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Abstract
Given a simply connected manifold M, we completely determine which rational monomial Pontryagin numbers are
attained by fiber homotopy trivial M-bundles over the k-sphere, provided that k is small compared to the dimension
and the connectivity of M. Furthermore, we study the vector space of rational cobordism classes represented by
such bundles. We give upper and lower bounds on its dimension, and we construct manifolds for which the lower
bound is attained. Our proofs are based on the classical approach to studying diffeomorphism groups via block
bundles and surgery theory, and we make use of ideas developed by Krannich–Kupers–Randal-Williams.

As an application, we show the existence of elements of infinite order in the homotopy groups of the spaces
of positive Ricci and positive sectional curvature, provided that M is Spin, has a nontrivial rational Pontryagin
class and admits such a metric. This is done by constructing M-bundles over spheres with nonvanishing Â-genus.
Furthermore, we give a vanishing theorem for generalized Morita–Miller–Mumford classes for fiber homotopy
trivial bundles over spheres.

In the appendix coauthored by Jens Reinhold, we investigate which classes of the rational oriented cobordism
ring contain an element that fibers over a sphere of a given dimension.
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1. Introduction

Let M be a closed oriented manifold of dimension 𝑑 ≥ 5. In this article, we investigate the following
question: Given an integer 𝑘 ≥ 1 and a universal characteristic class 𝑐 ∈ 𝐻𝑑+𝑘 (BO;Q),1 does there
exist a fiber bundle 𝑀 → 𝐸 → 𝑆𝑘 such that 〈𝑐(𝑇𝐸), [𝐸]〉 ≠ 0? If it does, then c is called spherical for
M. Furthermore, c is called h-spherical for M if E can be chosen to be fiber homotopy trivial; that is, E
comes equipped with a homotopy equivalence 𝐸 � 𝑀 × 𝑆𝑘 over 𝑆𝑘 . Obviously, h-spherical classes are
spherical. The following is our main result.

Theorem A. Let 𝑀𝑑 be a simply connected, closed manifold and let k be such that 1 ≤ 𝑘 ≤

min( 𝑑−1
3 , 𝑑−5

2 ) and 𝑑 + 𝑘 = 4𝑚.

(i) A monomial 𝑝 = 𝑝𝑖1 ∪ · · ·∪ 𝑝𝑖𝑛 ≠ 𝑝𝑚 in universal rational Pontryagin classes of total degree 𝑑 + 𝑘
is h-spherical for M if and only if there exists an ℓ ∈ {1, . . . , 𝑛} such that

𝑝𝑖1 (𝑇𝑀) ∪ · · · ∪ �𝑝𝑖ℓ (𝑇𝑀) ∪ · · · ∪ 𝑝𝑖𝑛 (𝑇𝑀) ≠ 0.

(ii) Let M be such that 𝑝𝑖 (𝑇𝑀) ≠ 0 for some 𝑖 ≥ 1 and let 𝑝𝑖 (𝑇𝑀) have the lowest degree among
these. Then there exists a fiber homotopy trivial bundle 𝐸 → 𝑆𝑘 such that

〈𝑝𝑖 (𝑇𝐸) ∪ 𝑝𝑚−𝑖 (𝑇𝐸), [𝐸]〉 ≠ 0 ≠ 〈𝑝𝑚 (𝑇𝐸), [𝐸]〉,

and these are the only nonzero monomial Pontryagin numbers of E. In particular, the following
are equivalent:
(a) The class 𝑝𝑚 is h-spherical for M.
(b) The class 𝑝𝑚 is spherical for M.
(c) M admits some nontrivial rational Pontryagin class.

(iii) If
∑
𝑖 𝑗 = 𝑚 ≥ 3 and 𝑖 𝑗 < 𝑚/2 for all j, then the monomial 𝑝𝑖1 ∪ · · · ∪ 𝑝𝑖𝑛 is spherical but not

h-spherical for CP𝑚. In particular, the class 𝑝𝑚
1 is spherical but not h-spherical for CP𝑚, provided

𝑚 ≥ 3.

We remark that (iii) of the above theorem follows from Proposition A.8 and Proposition A.10. These
propositions go back to a joint project with Jens Reinhold, which now forms the jointly written appendix
to this article.

Remark 1.1.

(i) It is known that no characteristic class 𝑐 ∈ 𝐻𝑑+𝑘 (BO;Q) is spherical for any M if 𝑘 > 2𝑑 (cf.
[Wie21, Lemma 2.3]). This implies the necessity for a bound on k, even though the one we give in
Theorem A might not be optimal. This bound can be improved depending on the connectivity of
M: Let M be a d-dimensional, ℓ-connected manifold with 𝑑 ≥ 5 and ℓ ≥ 1. We say that 𝑘 ≥ 1 is in
the unblocking range for M if one of the following is satisfied:
(a) 𝑘 ≤ min( 𝑑−1

3 , 𝑑−5
2 )

(b) d is even and 𝑘 ≤ min(𝑑 − 1, 2ℓ − 1).
(c) d is odd, (𝑘 − 1) is not divisible by 4 and 𝑘 ≤ min(𝑑 − 3, 2ℓ − 1).
Theorem A holds for all k in the unblocking range for M by Lemma 2.5. Note that any of the above
conditions implicitly enforces 𝑑 ≥ 5 if we want 𝑘 ≥ 1.

1Since 𝐻 ∗ (BO;Q) is concentrated in degrees divisible by 4, we restrict to the case 𝑑 + 𝑘 = 4𝑚 throughout this article.
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(ii) If all rational Pontryagin classes of M vanish, then again no (rational) characteristic class is spherical
by [HSS14, Proposition 1.9].2 In particular, this proves (𝑏) ⇒ (𝑐) in Theorem A, (ii): If 𝑝𝑚 is
spherical, then some rational Pontryagin class of M must be nonzero. Note that (𝑎) ⇒ (𝑏) is trivial
and (𝑐) ⇒ (𝑎) follows from the first half of Theorem A(ii).

Next, let Ω∗ denote the oriented bordism ring and let Fibℎ
𝑀,𝑘 ⊂ Ω𝑑+𝑘 ⊗ Q denote the set of classes

represented by fiber homotopy trivial M-bundles over 𝑆𝑘 . Note that Fibℎ
𝑀,𝑘 is actually a linear subspace

since it is given by the image of the homomorphism

𝜋𝑘

(
hAut+ (𝑀)

Diff+ (𝑀)

)
⊗ Q −→ Ω𝑑+𝑘 ⊗ Q,

where hAut+ (𝑀)/Diff+ (𝑀) denotes the classifying space for fiber homotopy trivial M-bundles, and the
above map is given by sending a pointed map 𝑆𝑘 → hAut+ (𝑀)/Diff+ (𝑀) to the bordism class of the
total space of the bundle classified by it. We will now give estimates for the dimension of Fibℎ

𝑀,𝑘 . For
this, let 𝑖min be the minimum positive integer i such that 𝑝𝑖 (𝑇𝑀) ≠ 0 and let 𝑛max be the maximum
integer 𝑛 ≥ 1 such that 𝑝𝑖min (𝑇𝑀)𝑛 ≠ 0.

Theorem B. Let M be simply connected and let 𝑘 ≥ 1 be in the unblocking range for M such that
𝑑 + 𝑘 = 4𝑚. Then, for every 1 ≤ 𝑛 ≤ 𝑛max, there exists a fiber homotopy trivial M-bundle 𝐸𝑛 → 𝑆𝑘

with the property that for ℓ ≥ 1, we have〈
𝑝𝑖min (𝑇𝐸𝑛)

ℓ ∪ 𝑝𝑚−ℓ ·𝑖min (𝑇𝐸𝑛), [𝐸𝑛]
〉
≠ 0 ⇐⇒ 𝑛 = ℓ.

Since Ω∗ ⊗Q is classified by Pontryagin-numbers, we get a lower bound on dim Fibℎ
𝑀,𝑘 which we prove

to be attained for certain manifolds.

Corollary C. Let M and k be as in Theorem B.

(i) We have dim Fibℎ
𝑀,𝑘 ≥ 𝑛max.

(ii) If all Pontryagin classes of M are contained in the truncated polynomial Q-algebra generated by
𝑝𝑖𝑚𝑖𝑛 (𝑇𝑀), then dim Fibℎ

𝑀,𝑘 = 𝑛max.

Example 1.2. The prototypical examples of manifolds for which this lower bound from Corollary C is
attained are CP𝑎,HP𝑏 and OP2 for 𝑎 ≥ 3 and 𝑏 ≥ 2. If 𝑘𝑎 ≡ 2𝑎mod 4 and 𝑘𝑎 ≤ min( 2𝑎−1

3 , 𝑎 − 5
2 ), then

dim Fibℎ
CP𝑎 ,𝑘𝑎

= 𝑛max(CP
𝑎) =

⌊ 𝑎
2

⌋
.

