45-55% by weight of water when milling is completed and the question of how to reduce
the moisture content is important for two reasons. Firstly, wet bagasse does not burn nearly
as efficiently as dry bagasse, and secondly, self-heating is greatly enhanced in the presence
of water, for temperatures less than 60-70°C.

An existing mathematical model is used, but modified to take into account the newly ob-
served peak in the moisture dependent reaction. Most of the previously reported complex
bifurcation behaviour possible in this model is not realized when physically realistic param-
eter values are used. The bifurcation diagram describing the long-time steady-state solution
is the familiar S-shaped hysteresis curve. In the presence of the new form of the moisture
dependent reaction, an intermediate state can be found which is not a true steady-state of the
system as, in reality, the characteristics of the pile slowly change as water is lost. This state
corresponds to observations of an elevated temperature (around 60-70°C) which persists
for long periods of time. Approximate equations can then be defined which predict this
intermediate state, and hence a different hysteresis curve is found. A simple explanation
for the process by which water is lost from the pile is obtained from these equations and an
analytical expression is given for the exponential decay of water levels in the pile.

1. Introduction

The Queensland sugar industry produces many millions of tonnes of sugar every
year. A by-product of this processing is bagasse, the material (largely cellulose) that
remains after sugar cane has been milled and the sugar removed. Large quantities of
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bagasse are produced over the period during which the sugar is being extracted from
the sugar cane, stored on site for an extended period and eventually used as fuel for
the sugar mills, often in the next milling season. Dry bagasse, which burns at a higher
temperature, is a superior fuel to wet bagasse. However, because near-boiling water
is used to remove the last of the sugar from the cane, when bagasse leaves the sugar
mill it has a water content of up to 55% by weight and a temperature around 50°C.

Consequently, as wet bagasse does not burn nearly as effectively or efficiently as
dry bagasse, burning as it does at a lower temperature, there are direct economic and
environmental costs in using the wet material. Stockpiling wet bagasse also risks
spontaneous ignition of the pile or the leaching of noxious acids into the surrounding
earth. Clearly then, understanding the way in which bagasse heaps dry out is an
extremely important issue for the sugar industry. Furthermore, it is desirable to use
the self-heating of the bagasse pile to enhance the reduction of moisture content during
storage, while at the same time ensuring that spontaneous combustion cannot occur.

Early research work ({1, 3]) concentrated on the combustion of dry bagasse, which
is initiated by the oxidation process. Although this gave useful information on the
use of bagasse as a fuel, it does not give a complete picture of the behaviour of
hot, wet stockpiles of bagasse. Wet cellulose, which is the principal component
of bagasse, ignites more easily than dry cellulose. Recent experimental work [6]
demonstrates that cellulose undergoes an exothermic reaction with water at moderate
temperatures. This reaction is thought to be possibly of a hydrolytic nature, though it
is not well understood at present. A simple model of the bulk effect with the reaction
rate proportional to the water concentration, with a maximum at approximately 55°C,
consistent with empirical pile measurements, will be used here. (We refer henceforth
to the oxidation reaction as the ‘dry’ reaction, and the moisture dependent reaction as
the ‘wet’ reaction.)

It is inconsistent to study these wet reaction effects without also considering evap-
oration and condensation of water, and the diffusion of water vapour through the pile,
[4]. For example, when a hot wet pile of bagasse is exposed to the cooler temperature
external to the pile, heat is conducted out towards the edge of the pile. As this happens,
the water, which is initially locally at equilibrium, condenses in response to the lower
temperature, giving out heat. At the same time the wet reaction and the dry reaction
give rise to more heat output. This is partially balanced by local evaporation, which
requires the input of heat. There is then a fine balance between these competing
effects.

In this paper, we take the model equations of [8, 9] with some minor modifications,
principally to model more closely the form of the wet reaction term. We then consider
piles varying in one spatial dimension only, which considerably eases the numerical
and mathematical difficulties, while still retaining most of the physically relevant
processes. The actual physical parameters are assigned values closely corresponding
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to those encountered in practice, so the range of bifurcation behaviour possible is
considerably reduced from that discussed in [8] where a general analysis of the
bifurcation behaviour is given. Indeed, in the absence of the wet reaction we find
only the standard S-shaped hysteresis curve, with a quiescent lower stable state, an
intermediate unstable state and an upper stable state corresponding to the burning
state. However, when the wet reaction term is included we find new behaviour, which
corresponds to observations and may be useful in practice for enhancing the drying
out of bagasse piles. Because the measured form of heat release corresponding to the
wet reaction is such as to introduce a local maximum in the heat release curve, we
find an additional approximately steady-state temperature at around 60-70°C. This is
not a true steady-state solution of the equations as it typically persists for a limited
time, of order months to years, and furthermore, the water levels in the pile typically
change significantly over this period. The elevated temperature state does not persist
for all times as the heat-release curve maximum, present because of the wet reaction,
diminishes in time as the percentage of water in the pile reduces. Eventually a critical
value of the water mass is reached at which the intermediate temperature state can
no longer be supported, and the temperature (effectively) bifurcates, usually to the
quiescent steady-state.