Analogously, for 𝑘𝑏 , 𝑘𝑐 divisible by 4 and 𝑘𝑏 ≤ min( 4𝑏−1
3 , 2𝑏 − 5

2 ) (or 𝑘𝑏 ≤ 4) and 𝑘𝑐 ≤ 12, we obtain

dim Fibℎ
HP𝑏 ,𝑘𝑏

= 𝑏, dim Fibℎ
OP2 ,𝑘𝑐

= 2.

We note that dim Fibℎ
HP2 ,4 = 2 was already observed in [KKR21, Remark 1].

In order to describe the upper bound on dim Fibℎ
𝑀,𝑘 , recall that

𝐻∗(BO(𝑑);Q) = Q[𝑝1, . . . , 𝑝� 𝑑
2 �
] .

Let 𝑝(𝑛) be the number of partitions of 𝑛 ∈ N into sums of positive natural numbers and let us fix
𝑚 � 𝑑+𝑘

4 . The assumption of k being in the unblocking range guarantees that 𝑘 ≤ 𝑑 − 2 which implies
4𝑚 = 𝑘 + 𝑑 ≤ 2𝑑 − 2 ≤ deg(𝑝� 𝑑

2 �
), and hence, we have dim𝐻4𝑚 (BO(𝑑);Q) = 𝑝(𝑚). Furthermore,

2Both [Wie21, Lemma 2.3] and [HSS14, Proposition 1.9] are only stated for the Â-class, but the given proofs apply to any
𝑐 ∈ 𝐻𝑑+𝑘 (BO;Q) .
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for ℓ ∈ N, we define 𝑝(𝑛, ℓ) to be the number of partitions of n into natural numbers ≤ ℓ. Note that
𝑝(𝑛, 𝑛) = 𝑝(𝑛), 𝑝(𝑛, 0) = 0, 𝑝(𝑛, 1) = 1 and 𝑝(𝑛, 2) = 1 + �𝑛/2�. Furthermore, 𝑝(𝑛, ℓ) = O(𝑛ℓ−1).

We have the following observation concerning an upper bound on dim Fibℎ
𝑀,𝑘 : If 𝑖1, . . . , 𝑖𝑟 is such

that
∑
𝑖 𝑗 = 4𝑚 and 𝑖 𝑗 < 𝑘/4 for all j, then we have 〈pi1 (TE)· · · pir (TE), [E]〉 = 0 for every fiber

homotopy trivial M-bundle 𝐸 → 𝑆𝑘 by the following argument: By our assumption on (𝑖 𝑗 ), the degree
of 𝑝𝑖1 (𝑇𝑀) · · · �𝑝𝑖ℓ (𝑇𝑀) · · · 𝑝𝑖𝑟 (𝑇𝑀) equals 4𝑚 − 4𝑖ℓ > 𝑑, and hence, this class vanishes since the
corresponding cohomology group of M vanishes. The claim follows from Theorem A, (i). We get
the following upper bound, which is a consequence of this observation together with the fact that the
signature of a fiber bundle over a sphere vanishes.

Theorem D. Let M be simply connected and let 𝑘 ≥ 1 be in the unblocking range for M. Then for
4𝑚 = 𝑑 + 𝑘 , we have dim Fibℎ

𝑀,𝑘 ≤ 𝑝(𝑚) − 𝑝(𝑚, 𝑚 −
⌈

𝑑+1
4
⌉
) − 1. There exists a simply connected

manifold M in dimensions 𝑑 ≡ 2, 3 (4) for which equality holds.

The upper bound is an immediate consequence of the above observation together with the fact that
𝜎(𝐸) = 0. The main difficulty of Theorem D lies in proving sharpness. In order to do so, we construct
a manifold M, and for every 𝐼 = (𝑖1, . . . , 𝑖𝑠) with 𝑠 ≥ 2,

∑
𝑖 𝑗 = 𝑚 and 𝑖 𝑗 ≥ (4𝑚 − 𝑑)/4 for some j, we

construct a fiber homotopy trivial M-bundle 𝐸𝐼 → 𝑆𝑘 such that 〈𝑝𝐼 (𝑇𝐸𝐼 ), [𝐸𝐼 ]〉 and 〈𝑝𝑚(𝑇𝐸𝐼 ), [𝐸𝐼 ]〉

are the only nontrivial monomial Pontryagin numbers of 𝐸𝐼 (Lemma 3.7 together with Lemma 2.5).
As Ω𝑑+𝑘 ⊗ Q is classified by Pontryagin numbers, (𝐸𝐼 )𝐼 as above forms a linearly independent set in
Ω𝑑+𝑘 ⊗ Q. It follows that

dim Fibℎ
𝑀,𝑘 ≥ |

{
(𝑖1, . . . , 𝑖𝑠) : 𝑠 ≥ 2,

∑
𝑖 𝑗 = 𝑚 and 𝑖 𝑗 ≥ (4𝑚 − 𝑑)/4

}
|︸���������������������������������������������������������������������︷︷���������������������������������������������������������������������︸

=𝑝 (𝑚)−𝑝 (𝑚−� 𝑑+1
4 �)−1

.

Remark 1.3. If 𝑑 ≡ 0 (4), there exists a nonconnected manifold M where every component is simply
connected such that equality holds. This is proven in Corollary 3.10.

1.1. Outline of the argument and obstructions to unblocking of block bundles

In [KKR21], Krannich–Kupers–Randal-Williams have proven that the class Â3 ∈ 𝐻12 (BO(8);Q) is
h-spherical for HP2. It turns out that their construction delivers an excellent blueprint for our results.
Since [KKR21] is written rather densely, we decided to give a more detailed account of their argument
in Section 2 before we go on to proving our main results. Let us give an outline of the construction first.

Instead of constructing an actual fiber bundle, one constructs a so-called block bundle (we recall
the notion of block bundles and block diffeomorphisms in Section 2). The advantage of working with
block bundles is that the k-th homotopy group 𝜋𝑘 (hAut+ (𝑀)/D̃iff

+

(𝑀)) of the classifying space for
homotopy trivial block bundles is isomorphic to the structure set S𝜕 (𝐷

𝑘 × 𝑀) from surgery theory.
Since we assumed that dim(𝑀) ≥ 5, the latter is accessible through the surgery exact sequence

𝐿𝑘+𝑑+1 (Z𝜋1 (𝑀)) −→ S𝜕 (𝐷
𝑘 × 𝑀) −→ N𝜕 (𝐷

𝑘 × 𝑀)
𝜎

−→ 𝐿𝑘+𝑑 (Z𝜋1 (𝑀)),

whereN𝜕 denotes the set of normal invariants. We are interested in the case where M is simply connected
and (𝑑 + 𝑘) is divisible by 4, so the L-groups are given by 0 on the left and by Z on the right. Hence, in
order to construct an M-block bundle over 𝑆𝑘 , it suffices to construct a normal invariant 𝜂 with𝜎(𝜂) = 0.
It turns out that the set of normal invariants is (rationally) isomorphic to the reduced real K-theory of
𝑆𝑘 ∧𝑀+ which allows one to construct a normal invariant and hence a (homotopy trivial) block bundle
with prescribed Pontryagin classes. Homotopy trivial block bundles over 𝑆𝑘 can (rationally) be given the
structure of an actual (homotopy trivial) fiber bundle if k is in the unblocking range for M. This follows
from a classical result of Burghelea–Lashof (cf. [BL82]) and Morlet’s Lemma of disjunction together
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with work of Krannich, Kupers and Randal-Williams on diffeomorphisms of disks [KR21; KR24]; see
Lemma 2.5.

The main work in the present article lies in constructing appropriate normal invariants. This way, we
can ensure that certain Pontryagin classes and numbers of the total space of the corresponding block
bundle are zero or nonzero.

1.2. Applications

Let us now present a few applications of our main result.

1.2.1. Spaces of metrics of positive curvature
Among all characteristic numbers, there are 2 of particular interest: The signature and the Â-genus.
Using Theorem A, we can construct fiber bundles with nonvanishing Â-genus; see Proposition 4.1. This
can be applied to the study of spaces of Riemannian metrics with lower curvature bounds. Let M be
closed and let Rscal>0 (𝑀) denote the space of Riemannian metrics on M of positive scalar curvature,
equipped with the Whitney 𝐶∞-topology. Furthermore, let R𝐶 (𝑀) be a Diff+ (𝑀)-space which admits
a Diff+ (𝑀)-equivariant map to Rscal>0 (𝑀) and let Diff+ (𝑀, 𝐷) ⊂ Diff+ (𝑀) denote the subgroup of
those diffeomorphisms that fix an embedded disk 𝐷 ⊂ 𝑀 point-wise.

Theorem E. Let 𝑀𝑑 be a closed, simply connected Spin-manifold that has at least one nonvanishing
rational Pontryagin class and let 𝑔 ∈ R𝐶 (𝑀). Let 𝑘 ≥ 1 be such that (𝑑 + 𝑘) is divisible by 4 and k is
in the unblocking range for M. Then for 𝑘 ≥ 1, the image of the map

𝜋𝑘−1(Diff+ (𝑀, 𝐷)) 𝜋𝑘−1(R𝐶 (𝑀))

induced by the orbit map 𝑓 ↦→ 𝑓∗𝑔 contains an element of infinite order.

Theorem E was the original motivation and the main theorem of the first version of the present article.
For readers solely interested in the proof of this theorem, we recommend the original version which is
considerably more focused and available at 2104.10595v1. The class of manifolds this theorem applies
to is quite large; see Example 4.5.

1.2.2. Rationally fibering a cobordism class over a sphere
Given an integer 𝑘 ≥ 1, it is a classical problem that goes back to Conner–Floyd [CF65] to decide
which cobordism class contains a manifold that fibers over 𝑆𝑘 . This has been studied in detail for
𝑘 ≤ 4 [Bur66; Neu71; Kah84a; Kah84b]. However, the classical approach relied on identifications like
𝑆2 � CP1 or 𝑆4 � HP1 and does not seem to work for larger k. Theorem D and Remark 1.3 imply that
any rational cobordism class in degrees 4𝑚 ≥ 16 fibers over 𝑆4, provided that the signature vanishes.
In the Appendix, jointly written with Jens Reinhold, we consider the question for bigger values of k
building on the methods developed in this paper; see Theorem A.3. We show that in a given dimension
𝑑 ≥ 32, every (rational) cobordism class in the kernel of the signature homomorphism fibers over 𝑆𝑘

for every 𝑘 ≤ 8. We also obtain results for 𝑘 ≥ 9; see Theorem A.3.

1.2.3. Sphericity of 𝜅-classes
Our result can also be applied to study 𝜅-classes, also called generalized Morita–Miller–Mumford
classes. These are characteristic classes of manifold bundles, and we can employ Theorem A to derive
a vanishing result for 𝜅-classes; see Theorem 4.12.

1.2.4. Unblocking of block bundles
As a final application, we obtain a result on block bundles which do not admit the structure of actual
fiber bundles. This follows from the fact that our construction of block bundles works regardless of the
dimension of the base or fiber as mentioned above. The existence of such bundles has been previously
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observed in [ER14], where the authors construct an HP2-block bundle 𝐸 → 𝑆12 with 𝑝5 (𝑇𝐸) ≠ 0
which cannot be ‘unblocked’. We present a more systematic result on unblockable block bundles in
Corollary 4.10.

2. Preliminaries

Let M be a closed oriented manifold of dimension d and let Diff+ (𝑀) denote the group of orientation
preserving diffeomorphisms of M. We denote by 𝐵Diff+ (𝑀) the classifying space for fiber bundles
𝐸 → 𝐵 with structure group Diff+ (𝑀).

2.1. Block diffeomorphisms

In this subsection, we give a short overview of block bundles and diffeomorphisms, and we explain how
to compare them to honest fiber bundles and diffeomorphisms. For 𝑝 ≥ 0, let Δ 𝑝 denote the standard
topological p-simplex.3

Definition 2.1. A block diffeomorphism of Δ 𝑝 × 𝑀 is a diffeomorphism of Δ 𝑝 × 𝑀 that for each face
𝜎 ⊂ Δ 𝑝 restricts to a diffeomorphism of 𝜎 × 𝑀 .

The set of all block diffeomorphisms forms a semisimplicial group denoted by D̃iff
+

•(𝑀) whose
p-simplices are the block diffeomorphisms of Δ 𝑝 × 𝑀 . The space D̃iff

+

(𝑀) of block diffeomorphisms
is defined as the geometric realization of D̃iff

+

•(𝑀), and the associated classifying space is denoted by
𝐵D̃iff

+

(𝑀). This space classifies block bundles. Let us recall the definition of a block bundle over a
simplicial complex.

Definition 2.2 [ER14, Definition 2.4]. Let K be a simplicial complex and let 𝑝 : 𝐸 → |𝐾 | be continuous.
A block chart for E over a simplex 𝜎 ⊂ 𝐾 is a homeomorphism ℎ𝜎 : 𝑝−1 (𝜎) → 𝜎 ×𝑀 which for every
face 𝜏 ⊂ 𝜎 restricts to a homeomorphism 𝑝−1 (𝜏) → 𝜏 × 𝑀 . A block atlas is a set A of block charts, at
least one over each simplex of K, such that transition functions are block diffeomorphisms. E is called
a block bundle if it admits a block atlas.

By [ER14, Proposition 3.2], a block bundle 𝜋 : 𝐸 → 𝐵 has a stable analogue of the vertical tangent
bundle (i.e., there exists a stable vector bundle 𝑇 𝑠

𝜋𝐸 → 𝐸 which is stably isomorphic to the vertical
tangent bundle 𝑇𝜋𝐸 provided that E is an actual fiber bundle). If furthermore B is a manifold, the total
space E is again a manifold and there is a stable isomorphism 𝑇 𝑠

𝜋𝐸 ⊕ 𝜋∗𝑇𝐵 �st 𝑇𝐸 (cf. [ER14, Lemma
3.3]).

Next, let us consider the semisimplicial subgroup Diff+
•(𝑀) of those block diffeomorphisms that

commute with the projection Δ 𝑝 × 𝑀 → Δ 𝑝 . This gives precisely the p-simplices of the singular
semisimplicial group Sing• Diff+ (𝑀). We have an inclusion Sing• Diff+ (𝑀) ⊂ D̃iff

+

•(𝑀), and since the
geometric realization of Sing•(𝑋) is homotopy equivalent to X for any space X ([Bau95, pp. 8]), we get
an induced map

𝐵Diff+ (𝑀) −→ 𝐵D̃iff
+

(𝑀).

Let hAut+ (𝑀) denote the group-like topological monoid of (orientation preserving) homotopy equiv-
alences of M with classifying space 𝐵hAut+ (𝑀). Again, let �hAut

+

(𝑀) be the realization of the
semisimplicial group of block homotopy equivalences defined analogously to block diffeomorphisms
and let 𝐵�hAut

+

(𝑀) be the corresponding classifying space. By [Dol63, Thm 6.1], the inclusion
hAut+ (𝑀) ↩→ �hAut

+

(𝑀) is a homotopy equivalence. Consider the following maps induced by
inclusions:

3We choose to follow [ER14] for this, even though there are more recent expositions on block diffeomorphisms like [Kra22] or
[BM20] since the latter do not cover block bundles.
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𝐵D̃iff
+

(𝑀) → 𝐵�hAut
+

(𝑀) � 𝐵hAut+ (𝑀) 𝐵Diff+ (𝑀) → 𝐵hAut+ (𝑀)

and let hAut+ (𝑀)/D̃iff
+

(𝑀) and hAut+ (𝑀)/Diff+ (𝑀) denote the respective homotopy fibers. Note
that hAut+ (𝑀)/Diff+ (𝑀) (resp. hAut+ (𝑀)/D̃iff

+

(𝑀)) classifies M-bundles (resp. M-block bundles)
together with a fiberwise (resp. blockwise) homotopy equivalence to the product M-bundle – that is,
fiber homotopy trivial M-bundles (resp. blockwise homotopy trivial M-block bundles). We make the
following definition: A characteristic class 𝑐 ∈ 𝐻𝑑+𝑘 (BO(𝑑);Q) is called block-spherical (resp. block-
h-spherical) if there exists an M-block bundle 𝐸 → 𝑆𝑘 (resp. a blockwise homotopy trivial one) with
〈𝑐(𝑇𝐸), [𝐸]〉 ≠ 0. We have implications:

𝑐 is ℎ-spherical

𝑐 is block-ℎ-spherical

𝑐 is spherical

𝑐 is block-spherical

and the following comparison result which follows from [BL82].

Lemma 2.3. If 𝑘 ≤ min( 𝑑−1
3 , 𝑑−5

2 ), then the natural map

𝜋𝑘

(
hAut+ (𝑀)

Diff+ (𝑀)

) [
1
2

]
−→ 𝜋𝑘

(
hAut+ (𝑀)

D̃iff
+

(𝑀)

) [
1
2

]
is surjective.

Before we dive into the proof, let us recall the stable range: For a manifold M, possibly with boundary, let

𝐶 (𝑀) � { 𝑓 : 𝑀 × [0, 1] → 𝑀 × [0, 1] diffeomorphism : 𝑓 |𝑀×{0} = id}

be the space of pseudoisotopies. There is a canonical map 𝑒 : 𝐶 (𝑀) → 𝐶 (𝑀 × 𝐼), and we define

𝜙(𝑑) � max{𝑞 ∈ N : 𝑒 is 𝑞-connected for all 𝑀 with dim(𝑀) ≥ 𝑑}

which is called the pseudoisotopy stable range. By a classical theorem of Igusa, 𝜙(𝑑) ≥ min
(

𝑑−4
3 , 𝑑−7

2

)
[Igu88].