We find that with initial conditions that correspond closely to those found in practice,
for a limited range of pile thicknesses (typically between 1 and 5m) the intermediate
state will be established very quickly, on a fast timescale of the order of days. Over
this time the liquid water level in the pile remains close to constant, although there
is considerable relative change in the profile and magnitude of the (small) part of the
water that is in vapour form. If we make the assumption that the liquid water level is
exactly constant, then we can write down approximate steady-state equations for the
spatially discretised temperature and water vapour levels, which are then amenable
to standard bifurcation analysis. The intermediate state is then a true steady-state
of these approximate equations. Furthermore, if we make the assumption that the
temperature profile remains unchanged at these values until the time is reached at
which the intermediate steady-state can no longer be supported, it is possible to
calculate an approximate form for the evolution of the water level in the pile, using
simple linearised equations. (Physically, the self-heating of the pile means that liquid
water evaporates more quickly than the water vapour condenses, with excess vapour
being removed from the pile by diffusion.) These approximate solutions allow us
to estimate the time at which the temperature will undergo a steep drop (that is,
approximately a bifurcation). This time is very important from a practical point of
view since it is possible that after the ‘bifurcation’, the liquid water levels may increase.
The temperature has now adjusted to a near ambient stable state, and at these values
it is not sufficient to drive off more water. The moisture content of the pile may
increase as the water levels attempt to meet steady-state conditions consistent with
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the water vapour levels in the surrounding atmosphere. As we are concerned with the
minimisation of the moisture content, it is clear that the pile should be covered, or
utilised, at the point of ‘bifurcation’. Indeed, this kind of behaviour has recently been
observed in an experimental pile [6].

The plan of the paper is as follows. First we give the PDEs describing the evolution
of temperature (that is, the energy equation) and the liquid and vapour water levels. In
particular we describe the modifications to the model of [8] required to model properly
the wet reaction. A short description of the numerical technique used to integrate the
full set of equations will be given, followed by representative results for a range of pile
widths, illustrating the parameter range in which the intermediate temperature state
is achieved. Next, we describe the bifurcation analysis of the approximate equations,
valid when the liquid water levels are constant, and then describe how the governing
equations for the water levels can be decoupled and approximately linearised using the
results of this bifurcation analysis. These approximate results will then be compared
with the full solutions. Finally, we present conclusions and explain how this model
must be modified to deal with full-scale bagasse piles, where it is thought that the
effects of oxygen depletion must be included.

2. Mathematical formulation

Consider a (one-dimensional) bagasse pile of thickness w, where the spatial co-
ordinate x’ € [—w/2, w/2]. This is the simplest case that demonstrates the relevant
physical phenomena, and is of particular interest as Halliburton [6] has recently built
a vertical bagasse pile, of height and width of order 10m and of thickness 1.2m,
for which a one-dimensional model is appropriate. Detailed comparisons with his
measurements will be made in a future paper.

As our starting point, we take the three variable system of PDEs formulated in [8]
where the dimensional variables are water, in liquid and vapour form, and temperature,
denoted by X', Y’ and T respectively. In order to model the bagasse problem more
accurately, we make several modifications. The first generalisation is to model the
density of the pile of bagasse as a function of the liquid water level. In this manner, the
quantity pc ( = C; in the notation of [8]) becomes pc = p,c, + m,X'c,, where ¢, and
¢, are the heat capacities of dry bagasse and water respectively, m,, is the molecular
weight of water, p, is the density of dry bagasse, p is the total density and c is the
total heat capacity.

To deal with a variety of boundary conditions corresponding to those found in
practice, it is found that scaling the liquid and vapour water levels with respect to their
initial levels, as was done in [8] is not very convenient. Accordingly, the water levels
have been scaled using X = X'm,,/p,and Y = Y'm,/ps.
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The major modification is that the wet reaction term, modelled in [8] with an
Arrhenius form, has been changed to take account of preliminary experimental results
obtained in [6]. There it was found that there is a peak in the wet reaction at around
55°C, followed by a very sharp drop at higher temperatures. The model used here is
accordingly:

rate of wet reaction = X' exp(—E,/ T)f (T) (1)

with f (T) = {tanh[r,(r, — T;)] + 1}/2. The two constants in the function f (u) take
the values r; = 0.6 and r, = 58, and T} = T —273. The constants E and E,, represent
the activation energies of the dry and wet reactions respectively, and R is the universal
gas constant. The wet reaction rate is assumed to be directly proportional to the scaled
liquid water concentration as in [8].