Proof of Lemma 2.3. For 𝜔 ∈ N, let hAut+ (𝑀)𝜔 be the 𝜔-th stage Postnikov tower of hAut+ (𝑀); that
is, the map hAut+ (𝑀) → hAut+ (𝑀)𝜔 is 𝜔-connected and higher homotopy groups of hAut+ (𝑀)𝜔
vanish. Furthermore, let hAut+ (𝑀)2,𝜔 be the localization away from 2; that is, its homotopy groups
are Z

[ 1
2
]
-modules. We use analogous notations for Diff+ and D̃iff

+

. By [BL82, Theorem C7], there
is a map 𝜑 : hAut+ (𝑀)2,𝜔 → (D̃iff

+

(𝑀)/Diff+ (𝑀))2,𝜔 , such that the map induced by projection
𝑞 : D̃iff

+

(𝑀) → D̃iff
+

(𝑀)/Diff+ (𝑀) factors as

D̃iff
+

(𝑀)2,𝜔

(
D̃iff

+
(𝑀 )

Diff+ (𝑀 )

)
2,𝜔

hAut+ (𝑀)2,𝜔

𝑞

𝜑

where the vertical map is induced by the inclusion D̃iff
+

(𝑀) → �hAut
+

(𝑀), provided that 𝜔 ≤ 𝜙(𝑑) +1.
After completing this to a square and taking homotopy fibers over the image of the identity, we obtain
a map of fiber sequences
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Diff+ (𝑀)2,𝜔 D̃iff
+

(𝑀)2,𝜔

(
D̃iff

+
(𝑀 )

Diff+ (𝑀 )

)
2,𝜔

hofib(𝜑) hAut+ (𝑀)2,𝜔

(
D̃iff

+
(𝑀 )

Diff+ (𝑀 )

)
2,𝜔

.

𝜄 𝑞𝑞

𝜑

Note that the left square is a homotopy pullback square since the induced map on its homotopy fibers is
a weak equivalence. We map this square to the trivial homotopy pullback square

hAut+ (𝑀)2,𝜔 hAut+ (𝑀)2,𝜔

hAut+ (𝑀)2,𝜔 hAut+ (𝑀)2,𝜔

and obtain the following homotopy pullback square on homotopy fibers:

Ω
(

hAut+ (𝑀 )
Diff+ (𝑀 )

)
2,𝜔

Ω
(

hAut+ (𝑀 )

D̃iff
+
(𝑀 )

)
2,𝜔

hofib(hofib(𝜑) → hAut+ (𝑀)) ∗.

Hence, the map Ω
(

hAut+ (𝑀 )
Diff+ (𝑀 )

)
2,𝜔

→ Ω
(

hAut+ (𝑀 )

D̃iff
+
(𝑀 )

)
2,𝜔

admits a split, and we get a (split-)surjection

𝜋ℓ

(
hAut+ (𝑀)

Diff+ (𝑀)

) [
1
2

]
� 𝜋ℓ

(
hAut+ (𝑀)

D̃iff
+

(𝑀)

) [
1
2

]
as long as ℓ ≤ 𝜙(𝑑) + 1 = min( 𝑑−1

3 , 𝑑−5
2 ). �

Therefore, an element of 𝜋𝑘 (hAut+ (𝑀)/D̃iff
+

(𝑀)) ⊗ Q yields an M-bundle 𝐸 → 𝑆𝑘 that is fiber
homotopy trivial, provided that the dimension of M is high enough. The advantage of working with
hAut+ (𝑀)/D̃iff

+

(𝑀) instead of hAut+ (𝑀)/Diff+ (𝑀) stems from the fact that the former is accessible
through surgery theory as we will review in the Section 2.2.
Remark 2.4. Another approach to compare 𝐵Diff+ (𝑀) and 𝐵D̃iff

+

(𝑀) is by using Morlet’s lemma of
disjunction as in [KKR21, Lemma]. Consider the following diagram of (homotopy) fibrations:

𝐵D̃iff
+

𝜕 (𝐷
𝑑)

𝐵Diff+

𝜕 (𝐷
𝑑)

𝐵D̃iff
+

(𝑀)

𝐵Diff+ (𝑀)

D̃iff
+

𝜕 (𝐷
𝑑)

Diff+

𝜕 (𝐷
𝑑)

D̃iff
+
(𝑀 )

Diff+ (𝑀 )

If M is ℓ-connected with ℓ ≤ 𝑑 − 4, then the induced map on homotopy fibers is (2ℓ − 2)-connected
by Morlet’s lemma of disjunction (cf. [BLR75, Corollary 3.2 on page 29]). Now 𝜋𝑘−1(𝐵D̃iff

+

𝜕 (𝐷
𝑑)) �

𝜋0 (Diff+

𝜕 (𝐷
𝑑+𝑘−2)) is isomorphic to the finite group of exotic spheres in dimension (𝑑 + 𝑘 − 1).

For 𝑘 = 1, we note that both 𝐵Diff+ (𝐷𝑑) and 𝐵D̃iff
+

(𝐷𝑑) are connected and that their fundamental
groups are isomorphic.
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For 𝑘 ≥ 2, we need to distinguish cases depending on the parity of d: If d is even, then 𝐵Diff+

𝜕 (𝐷
𝑑)

is rationally (𝑑 − 1)-connected by [KR24, Theorem A]. However, if d is odd and 𝑘 − 1 ≤ 𝑑 − 4 is not
divisible by 4, then 𝜋𝑘−1 (𝐵Diff+

𝜕 (𝐷
𝑑)) ⊗Q is trivial by [KR21, Theorem A]. We note that both [KR24]

and [KR21] are generalizations of a classical result due to Farrell–Hsiang [FH78].
Therefore, in all these cases, 𝜋𝑘−1 (D̃iff

+

(𝐷𝑑)/Diff+ (𝐷𝑑)) ⊗ Q is trivial, and the same is true for
𝜋𝑘−1 (D̃iff

+

(𝑀)/Diff+ (𝑀)) ⊗ Q, provided 𝑘 ≤ 2ℓ − 1. This implies that the map

𝜋𝑘 (𝐵Diff+ (𝑀)) ⊗ Q→ 𝜋𝑘 (𝐵D̃iff
+

(𝑀)) ⊗ Q

is surjective. By the five-lemma, the same holds for the induced map

𝜋𝑘

(
hAut+ (𝑀)

Diff+ (𝑀)

)
⊗ Q −→ 𝜋𝑘

(
hAut+ (𝑀)

D̃iff
+

(𝑀)

)
⊗ Q.

We summarize this discussion about unblocking in the following definition and lemma.
Definition. Let M be ℓ-connected for some 1 ≤ ℓ ≤ 𝑑 − 4. We say that 𝑘 ∈ N is in the unblocking range
for M if one of the following holds.

(i) 𝑘 ≤ min( 𝑑−1
3 , 𝑑−5

2 ).
(ii) d is even and 𝑘 ≤ min(𝑑 − 1, 2ℓ − 1).

(iii) d is odd, (𝑘 − 1) is not divisible by 4 and 𝑘 ≤ min(𝑑 − 3, 2ℓ − 1).
Lemma 2.5. Let M be simply connected and let k be in the unblocking range for M. Then the following
map is surjective:

𝜋𝑘

(
hAut+ (𝑀)

Diff+ (𝑀)

)
⊗ Q −→ 𝜋𝑘

(
hAut+ (𝑀)

D̃iff
+

(𝑀)

)
⊗ Q.

Remark 2.6. Even though this Lemma 2.5 only states surjectivity, this still is enough to completely
determine h-sphericity of characteristic classes: Every fiber homotopy trivial bundle is in particular
a blockwise homotopy trivial block bundle, and we have analogous definitions for sphericity and
h-sphericity for those. Therefore, a characteristic class 𝑐 ∈ 𝐻𝑘+𝑑 (BO(𝑑);Q) is h-spherical for M if and
only if it is block-h–spherical for M, provided that k is in the unblocking range for M.

2.2. Surgery theory

Let X be a simply connected manifold of dimension at least 5 with boundary 𝜕𝑋 . The structure set
S (𝑋, 𝜕𝑋) of (𝑋, 𝜕𝑋) (sometimes written as S𝜕 (𝑋)) is defined to be the set of equivalence classes of
tuples (𝑊, 𝜕𝑊, 𝑓 ) where W is a manifold with boundary 𝜕𝑊 and f is an orientation preserving homotopy
equivalence4 that restricts to a diffeomorphism on the boundary. Two such tuples (𝑊0, 𝜕𝑊0, 𝑓0) and
(𝑊1, 𝜕𝑊1, 𝑓1) are equivalent if there exists a diffeomorphism 𝛼 : 𝑊0 → 𝑊1 such that 𝑓0 = 𝑓1 ◦ 𝛼 on
the boundary 𝜕𝑊0 and on the whole 𝑊0, the map 𝑓1 ◦ 𝛼 is homotopic to 𝑓0 relative to 𝜕𝑊0 ([LM24,
Definition 11.2]). It is a consequence of the h-cobordism theorem that for dim(𝑀) ≥ 5, we have the
following isomorphism ([BM13, Section 3.2, pp.33]):

𝜋𝑘

(
hAut+ (𝑀)

D̃iff
+

(𝑀)

)
� S𝜕 (𝐷

𝑘 × 𝑀).