The corresponding scaled equations describing the time evolution of the liquid and
vapour concentrations X and Y, and of the temperature u = RT/E, are

0
B+ ﬂzX)a—': = Byexp(—1/1) + BuX exp(—an/u)f (1)
+alp.Y — ¢.X exp(—a/w)] + nVu,

% = ¢.X exp(—a/u) — ¢.Y + yV?Y, 2
i)_}t( = —¢. X exp(—a/u) + ¢.Y,

where the time has been scaled by ¢+ = #'Z and the spatial coordinate x scaled by the
pile thickness w, that is, x = x'/w.

The oxidation and moisture dependent reactions are the first and second terms
respectively on the right-hand side of the energy equation. The effects of condensation
and evaporation on the temperature have been accounted for in the energy equation by
the third and fourth terms respectively, and these terms also appear in the mass balance
equations for liquid and vapour water concentration levels. Diffusion is considered
for both heat and water vapour, whereas the diffusion of water in the liquid state is
assumed not to be significant.

The non-dimensional constants in the governing equations (2) are

a=Lv/Ev aw=Ew/E’ d)c:Zc/Zv ¢e=Ze/Z7
Uy =R7:1/E7 Ya =me:/pb7 ﬂl =Cbmw/R’ 132 =ch'U/R’
Bs = Omy/E, Bs= QupsZu/ZE, n=kmy,/p,ZRw?, y=D/Zw’.

The first six constants are identical to the formulation in [8] while the remaining
constants account for the fact that the pile density is now a function of the liquid water
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level and also gives the new scaling on the liquid and vapour water concentrations, as
noted earlier. The dimensional constants Q and Q,, are the exothermicities of the dry
and wet reactions respectively, and Z and Z,, are the corresponding pre-exponential
factors. The thermal conductivity of the material is denoted by k and L, is the
latent heat of vaporisation. The values of the dimensional constants are found in the
nomenclature section.

To complete the formulation of the bagasse model, the boundary conditions for
temperature and water vapour are required. The condition for the scaled temperature
u becomes (assuming left-right symmetry)

9 o
%im(u—u‘;):o, x =412, 3)

where u, is the ambient temperature external to the pile and the Biot number is defined
as Bi = hw/k, with h the heat transfer coefficient from the material to the external
atmosphere.

Similarly for the water vapour level

Y
or FAY - Y) =0, x=x1/2, 4)
X

where Y, is the ambient water vapour level, and here we assume that A = Bi. The
ambient water vapour level satisfies the condition

Y, = Y;(u,) x relative humidity,

where the relative humidity is expressed as a percentage. The value of Y;(u,) corre-
sponds to the situation when water is conserved and in steady-state with the ambient
conditions. Using the notation of [8}, A denotes the percentage of water by weight in
the bagasse pile and
¢,

¢ + @ exp(—a/u,)

This formulation is different to that in [8] where the boundary condition on the water
vapour Y was determined by water conservation, that is, X + Y = 1, as the pile

was closed to the environment. In the absence of any diffusion of X, no boundary
conditions are required for the liquid water levels.

Yo(ua) = (1 — X(u,)) =

3. Numerical treatment of the full system of PDEs

In order to provide a reliable benchmark for the qualitative and approximate solu-
tions that we discuss later in the paper, an accurate and efficient method of solution for
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the system of equations given above is required. We solve the system of three PDEs
(2) with the associated boundary conditions (3) and (4) using the method of lines. A
second-order spatial discretisation is used for the diffusive terms and the boundary
conditions. The interior spatial nodal points are givenby x; = jAx,j =2,..., N —1
where Ax = 1/(N — 1). The 3(N — 2) simultaneous ordinary differential equations
foru;,Y;,X;,j =2,...,N — 1, are

d i
B + ﬁsz)% = Bsexp(—1/u;) + BsX; exp(—a,/u;) f (u;)

i1 — 2 + Uy

+ ol Y, — ¢.X; exp(—a/u;)] + n=

Ax? ’
dy, Y, —2Y + Y.,
d—tj = ¢ X, exp(—~a/u;) + ¢.Y; +y - ijz =,
dx,
T —-¢.X; exp(—a/u;) + ¢.Y;.

These equations must be integrated to find the time and spatial evolution of the
dependent variables. The differential equations, which turned out to be stiff in most
cases, were solved with the MATLAB variable time step ODE solver ode23s.m.

4. A typical case

The behaviour of a bagasse pile for a given set of initial conditions is dependent
on its thickness. A pile may ignite if the rate of heat loss through the boundary
to the environment is less than the rate of heat production within the pile. The
heat lost through the boundary is dependent on the heat and water vapour diffusion
coefficients, 1 and y respectively, which are both functions of the width w. (See the
non-dimensionalisation scheme earlier.) In the well-stirred approximation as used
in [8], the heat loss coefficient L = nBi, is inversely proportional to the width w.
Therefore, increasing the width will result in a decrease in the rate of heat removal.
The heat diffusion coefficient n also depends on the density of dry bagasse, p,. Its
precise value is not known, but can vary between the limits 100 < p, < 190kgm™,
depending on the packing. Here, we take p, = 125kgm™>.