The main result of surgery theory is that the structure set S𝜕 (𝐷
𝑘 × 𝑀) fits into an exact sequence of

sets known as the surgery exact sequence (cf. [LM24, Theorem 11.22 and Remark 11.23]):

4Since we assume X to be simply connected, every homotopy equivalence is simple and we do not need to require this in the
definition.
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𝐿𝑘+𝑑+1(Z) −→ S𝜕 (𝐷
𝑘 × 𝑀) −→ N𝜕 (𝐷

𝑘 × 𝑀)
𝜎

−→ 𝐿𝑘+𝑑 (Z). (1)

Here, N𝜕 (𝐷
𝑘 × 𝑀) is the set of normal invariants which is given by equivalence classes of tuples

(𝑊, 𝑓 , 𝑓 , 𝜉), where W is a (𝑑 + 𝑘)-dimensional manifold with (stable) normal bundle 𝜈𝑊 , 𝜉 is a stable
vector bundle over 𝐷𝑘 ×𝑀 and 𝑓 : 𝑊 → 𝐷𝑘 ×𝑀 is a map of degree 1 that restricts to a diffeomorphism
of the boundary and which is covered by a stable bundle map 𝑓 : 𝜈𝑊 → 𝜈𝐷𝑘×𝑀 ⊕ 𝜉. The equivalence
relation is given by bordism of manifolds with cylindrical ends of degree 1 normal maps (see [LM24,
Definition 11.7]).

Since we only consider simply connected manifolds, the relevant L-groups are 4-periodic and given
by (cf. [LM24, Theorem 8.99])

𝐿𝑛 (Z) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z if 𝑛 ≡ 0 (4)
Z/2 if 𝑛 ≡ 2 (4)
0 otherwise.

In particular, the map S𝜕 (𝐷
𝑘 × 𝑀) ↩→ N𝜕 (𝐷

𝑘 × 𝑀) if (𝑘 + 𝑑) is even. The map 𝜎 in the surgery
exact sequence (1) is the so-called surgery obstruction map, which in degrees 𝑑 + 𝑘 ≡ 0 (4) with 𝑘 ≥ 1
and for simply connected M is given by

𝜎(𝑊, 𝑓 , 𝑓 , 𝜉) =
1
8

(
sign(𝑊 ∪ (𝐷𝑘 × 𝑀)︸�������������︷︷�������������︸

�𝑊 ′

) − sign(𝑆𝑘 × 𝑀)
)
=

1
8

sign(𝑊 ′),

where sign denotes the signature (cf. [LM24, Theorem 8.173, Exercise 8.191]). The signature of 𝑊 ′

can be computed via Hirzebruch’s signature theorem, which constructs a power series with rational
coefficients

L(𝑥1, 𝑥2, . . . ) = 1 + 𝑠1𝑥1 + · · · + 𝑠𝑖𝑥𝑖 + · · · + 𝑠𝑖, 𝑗𝑥𝑖 · 𝑥 𝑗 + . . .

+ 𝑠𝑖1 ,...,𝑖𝑛𝑥𝑖1 · · · 𝑥𝑖𝑛 + . . .

such that sign(𝑊 ′) = 〈L(𝑝1 (𝑇𝑊
′), 𝑝2 (𝑇𝑊

′), . . . ), [𝑊 ′]〉. Here 𝑝𝑖 (𝑇𝑊
′) are the Pontryagin classes

of 𝑊 ′.
In order to further analyze N𝜕 (𝐷

𝑘 × 𝑀), let us define 𝐺 (𝑛) = { 𝑓 : 𝑆𝑛−1 → 𝑆𝑛−1

homotopy equivalence} and BG � colim𝑛→∞ BG(𝑛). Note, that the index shift stems from the
fact that one wants to have an inclusion 𝑂 (𝑛) ⊂ 𝐺 (𝑛) of the orthogonal group. Analogously, let
BO � colim𝑛→∞ BO(𝑛). Note that BG is the classifying space for stable spherical fibrations, whereas
BO is the classifying space for stable vector bundles. The inclusion induces 𝐽 (𝑛) : BO(𝑛) ↩→ BG(𝑛)
which in the colimit yields a map 𝐽 : BO → BG, and we denote its homotopy fiber by G/O. By [LM24,
Equation 11.11], there is an identification

N𝜕 (𝐷
𝑘 × 𝑀) � [(𝐷𝑘 , 𝑆𝑘−1) × 𝑀, (G/O, ∗)],

where [_, _] denotes homotopy classes of maps of pairs. For our purpose, we need a more explicit
description of this identification; in particular, we want to pay attention to the vector bundle data. We
follow [LM24, Theorem 7.10 and above] for this. A map into G/O consists of a map 𝛾 into BO and
a homotopy h in BG from 𝐽 ◦ 𝛾 to the constant map. Since 𝐷𝑘 × 𝑀 is compact, 𝛾 and h actually
land in finite stages BO(ℓ) and BG(ℓ). We obtain a vector bundle 𝛾∗𝑈ℓ → (𝐷𝑘 × 𝑀)/(𝑆𝑘−1 × 𝑀),
where𝑈ℓ → BO(ℓ) is the universal vector bundle and a trivialization ℎ : 𝑆(𝛾∗𝑈𝑑) → 𝑆ℓ−1 as spherical
fibrations. Next, we choose an embedding 𝐷𝑘 × 𝑀 ↩→ R𝑁

+ � {(𝑥1, . . . , 𝑥𝑁 ) : 𝑥1 ≥ 0} such that
𝑆𝑘−1×𝑀 embeds into {𝑥1 = 0}. The relative Pontryagin Thom construction yields a map (𝐷𝑁 , 𝑆𝑁−1) →
(Th(𝑆(𝜈𝑀×𝐷𝑘 )),Th(𝑆(𝜈𝑀×𝑆𝑘−1 ))) into the Thom spaces of the respective sphere bundles. Using the
map ℎ from above, we can define a map

https://doi.org/10.1017/fms.2025.10054 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10054


Forum of Mathematics, Sigma 11

(𝐷𝑁+ℓ , 𝑆𝑁+ℓ−1) = (𝐷ℓ , 𝑆ℓ−1) × (𝐷𝑁 , 𝑆𝑁−1) −→ (𝐷ℓ , 𝑆ℓ−1) × Th(𝑆(𝜈𝐷𝑘×𝑀 ))

−→ (Th(𝑆(𝜈𝐷𝑘×𝑀 ) ∗ 𝑆ℓ−1),Th(𝑆(𝜈𝑆𝑘−1×𝑀 ) ∗ 𝑆ℓ−1))

Th(id ∗ℎ−1
)

−→ (Th(𝑆(𝜈𝐷𝑘×𝑀 ⊕ 𝛾∗𝑈ℓ )),Th(𝑆(𝜈𝑆𝑘−1×𝑀 ⊕ 𝛾∗𝑈ℓ ))),

where the middle map is induced by the projection 𝐷ℓ × (𝐷 (𝜈𝐷𝑘×𝑀 )/𝑆(𝜈𝐷𝑘×𝑀 )) → 𝐷 (𝐷ℓ ×

𝜈𝐷𝑘×𝑀 )/𝑆(𝐷ℓ × 𝜈𝐷𝑘×𝑀 ). The reverse of the Pontryagin–Thom-construction yields an element
(𝑊, 𝑓 , 𝑓 , 𝛾∗𝑈ℓ) ∈ N𝜕 (𝐷

𝑘 × 𝑀). Note that the bundle 𝜉 is precisely given by the (stable) vector bundle
classified by 𝛾 : 𝐷𝑘 × 𝑀 → BO(ℓ) → BO.

Next, we identify 𝑆𝑘 ∧𝑀+ = (𝑆𝑘 ×𝑀+)/({1} ×𝑀+ ∪ 𝑆
𝑘 × {+}) � (𝐷𝑘 ×𝑀)/(𝑆𝑘−1 ×𝑀), where 𝑀+

is M with a disjoint base point and ∧ denotes the smash product of pointed spaces. The functor 𝑆𝑘 ∧ (_)
is adjoint to the k-fold loop space functor Ω𝑘 (_), and so we get [𝑆𝑘 ∧𝑀+,G/O]∗ � [𝑀,Ω𝑘 G/O]. Now
Ω𝑘+1 BG is the homotopy fiber of the map Ω𝑘 G/O → Ω𝑘 BO, and by obstruction theory (cf. [Hat02, p.
418]), the obstructions to the lifting problem

𝑀 Ω𝑘 BO

Ω𝑘 G/O

live in the groups 𝐻𝑖+1(𝑀; 𝜋𝑖 (Ω𝑘+1 BG)) � 𝐻𝑖+1(𝑀; 𝜋𝑘+𝑖+1(BG)). The homotopy groups 𝜋𝑘+𝑖+1(BG)

are isomorphic to the shifted stable homotopy groups of spheres 𝜋𝑠𝑡
𝑘+𝑖 by [LM24, Equation 6.34]. By

Serre’s finiteness theorem, these groups are finite for 𝑘 + 𝑖 ≥ 1, and hence, all of our obstruction groups
vanish rationally since we assumed that 𝑘 ≥ 1. Since maps∗(𝑀,Ω𝑘 BO) is an H-space, we see that for
every (pointed) map 𝑓 : 𝑀 → Ω𝑘 BO, some multiple of f can be lifted to Ω𝑘 G/O. Therefore, it suffices
for us to specify an element in

[(𝐷𝑘 , 𝑆𝑘−1) × 𝑀, (BO, ∗)] = KO0 ((𝐷𝑘 , 𝑆𝑘−1) × 𝑀)

in order for a multiple of this element to yield a normal invariant (𝑊, 𝑓 , 𝑓 , 𝜉). Furthermore, by the
discussion above, the bundle 𝜉 in this normal invariant is precisely given by the multiple of the element
in KO0 ((𝐷𝑘 , 𝑆𝑘−1) × 𝑀), and 𝜉 is trivial when restricted to 𝑆𝑘−1 × 𝑀 . For such a normal invariant, we
can hence extend 𝜉 by the trivial bundle to a bundle 𝜉 ′ over 𝑊 ′ � 𝑊 ∪ 𝑓 𝐷

𝑘 × 𝑀 , and the maps f and
𝑓 can be extended by the identity to a (stable) degree one normal map ( 𝑓 ′, 𝑓 ′) : 𝜈𝑊 ′ → 𝜈𝑆𝑘×𝑀 ⊕ 𝜉 ′.

Next, we consider the isomorphism given by the Pontryagin character

ph(_) � ch(_ ⊗ C) : KO0((𝐷𝑘 , 𝑆𝑘−1) × 𝑀) ⊗ Q
�

−→
⊕
𝑖≥0

𝐻4𝑖 ((𝐷𝑘 , 𝑆𝑘−1) × 𝑀;Q)

� 𝑢𝑘 ×
⊕
𝑖≥0

𝐻4𝑖−𝑘 (𝑀;Q)

for 𝑢𝑘 the cohomological fundamental class in 𝐻𝑘 (𝐷𝑘 , 𝑆𝑘−1) � 𝐻𝑘 (𝑆𝑘 , ∗). The i-th component of the
Pontryagin character is given by

ph𝑖 (𝜉) = ch2𝑖 (𝜉 ⊗ C) =
1

(2𝑖)!

( (
−2𝑖)𝑐2𝑖 (𝜉) + 𝑓 (𝑐1(𝜉), . . . , 𝑐2𝑖−1 (𝜉)

) )
=

(−1)𝑖+1

(2𝑖 − 1)!
𝑝𝑖 (𝜉),

where 𝑓 (𝑐1(𝜉), . . . , 𝑐2𝑖−1(𝜉)) is a polynomial in Chern classes of 𝜉 homogeneous of degree 2𝑖 which
vanishes since all nontrivial products in 𝐻∗((𝐷𝑘 , 𝑆𝑘−1) × 𝑀;Q) are trivial. Hence, for any collection
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(𝑥𝑖) ∈ 𝐻4𝑖−𝑘 (𝑀;Q) and (𝐴𝑖) ∈ Q there exists a 𝜆 ∈ Z \ {0} and a normal invariant (𝑊, 𝑓 , 𝑓 , 𝜉) ∈

N𝜕 (𝐷
𝑘 × 𝑀) such that the bundle 𝜉 has the following Pontryagin classes

𝑝𝑖 (𝜉) = (−1)𝑖+1(2𝑖 − 1)!𝜆𝐴𝑖 · 𝑢𝑘 × 𝑥𝑖 ,

where 𝑢𝑘 denotes the cohomological fundamental class of 𝑆𝑘 . We observe that 𝑝𝑖 (𝜉) ∪ 𝑝 𝑗 (𝜉) = 0 for
𝑖, 𝑗 ≥ 1 since 𝑢2

𝑘 = 0. Furthermore, (−1)𝑖+1(2𝑖 − 1)! ≠ 0 for all choices of i, and hence, after replacing
𝐴𝑖 by (−1)𝑖+1 𝐴𝑖

(2𝑖−1)! , we may assume that the Pontryagin classes of 𝜉 have the form5

𝑝𝑖 (𝜉) = 𝜆𝐴𝑖 · 𝑢𝑘 × 𝑥𝑖 . (2)

This allows us to construct a normal invariant in the kernel of the signature homomorphism and hence
an element of 𝜋𝑘 (hAut+ (𝑀)/D̃iff

+

(𝑀)) such that the underlying stable vector bundle has prescribed
Pontryagin classes, which we will do in the succeeding section.

With regard to Pontryagin numbers of the extension 𝑊 ′ of W, we remark that 𝑝𝑖 (𝑇𝑊
′) = 𝑝𝑖 (−𝜈𝑊 ′ )

and 𝑝𝑖 (−(𝜈𝑆𝑘×𝑀 ⊕ 𝜉 ′)) = 𝑝𝑖 (𝑇 (𝑆
𝑘 × 𝑀) ⊕ −𝜉) = 𝑝𝑖 (pr∗ 𝑇𝑀 ⊕ −𝜉 ′) for pr : 𝑆𝑘 × 𝑀 → 𝑀 . Since

𝑓 ′ : 𝜈𝑊 ′ → 𝜈𝑆𝑘×𝑀 ⊕ 𝜉 ′ covers a map of degree one, any Pontryagin number of 𝑊 ′ equals the cor-
responding Pontryagin number of pr∗ 𝑇𝑀 ⊕ −𝜉 ′. Furthermore, as 𝜉 ′ is trivial on the complement of
𝑊 ⊂ 𝑊 ′, the Pontryagin numbers of 𝜉 ′ are obtained from the ones of 𝜉 by replacing the fundamental
class in 𝐻𝑘 (𝐷𝑘 , 𝑆𝑑−1) by the corresponding one in 𝐻𝑘 (𝑆𝑘 , ∗) in Equation (2).

3. Prescribing Pontryagin classes

In this section, we will prove the block-analogues of our main results. We call a characteristic class
𝑐 ∈ 𝐻𝑑+𝑘 (BO(𝑑);Q) block-spherical (resp. block- h-spherical) for M if there exists an M-block-bundle
𝐸 → 𝑆𝑘 (resp. a homotopy trivial one) such that 〈𝑐(𝐸), [𝐸]〉 ≠ 0.

3.1. Proof of Theorem A

Part (i) of Theorem A follows from the following ‘block-version’ in combination with Lemma 2.5 (see
also Remark 2.6).
Lemma 3.1. Let 4𝑚 = 𝑑+ 𝑘 and let 𝑝𝑚 ≠ 𝑝 = 𝑝𝑖1 · . . . · 𝑝𝑖𝑠 ∈ 𝐻4𝑚(𝐵𝑆𝑂;Q) be a monomial in universal
Pontryagin classes. Then

𝑝 is block-ℎ-spherical ⇐⇒
There exists an ℓ ≥ 1 such that : 𝑖ℓ ≥ 𝑘

4 and
𝑝𝑖1 (𝑇𝑀) ∪ . . . ∪ �𝑝𝑖ℓ (𝑇𝑀) ∪ . . . ∪ 𝑝𝑖𝑠 (𝑇𝑀) ≠ 0.

Proof. We first show the ‘⇐’ implication. Let ℓ be such that 𝑖ℓ is maximal with the property above and
let 𝑥 ∈ 𝐻∗(𝑀;Q) be such that

𝑝𝑖1 (𝑇𝑀) ∪ . . . ∪ �𝑝𝑖ℓ (𝑇𝑀) ∪ . . . ∪ 𝑝𝑖𝑠 (𝑇𝑀) ∪ 𝑥 = 𝑢𝑀 ∈ 𝐻𝑑 (𝑀;Q).