The initial conditions for the problem used here are similar to those encountered
in a bagasse pile soon after the processing is completed in the mill. That is, the
initial bagasse temperature is 55°C («(0) = 0.02523) and initial water content is 50%
(X (0) = 1), with an ambient external temperature of 30°C (1, = 0.0233). The initial
water vapour level Y(0) is set by requiring initial equilibrium with the corresponding
given value of X (0), that is, Y (0) = ¢, exp(—a/u(0))/¢.. The ambient external water
vapour level Y, corresponds to a relative humidity of 70%, typical of conditions in
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Northern Queensiand, and in addition, it is assumed that the initial temperature and
water concentrations are spatially uniform across the pile, as would occur in practice.

Three possible states of this model are shown in Figure 1 for varying values of
the pile thickness w, with initial conditions as described above. Figure 1 (a) gives
the time evolution of the centre pile temperature (in ° C) when the pile thickness is
1.5m. A small pile width allows the heat to escape quickly through the boundaries,
and this is indicated on Figure 1 (a) by the fact that the temperature drops from its
initial value of 55° C to a near ambient temperature within about 50 days. Figure 1 (b)
shows the corresponding water levels slowly approaching their steady-state values.
The steady-state value for the water vapour concentration is found to be Y, = Y,
uniformly across the pile, with the liquid water steady-state concentration being X, =
¢ Y.exp(a/u;)/¢., where u; is the (spatially dependent) steady-state temperature at
the centre of the pile, slightly above u,. This case shown in Figures 1 (a) and (b)
would not be desirable in practice as the water levels are still high after one year and
the bagasse in this form is not desirable as a fuel. However, the pile shows no tendency
to ignite.

The case where the burning combustion state is achieved is shown in Figures 1 (e)
and (f) for the pile thickness of 5m. The temperature and scaled water vapour level
Y/ Ynax (shown with a dashed line) follow a continual upward trend over the given time
interval. After a period of 30 days, the temperature reaches 100° C (the boiling point
of water) whereupon the model fails. (Evaporation and condensation of water are only
modelled properly here for temperatures below 100° C.) At this point, the temperature
within the pile would continually increase eventually leading to the burning state. This
is clearly an undesirable scenario.

Of particular interest, practically, is the case shown in Figures 1 (c) and (d). Obser-
vations have shown that real bagasse piles tend to remain at an approximately constant,
elevated temperature for considerable periods of time. Bagasse pile temperatures have
been gathered from a number of mills in Northern Queensland and summarised in [1].
Elevated temperatures of approximately 64° C have been noted lasting up to 180 days.
More recently, in a carefully monitored experiment using a pile of small thickness
(1.2 m), Halliburton [6] found the centre temperature remained at about 60° C for
nearly six months. There are practical advantages in maintaining the pile at such
temperatures as the rate of drying out is considerably enhanced. Therefore it is of
interest to consider cases where this state is achieved. It was found that the elevated
temperature state (we refer to this as a quasi-steady-state) could be achieved with a
pile thickness of 2.2 m, with initial conditions described above. The resultant curves
for (unscaled) temperature, and for the water levels X (liquid) and Y/ Y., (vapour)
(shown with a dashed line) are given as a function of time in Figures 1 (c) and (d).

There are several important features apparent in this particular case. First consider
Figure 2 which shows the behaviour in Figures 1 (c) and (d) over a shorter time interval
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FIGURE 1. The time variation of temperature (a), (c), (¢) and liquid water levels X (—) and scaled vapour
Y/ Yiax (- - =) (b), (d) (f), at the centre of a bagasse pile of thickness w = 1.5, 2.2 and 5 m respectively.
Steady-state values are indicated on each figure by a dot-dash line.
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FIGURE 2. The time variation of (a) temperature and (b) liquid water X (—) and scaled water vapour
Y/ Ymax (- - -) levels at the centre of a bagasse pile of thickness w = 2.2 m.

of five days to illustrate the initial behaviour. In Figure 2 (a) the temperature adjusts
very quickly (over several days) to the quasi-steady-state of approximately 59°C.
Interestingly, this short time scale is noted in [1] where it has been found that an initial
rapid heating rate occurs over two days. On the same initial fast time-scale as the
temperature adjustment, the water vapour level Y/ Y, rises quickly to its maximum,
indicated in Figure 2 (b), while the liquid water level X remains constant. Over the next
6 months or so, the temperature remains at or near the quasi-steady-state temperature
while the water levels, both liquid and vapour, exponentially decay as indicated in
Figure 1 (d). When the minimum level of X is reached (at about 200 days), the wet
reaction (for which the heat release is proportional to X) has decreased to the extent
that the quasi-steady-state temperature can no longer be sustained and the temperature
drops very quickly to a level close to its true long-time steady-state value. This is
essentially a bifurcation phenomenon, in a sense that we will quantify later. At this
point, the X and Y levels approach their true steady-states, X; and Y, respectively.