By the discussion in Section 2.2 (in particular, see Equation (2)), there exists a normal invariant 𝜂 such
that the underlying (extended) stable vector bundle 𝜉 → 𝑆𝑘 × 𝑀 has the following Pontryagin classes:

𝑝0 (−𝜉) = 1 𝑝𝑖ℓ (−𝜉) = 𝜆 · 𝑢𝑘 × 𝑥

𝑝𝑚 (−𝜉) = 𝜆𝐴 · 𝑢𝑘 × 𝑢𝑀

for 𝑢𝑘 the cohomological fundamental class of 𝑆𝑘 , 𝐴 ∈ Q to be chosen later and 𝜆 ∈ Z \ {0} determined
by A. All other Pontryagin classes of 𝜉 vanish. Note that by assumption, 𝑖ℓ < 𝑚. Then6

5Note that 𝜆 depends on the collection (𝐴𝑖) , so we cannot absorb it into the 𝐴𝑖’s
6Since we are only interested in rational Pontryagin classes the Whitney sum formula, 𝑝 (𝑉 ⊕ 𝑊 ) = 𝑝 (𝑉 ) ∪ 𝑝 (𝑊 ) holds.
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𝑝𝑖1 ∪ . . .∪𝑝𝑖𝑠 (pr∗ 𝑇𝑀 ⊕ −𝜉) =
𝑠∏

𝑗=1

𝑖 𝑗∑
𝑛=0

𝑝𝑛 (−𝜉) ∪ 𝑝𝑖 𝑗−𝑛 (pr∗ 𝑇𝑀) (3)

for pr : 𝑆𝑘 × 𝑀 → 𝑀 the projection. Since 𝑝𝑖 (pr∗ 𝑇𝑀) = pr∗ 𝑝𝑖 (𝑇𝑀) = 1 × 𝑝𝑖 (𝑇𝑀), we will from
now on omit ‘pr∗’ in our computations. Since 𝑖 𝑗 < 𝑚 and by our choice of Pontryagin classes of 𝜉,
the expression 𝑝𝑛 (−𝜉) ∪ 𝑝𝑖 𝑗−𝑛 (𝑇𝑀) is nonzero only if 𝑛 = 0 or if 𝑛 = 𝑖ℓ . Furthermore, recall that
𝑝𝑛 (−𝜉) ∪ 𝑝𝑛′ (−𝜉) = 0 for 𝑛, 𝑛′ ≥ 1. We continue the computation

(3) =
∏
𝑖 𝑗 ≥𝑖ℓ

(
𝑝𝑖 𝑗 (𝑇𝑀) + 𝑝𝑖ℓ (−𝜉) ∪ 𝑝𝑖 𝑗−𝑖ℓ (𝑇𝑀)

)
∪
∏
𝑖 𝑗<𝑖ℓ

𝑝𝑖 𝑗 (𝑇𝑀)

=
𝑠∏

𝑗=1
𝑝𝑖 𝑗 (𝑇𝑀) (4)

+
∏
𝑖 𝑗<𝑖ℓ

𝑝𝑖 𝑗 (𝑇𝑀) ∪
∑
𝑖 𝑗 ≥𝑖ℓ

&''''''(
𝑝𝑖ℓ (−𝜉) ∪ 𝑝𝑖 𝑗−𝑖ℓ (𝑇𝑀) ∪

∏
𝑞 ≠ 𝑗
𝑖𝑞 ≥ 𝑖𝑙

𝑝𝑖𝑞 (𝑇𝑀)

)******+
,

where the second equality holds after multiplying out and using the fact that there can only be one
factor 𝑝𝑖ℓ (−𝜉) in each summand. The first summand vanishes for degree reasons. If 𝑖 𝑗 > 𝑖ℓ , then∏

𝑞≠ 𝑗 𝑝𝑖𝑞 (𝑇𝑀) = 0 because we chose 𝑖ℓ to be maximal such that this product does not vanish. Hence,
the latter factor vanishes if 𝑖 𝑗 > 𝑖ℓ and we get

(4) = 𝑝𝑖ℓ (−𝜉) ∪
∏
𝑖 𝑗<𝑖ℓ

𝑝𝑖 𝑗 (𝑇𝑀) ∪
∑

𝑗 : 𝑖 𝑗=𝑖ℓ

(∏
𝑞≠ 𝑗

𝑝𝑖𝑞 (𝑇𝑀)

)
= 𝑝𝑖ℓ (−𝜉)︸���︷︷���︸

=𝜆·𝑥×𝑢𝑘

∪
∏
𝑞≠ℓ

𝑝𝑖𝑞 (𝑇𝑀) ·
∑

𝑗 : 𝑖 𝑗=𝑖ℓ

1︸���︷︷���︸
�𝑎ℓ≠0

= 𝜆𝑎ℓ · 𝑢𝑘 × 𝑢𝑀 ≠ 0.

Finally, we need to choose A, such that the surgery obstruction vanishes. We have

𝑝𝑚 (𝑇𝑀 ⊕ −𝜉) = 𝑝𝑚 (−𝜉) + 𝑝𝑚−𝑖ℓ (𝑇𝑀) ∪ 𝑝𝑖ℓ (−𝜉).

Consider Hirzebruch’s signature formula:

𝜎(𝜂) = sign(𝑊 ′) = 〈L(𝑊 ′), [𝑊 ′]〉 =
〈
L(𝑆𝑘 ) · L(𝑇𝑀 ⊕ −𝜉), [𝑆𝑘 × 𝑀]

〉
= 𝑠𝑚 ·

〈
𝑝𝑚 (𝑇𝑀 ⊕ −𝜉), [𝑆𝑘 × 𝑀]

〉
+
〈
L(𝑇𝑀 ⊕ −𝜉) − 𝑠𝑚 · 𝑝𝑚 (𝑇𝑀 ⊕ 𝜉), [𝑆𝑘 × 𝑀]

〉
= 𝑠𝑚 ·

〈
𝑝𝑚 (−𝜉), [𝑆𝑘 × 𝑀]

〉
+
〈
L(𝑇𝑀 ⊕ −𝜉) − 𝑠𝑚 · 𝑝𝑚 (𝑇𝑀 ⊕ 𝜉) + 𝑠𝑚 · 𝑝𝑚−𝑖ℓ (𝑇𝑀) ∪ 𝑝𝑖ℓ (−𝜉)

〉
, [𝑆𝑘 × 𝑀]︸��������������������������������������������������������������������������������������������������︷︷��������������������������������������������������������������������������������������������������︸

�𝑧

= 𝑠𝑚𝜆 · 𝐴 + 𝑧,

where 𝑠𝑚 ≠ 0 is the leading coefficient of L. Note that 𝑧 = 𝜆 · 𝑧0 for some 𝑧0 which is independent of A.
This is true since there appears precisely one factor 𝑝𝑖ℓ (𝜉) (which is a multiple of 𝜆) in every monomial
summand of (L(𝑇𝑀 ⊕ 𝜉) − 𝑠𝑚𝑝𝑚 (𝑇𝑀 ⊕ 𝜉) + 𝑠𝑚 · 𝑝𝑚−𝑖ℓ (𝑇𝑀) ∪ 𝑝𝑖ℓ (−𝜉)), while all other factors are
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coefficients of L or Pontryagin classes of M which are independent of 𝜆. We choose 𝐴 � 𝑧0
𝑠𝑚

so that
𝜎(𝜂) vanishes independently of 𝜆. We hence obtain a normal invariant with vanishing signature and
therefore a block bundle with the desired properties.

For the other implication ‘⇒’, let us assume that 𝑝𝑖1 (𝑇𝑀) ∪ . . . ∪ �𝑝𝑖ℓ (𝑇𝑀) ∪ . . . ∪ 𝑝𝑖𝑠 (𝑇𝑀) = 0 for
all 𝑖ℓ ≥ 𝑘

4 .

𝑝𝑖1 ∪ . . . ∪ 𝑝𝑖𝑠 (𝑇𝑀 ⊕ −𝜉) =
𝑠∏

𝑗=1

𝑖 𝑗∑
𝑛=0

𝑝𝑛 (−𝜉) ∪ 𝑝𝑖 𝑗−𝑛 (𝑇𝑀)

Since 𝑝𝑛 (𝜉) ∪ 𝑝𝑛′ (𝜉) = 0 for 𝑛, 𝑛′ ≥ 1 and 𝑝𝑖1 (𝑇𝑀) · · · 𝑝𝑖𝑠 (𝑇𝑀) = 0 (for degree reasons), every
summand in the above expression must contain precisely one factor 𝑝𝑛 (𝜉) for some 𝑛 ≥ 1. Hence,
multiplying out the above delivers

𝑝𝑖1 ∪ . . .∪𝑝𝑖𝑠 (𝑇𝑀 ⊕ −𝜉) =
𝑠∑

𝑗=1

𝑖 𝑗∑
𝑛=1

𝑝𝑛 (−𝜉) ∪ 𝑝𝑖 𝑗−𝑛 (𝑇𝑀) ∪
∏
𝑟≠ 𝑗

𝑝𝑖𝑟 (𝑇𝑀).