The evolution of the spatial dependence of temperature and water levels X and
Y/ Ymax is shown in Figure 3, corresponding to the example in Figures 1 (c) and (d).
The temperature and vapour assume close to parabolic form in the initial adjustment
to the quasi-steady-state (¢ = 2 days), while X remains initially constant across the
pile. The parabolic form for the temperature is not surprising, as that is what is
found for example for the linear heat conduction problem, where such behaviour can
be identified as the leading order term in the long time expansion of the Laplace
transform solution of the problem.

4.1. Interpretation and analysis It is possible, under some assumptions, to interpret
most of the features of the cases described above. For the present, the effects of
evaporation and condensation are ignored, X is assumed constant, as it is for short
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FIGURE 3. Spatial profiles of (a) temperature, (b) scaled water vapour Y/ Y.« and (c) liquid water X for
the spatial coordinate x € [—0.5, 0.5].

times (see Figure 2 (b)) and the heat conduction term is approximated with a bulk
heat removal term L(u — u,), where L will be taken to be some measure of the heat
loss which will be inversely proportional to the thickness of the pile w, as described
earlier. The heat release (the dry reaction plus the wet reaction) and the heat removal
term L(u — u,) have been plotted in Figure 4 as a function of u.

The unusual feature of the heat release curve is the local maximum, corresponding
to the maximum in the wet reaction term, (1). For a fixed X level, there can be as
many as five steady-states, three of which are stable. (Four steady-states are evident in
Figure 4, with the fifth being the stable burning state found at very high temperatures.)
A similar heat release curve is found in the so-called cool flame problem, described by
[5]. However, in the cool flame problem, it is found that the intermediate steady-state
is not in fact stable for all values of L, due to the presence in some cases of Hopf
bifurcations. In the well-stirred approximation to this problem, it can be proved that
under certain conditions, periodic solutions cannot occur (see appendix for details.)
Similarly, in the spatially distributed case, (2), we have found no periodic solutions,
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FIGURE 4. The heat release mechanism described by the dry reaction plus wet reaction and the bulk heat
loss term shown as a function of temperature scaled by the value at 90° C.

although it has not been proved that they do not exist.

The low-temperature stable solution corresponds to near-ambient conditions, while
the high-temperature stable solution corresponds to the burning state. The inter-
mediate stable state, only present because of the special form of the wet reaction
term, corresponds to the quasi-steady-state observed in the full numerical result dis-
cussed above, and, we believe, often observed in real bagasse piles. We call this
a quasi-steady-state because in reality X evolves slowly in time. The wet reaction
term typically decreases in magnitude until the intermediate intersection is no longer
present. A similar heat release curve is found in the model considered by [2] where the
intermediate steady-state shows variable stability. There the intermediate steady-state
is necessary to allow the direct partial oxidation of methane and here this intermediate
state enhances the drying out process of the pile.

4.2. Approximate solution for the water content of the pile as a function of time

In the previous section the essence of the physical mechanisms taking place were

described. However, some further, more quantitative progress can be made using the

same basic ideas. We scale X, Y and u with their steady-state values at the centre of

the pile, X, Y; and u, respectively, so that X = X/X, Y=Y/Y,and &t = ufug.
Rewriting (2) gives

B ~\ ou _ B3 expl—a(l/ai — 1)/u,]
(x_s”zx)ﬁf‘e{@x: ”
+ &exp[—a(aw/au - 1)/us])2f (w,i)
o, Uy
% h @R+ v
+us [Y c(u)X] + €¢chV u} , (5)

https://doi.org/10.1017/51446181100011408 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100011408

[13] A reaction-diffusion model of stored bagasse 25
8¥/8i = —[¥ — c@X] + (v /¢ V*Y,
aX /01 = €[ ¥ — c()X],

where c(i2) = exp(—a(l/i — 1)), t = ¢.t and € = ¢, exp(—a/u,)/¢p. = Y,/ X is
a small quantity. All terms on the right-hand side of the equation for & are small,
including the heat conduction term, where we note that n/e¢. < 1. The appearance
of two timescales in the example run in Figures 1 (c) and (d) can now be interpreted:
the fast timescale is 7 while the slow time is T = €. On the fast timescale X is
constant in time, since the right-hand side of the X equation is approximately zero. At
longer times of O(1/¢), terms of O(e) on the right hand side of the X -equation can
no longer be ignored and thus X slowly decays. An approximate analytical picture
can now be put together, in which the intermediate quasi-steady-state plays a crucial
role. If we look for the steady-states of (5), with dX /87 = O then, indeed, our quasi-
steady-state is a true steady-state of the approximate equations and can be found by
standard techniques (for example, Newton-Raphson methods, or with the aid of the
AUTO97 package). There is a minor complication in that we are dealing with PDEs,
but we just solve for steady states of the corresponding spatially discretised equations
for iz and Y.

At this zeroth order approximation, X plays the role of a bifurcation parameter.
If the other parameters in the problem are such that the intermediate stable state can
be achieved, further progress can then be made, as on the slow timescale & now
remains approximately constant in time, with a roughly parabolic profile in space.
The approximate constancy of # on the slow timescale t, as seen in Figure 1 (c)
is due to the fact that the wet reaction decays very rapidly at around 60° C (see
Figure 4). Thus when X reduces, so reducing the magnitude of the wet reaction term,
the corresponding decrease in & is very small. We expect this picture to break down
once the intermediate stable state no longer exists, that is, once the liquid water level
X drops sufficiently. It is at this point that the temperature will bifurcate to its lower
stable state and then the X and ¥ values will cease to decrease (Figure 1 (d)) or may
in some cases start to rise again,

The (now linear) equations for the evolution of ¥ and X on the slow timescale 7 can
now be solved, once & is known and assumed constant in time. In order to make further
quantitative progress we then further assume that X, Y and i all have parabolic profiles
(see Figure 3). The centre value i, can be calculated from a bifurcation analysis of
the approximate equations that follow when X = constant in (5). The parabolic form
for i, satisfying the boundary conditions (3), will have the constant form

Bi(a, — i,
liqx = ﬁc + (I%Bi/—4)2xz’ (6)

corresponding to the intermediate stable state.
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We must then solve the linearised equations for X and ¥, taking & = u,,, that is,

€dP/8t = —[¥ = ctg) R] + (v /9 V2P,

. - A @)
0X/ot =Y — c(u)X.

Thus it is necessary to determine the centre water vapour level ffc(t) as a function of
the slow time t = €t, where

= Y1) + hix? (&)

in order that ¥ satisfies the boundary condition (4) and remains parabolic in profile.
Similarly

X =X.(1) + X,(x)x? 9

where X ¢ and X ; are to be determined. The value of f’c(O) is then given by the
central value of f’qx as determined from the fast time bifurcation analysis, while
X (t = 0) = X(0)/X;. When (6), (8) and (9) are substituted in the linearised
equations (7) and terms of O(1) are equated and higher order terms in x neglected,
we find that

Ed?c/dt = _[f}c - C(ﬁc))?c] + 2(y/¢c)f/l,

. e (10)
dX /jdt =Y. — cu)X..

We note that f’c depends on f’, (from the heat conduction term). However, the equations
can be closed by requiring that the boundary conditions for Y are satisfied to O(x?),

so that
5o ALY, - Y1) ,
Y—Yc(r)+——————(1+A/4) x*, an

that is, f’, = A[f’a — f’c(r)] /(1 + A/4). With this approximation, we can then solve
(10) exactly. However, the two eigensolutions correspond directly to fast and slow
modes, with the fast mode only relevant for short times. Here we choose to suppress
the fast mode by setting to zero the term that is of O(e), that is, the term ed f’c/dt
With this approximation, and after rewriting Y, in terms of Y., we can then use the
first of the s1multaneous equations (10) to express Y, in terms of X, and hence solve
the ODE for X.. Using the fact that ¢, > 2y48, and then reverting to the unscaled
variables, we find that

afu. ~afu. afuc
o (r0 2] () 5
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FIGURE 5. Bifurcation curves with the width w as the bifurcation parameter: (a) the curve for the
approximate equations with X = 1 and for the full system, where X = X, and (b) curves for the
approximate equations with X = 1, 1/3, and 0.

and

Yc = (¢e/¢c)e_a/utxc (13)

where § = A/(1 + A/4).

It is possible to take this approach slightly further. By equating terms out to O(x?)
we can write down differential equations for X ; and ¥ 1. The )A’l equation is inconsistent
with our parabolic profile approximations, as the heat conduction term depends on
terms of O(x*) in the expansion for Y. The equation for X, by contrast, can be solved
directly, as there is no diffusive term in X, but we do not provide the details here.

5. Results

First we consider the bifurcation behaviour of the equations describing the evolution
of temperature and water levels in the bagasse pile, with particular emphasis on the
quasi-steady-state, which is practically desirable as it enhances the drying out of the
pile.

The equations (5) reduce to a system of two equations when the liquid water level
X is considered constant. This allows a direct study of the intermediate quasi-steady-
state, which is not in general found as a solution of the full steady-state equations.
The steady-state solutions of these approximate equations are shown in Figure 5 (a)
where the centre temperature of the pile is plotted as a function of the pile width w,
here playing the role of a bifurcation parameter. For this case the moisture level is
held constant at 50%, that is, A = 0.5 so that X = 1. Stable solutions are indicated
with solid lines, and unstable solutions with dashed lines.
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FIGURE 6. The heat release curve, scaled by the value at 70°C and using the steady-state liquid water
level X, plotted against temperature.

The bottom stable branch, for widths less than 2 m, corresponds to solutions near
ambient conditions. The intermediate stable branch, for widths varying between the
approximate limits 2 < w < 4.5m, corresponds to the quasi-steady-state. (Note that
if the density of dry bagasse, p,, is increased from the value used here, we find that
the intermediate stable state can be supported with smaller pile thicknesses.) In order
to reduce the moisture content of the pile, it is then desirable to choose the width
such that the quasi-steady-state temperature is found. For widths greater than 2 m, the
lower stable state cannot be a solution, and for widths greater than 4.5 m, the burning
state is found. (This state is not shown on Figure 5 (a), as it occurs for temperatures
greater than 100°C.) There is a narrow region of multistability when the width is given
by 1.8 < w < 1.97m. In this region, either of the two stable branches can be found
with the appropriate initial conditions.

Turning now to Figure 5 (b), the bifurcation diagram for varying values of the initial
moisture content is shown for the parameter w. As the moisture level decreases, the
range of widths for which the quasi-steady-state is achievable changes. With no
moisture in the pile (X = 0), the intermediate state cannot be realized as the wet
reaction term approaches zero in this limit, so that the heat release curve grows
monotonically with temperature, and there is no local maximum. This state can
almost never be achieved physically as the water level is dependent on the relative
humidity level external to the pile. For relative humidity of 70%, as considered here,
the minimum moisture level possible is about 25%, thatis, X = 1/3.

Returning to Figure 5 (a), the steady-state solution of the full equations (5) (where
X = X;) does not show an intermediate steady state. However, it is clear that the two
stable branches have effectively coalesced so that for pile widths between about 3 m
and 4 m the final state gives a significantly elevated temperature. In order to understand

https://doi.org/10.1017/51446181100011408 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100011408

[171 A reaction-diffusion model of stored bagasse 29

100y .

0
o
’
’
¢

Temperature (°C)
[=2]
{o=]
’\_
¥

AN

LX)

200 1 -3 3 ' 5
Width (m)

FIGURE 7. Bifurcation curve of the pile centre temperature as a function of the width w from the
approximate equations is compared with the numerical results from the full system at time 30 days (o)
and at 90 days (A).

this behaviour, we consider Figure 6, which shows the heat release curve at very long
time plotted as a function of temperature. Here, Y = Y, and X = ¢_.Y, exp(a/u)/¢..
In this manner, evaporation and condensation balance, that is, ¢. Y = ¢.X exp(—a/u),
and hence the heat release is just the dry plus wet reaction. The solid straight lines
represent the heat loss, L(u — u,), for different values of L. This shows that only
one steady-state is possible for temperatures less than about 60°C. In this case, the
ambient temperature is 30°C. However, if the ambient temperature is significantly
reduced below this level then the full equations do in fact admit the full range of
steady-states shown by the approximate equations. This is indicated by the dashed
line in the figure, corresponding to a (low) ambient temperature of 10°C, where there
are once again three intersections, corresponding to stable, unstable and stable states
respectively, as was the case in Figure 4.

In Figure 7 we consider the extent to which the approximate bifurcation analysis
predicts the actual behaviour as obtained from a full numerical solution of the gov-
emming PDEs. In all cases the initial pile temperature was taken to be 55°C. After
thirty days the pile temperature agrees closely with the predictions of the approximate
bifurcation analysis. The deviations from the lower steady-state near w = 2m are
due to the fact that we have not chosen initial conditions that are compatible with this
state. Even after ninety days the bifurcation results show good agreement with the
integration of the full system of equations, except that at pile widths close to but above
2 m a near-bifurcation from the intermediate state down to the lower stable state has
taken place.

We now show how the approximate solution for the water level at the centre of the
pile, derived in the previous section, compares with the full numerical solution (see
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FIGURE 8. Comparison between numerical and approximate analytic results for (a) w = 2.2m, (b) w =
2.5mand(c) w =2.75m.

Figure 8). The exponential form for the analytic solution is used until the time at
which X reaches its bifurcation value, as determined from the approximate equations,
at which the intermediate steady-state can no longer be supported. We see that
the analytic approximation does indeed reflect the actual behaviour quite adequately,
although the bifurcation time is underpredicted somewhat, particularly when the width
w is small.

In Figure 9, the approximate analytic results for water level at the centre of the pile
are given for a range of pile widths, demonstrating the principle that narrow piles dry
out more quickly, but that the final water level at the centre of the pile will eventually
drop to a lower level for broader piles. It seems reasonable that narrow piles should
dry out more quickly. The decreased central value for large piles follows from the fact
that the liquid water level is approximately parabolic at large time, with the minimum
at the centre, (see Figure 3 (¢)), and we expect a roughly similar form for the X -profiles
near the boundaries for narrow and wide piles at their final steady-states. With these
constraints the observed behaviour follows.
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FIGURE 9. Approximate analytic results for w = 2.2,2.5,2.75 and 4 m.

6. Conclusions

It has been known for some time that wet bagasse undergoes a wet reaction which
significantly affects the heat release rate. New experimental work [6] has shown that
this reaction has a well-defined peak just below 60°C. In this paper, a straightforward
modification to an earlier model [8] has been made, so as to include these new
observations. It has been shown that for a one-dimensional bagasse pile, there is a
range of widths for which the pile quickly moves to an elevated temperature, near
60°C, which can be identified as an approximate steady-state of the system. Drying
out of the pile is enhanced if this state is maintained over an extended period. In many
cases, it turns out that the temperature of the pile changes only slowly in time once
the intermediate state is reached. This makes it possible to find a simple analytical
expression for the rate at which the bagasse pile dries out, which agrees well with
the results from a full numerical integration of the governing equations. Furthermore,
an approximate bifurcation analysis has been used to estimate the time at which this
drying process ceases, and to determine the range of widths for which the intermediate
quasi-steady-state can be attained. This state is desirable as it allows the pile to dry
out quickly without undergoing spontaneous combustion. Understanding this process
is of commercial importance as dry bagasse is a far better fuel than wet bagasse.
One apparently surprising result is that if the width is sufficiently large, the pile will
always ignite. In general, this does not comply with observations. It is thought that
the oxygen depletion in the interior of the pile must also be considered. This will be
the subject of future work.
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Appendix. Dulac Result

Consider the well-stirred case approximation to (2) in the regime when X is constant
and the diffusion terms are approximated by a bulk heat loss term, as noted earlier:

(:l—l: = [,63e—l/u -+ ,B4Xe’°"”/“f (u)r + a[¢cY - ¢exe_a/“] - Ll(u - ua)]
Hu,Y)
=—=FW,Y),
Bi + B X @1
dY —aju
T Xe™ =@ Y — Lo(Y = 1) = G(u, Y).

In order to prove the non-existence of oscillations, the Dulac theorem is employed
(see [7]). It is necessary to choose a Dulac function B(u, Y) which is positive,
continuous and differentiable for all ¥ and Y. The Dulac theorem says that if the
function S defined by

aF 9G dB 0B
S (8u+8Y>+F8u+ 3%

is always of one sign, that is, S never crosses zero, then there are no oscillations.
Let the Dulac function B = 1, so the function S becomes

By e + BaX e~/ (awf (u)
B+ B X u? B+ B.X u?
a’p, Xe o/ L,
T2 B +BX B+ BX

In order to ensure S is negative, it is enough to require that both

s +f'(u>)

L2 - ¢c-

Bre " Jut — ¢ (B + B2X) < O (A1)

and

X Bie ™ “layf () + f'(wu’] — a’pe™/") <0 (A2)

B + B X)u? (

as the loss coefficients L, and L, are positive. The first inequality (A.1) must be
satisfied at 4 = unma and X = 0, hence

By < @ Piul, e . (A.3)

Turning to the second inequality (A.2), let g(u) = a,f (4) + f’'(u)u?, then the
maximum value of g(u) is equal to «, as f'(u) < O for all values of u and the
maximum value f () can take is 1. Rewriting inequality (A.2) as

Bsoty, < a’¢, expl(a, — a)/u]
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and noting that exp[(a,, — a)/u] > 1, then
Bs < a’p./a,. (A4)

Therefore, there are no oscillations in the well-stirred approximation to the bagasse
problem when (A.3) and (A.4) are satisfied.

Note this result makes no use of the heat loss coefficients L, and L,. For the
values of the parameters here, the first inequality becomes 8; < 7.3 x 10%, using
the physical maximum on temperature, uy,,, = 100°C, and the second inequality is
Bs < 3.9 x 1075, As it turns out, 83 = 2.8333 and B, = 7.083 x 1076 and therefore,
the two constraints (A.3) and (A.4) are satisfied, indicating that the well-stirred system
cannot show oscillations.

Nomenclature

E = 1.08 x 10° Jmol™! activation energy of dry reaction

E,=6.5 x 10* Jmol™! activation energy of wet reaction
R =8.31Jmol ' K™! universal gas constant
0=17x10"Jkg! exothermicity of dry reaction
Z=22x10%s! pre-exponential of dry reaction

OupvZ, = 1.683 x 108 Imol~! s~! coefficient of wet reaction

Z,=3.41x10*s7! pre-exponential of evaporation

Z. =475 pre-exponential of condensation

L, =42 x 10* Jmol™! latent heat of vaporization
k=05Jm'K!s! thermal conductivity
D=25x10"m?s"! diffusitivity of vapour
h=5Jm2K!'s"! heat transfer coefficient

m,, = 18 x 1073 kg mol™" mass of water

Po=1x10Pkgm3 density of water
pp = 125kgm™3 density of dry bagasse

=134 x 10°Jkg™' K~! heat capacity of dry bagasse
¢, =4.19 x 103 Jkg~' K~! heat capacity of water
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