The product
∏

𝑟≠ 𝑗 𝑝𝑖𝑟 (𝑇𝑀) vanishes if 𝑖 𝑗 ≥ 𝑘
4 by assumption. If 𝑖 𝑗 < 𝑘

4 , then 𝑝𝑛 (−𝜉) = 0 for all
1 ≤ 𝑛 ≤ 𝑖 𝑗 since every higher Pontryagin class of 𝜉 is of the form 𝑢𝑘 × ∗ and hence is of degree at least
𝑘/4. It follows that there is no normal invariant with 𝑝𝑖1 ∪ · · · ∪ 𝑝𝑖𝑠 (𝑇𝑊) ≠ 0, and hence, there can be
no such block bundle. �

Next, we turn to the proof of Theorem A(ii) and Theorem B which will again follow from block-
analogues thereof combined with Lemma 2.5. Recall the following definitions:

𝑖min � min{𝑖 ≥ 1: 𝑝𝑖 (𝑇𝑀) ≠ 0}
𝑛max � max{𝑛 ∈ N : 𝑝𝑖min (𝑇𝑀)𝑛 ≠ 0}.

(5)

We assume that M admits at least on nontrivial rational Pontryagin class, so the set {𝑖 ≥ 1: 𝑝𝑖 (𝑇𝑀) ≠ 0}
is actually nonempty and 𝑛max ≥ 1.

Lemma 3.2. For every ℓ = 1, . . . , 𝑛max, there exists a normal invariant 𝜂ℓ with underlying (extended)
stable vector bundle 𝜉ℓ → 𝑆𝑘 × 𝑀 with the following property:〈

𝑝𝑖𝑚𝑖𝑛 (𝑇𝑀 ⊕ −𝜉ℓ)
𝑟 ∪ 𝑝𝑚−𝑟 ·𝑖min (𝑇𝑀 ⊕ −𝜉ℓ), [𝑆

𝑘 × 𝑀]
〉
≠ 0 ⇐⇒ 𝑟=ℓ

or 𝑟=0

and 𝜎(𝜂ℓ) = 0. For ℓ = 1, we furthermore have that 𝜉1 can be chosen such that〈
𝑝𝑖min (𝑇𝑀 ⊕ −𝜉1) ∪ 𝑝𝑚−𝑖min (𝑇𝑀 ⊕ −𝜉1), [𝑆

𝑘 × 𝑀]
〉

and
〈
𝑝𝑚 (𝑇𝑀 ⊕ −𝜉1), [𝑆

𝑘 × 𝑀]
〉

are the only nonvanishing monomial Pontryagin numbers of 𝑇𝑀 ⊕ −𝜉1.

Proof. Let 𝑢𝑀 ∈ 𝐻4𝑚−𝑘 (𝑀;Q) denote the cohomological fundamental class of M. Since the cup
product induces a perfect pairing

𝐻4 𝑗 (𝑀;Q) × 𝐻4(𝑚− 𝑗)−𝑘 (𝑀;Q) → Q,

there exists a class 𝑥 � 𝑥𝑛max ∈ 𝐻4(𝑚−𝑖min ·𝑛max)−𝑘 (𝑀;Q) such that 𝑥 ∪ 𝑝𝑖min (𝑇𝑀)𝑛max = 𝑢𝑀 . For
𝑟 = 0, . . . , 𝑛max, we define 𝑥𝑟 � 𝑥 ∪ 𝑝𝑖min (𝑇𝑀)𝑛max−𝑟 . Then

𝑥𝑟 ∪ 𝑝𝑖min (𝑇𝑀)𝑟 = 𝑥 ∪ 𝑝𝑖min (𝑇𝑀)𝑛max−𝑟 ∪ 𝑝𝑖min (𝑇𝑀)𝑟 = 𝑢𝑀 .
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By the discussion in Section 2, we know that for every collection 𝐴0, . . . , 𝐴𝑛max ∈ Q, there exists a
𝜆 ∈ Z \ {0} and a normal invariant 𝜂ℓ = (𝑊ℓ , 𝑓ℓ , 𝑓ℓ , 𝜉ℓ) such that the (extended) stable vector bundle
𝜉 ′ℓ has only the following (rational) Pontryagin classes:

𝑝0 (−𝜉
′
ℓ) = 1

𝑝𝑚−𝑟 ·𝑖min (−𝜉
′
ℓ) = 𝜆𝐴𝑟 · 𝑢𝑘 × 𝑥𝑟 for 𝑟 = 0, . . . , 𝑛max.

Since 𝑟 · 𝑖min < 𝑚 and 𝑝𝑞 (𝑇𝑀) = 0 for all 0 < 𝑞 < 𝑖min, we have

𝑝𝑖𝑚𝑖𝑛 (𝑇𝑀 ⊕ −𝜉 ′ℓ) =
𝑖min∑
𝑎=0

𝑝𝑎 (𝑇𝑀) ∪ 𝑝𝑖min−𝑎 (−𝜉
′
ℓ) = 𝑝𝑖min (−𝜉

′
ℓ) + 𝑝𝑖min (𝑇𝑀).

We will now distinguish two cases: 𝑚 = (𝑠 + 1) · 𝑖min for some 1 ≤ 𝑠 ≤ 𝑛max and 𝑚 ≠ (𝑟 + 1) · 𝑖min for
all r. In the former case, we have 𝑝𝑖min (−𝜉

′
ℓ) = 𝜆𝐴𝑠 · 𝑢𝑘 × 𝑥𝑠 and compute

𝑝𝑖min (𝑇𝑀⊕ − 𝜉 ′ℓ)
𝑠 ∪ 𝑝𝑚 − 𝑠 · 𝑖min︸�������︷︷�������︸

=𝑖min

(𝑇𝑀 ⊕ −𝜉 ′ℓ) = 𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ)
𝑠+1

= (𝑝𝑖min (−𝜉
′
ℓ) + 𝑝𝑖min (𝑇𝑀))𝑠+1 = (𝑠 + 1) · 𝑝𝑖min (𝑇𝑀)𝑛max ∪ 𝑝𝑖min (−𝜉

′
ℓ)

= (𝑠 + 1)𝜆𝐴𝑠 · 𝑝𝑖min (𝑇𝑀)𝑠 ∪ 𝑢𝑘 × 𝑥𝑠︸����������������������︷︷����������������������︸
=𝑢𝑘 ·𝑢𝑀

where the third equality follows from multiplying out and the fact that 𝑝𝑛 (𝜉) ∪ 𝑝𝑛′ (𝜉) = 0 for 𝑛, 𝑛′ ≥ 1.
For 0 ≤ 𝑟 ≠ 𝑠 we have:

𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ)
𝑟 ∪ 𝑝𝑚−𝑖min ·𝑟 (𝑇𝑀 ⊕ −𝜉ℓ)

=
(
𝑝𝑖min (−𝜉

′
ℓ) + 𝑝𝑖min (𝑇𝑀)

)𝑟
∪

𝑚−𝑖min ·𝑟∑
𝑎=0

𝑝𝑎 (𝑇𝑀) ∪ 𝑝𝑚−𝑖min ·𝑟−𝑎 (−𝜉
′
ℓ)

=
(
𝑝𝑖min (−𝜉

′
ℓ) + 𝑝𝑖min (𝑇𝑀)

)𝑟 (6)

∪
(
𝑝𝑚−𝑖min ·𝑟 (−𝜉

′
ℓ) +

𝑚−𝑖min ·𝑟∑
𝑎=𝑖min

𝑝𝑎 (𝑇𝑀) ∪ 𝑝𝑚−𝑖min ·𝑟−𝑎 (−𝜉
′
ℓ)
)

= 𝑝𝑖min (𝑇𝑀)𝑟 ∪ 𝜆𝐴𝑟𝑢𝑘 × 𝑥𝑟︸����������������������������︷︷����������������������������︸
=𝜆𝐴𝑟 ·𝑢𝑘×𝑢𝑀

+ ∗ ·𝑢𝑘 × 𝑢𝑀 ,

where ∗ is a linear expression in the variables 𝜆𝐴𝑟+1, . . . , 𝜆𝐴𝑛max . Now for 𝑏, 𝑎1, . . . , 𝑎𝑛max ∈ Q, consider
the following system of equations:

𝑏 =
〈
𝑝𝑚(𝑇𝑀 ⊕ −𝜉 ′ℓ), [𝑆

𝑘 × 𝑀]
〉

𝑎1 =
〈
𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ) ∪ 𝑝𝑚−𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ), [𝑆

𝑘 × 𝑀]
〉

...

𝑎𝑟 =
〈
𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ)

𝑟 ∪ 𝑝𝑚−𝑟 ·𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ), [𝑆
𝑘 × 𝑀]

〉
...

𝑎𝑛max =
〈
𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ)

𝑛max ∪ 𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ), [𝑆
𝑘 × 𝑀]

〉
.
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By the above computation, this is a linear system of equations in the variables 𝜆𝐴0, 𝜆𝐴1, . . . , 𝜆𝐴𝑛max ,
and it has the following form:

&'''''''(

1 ∗ ∗ ∗ ∗

0
. . . ∗ ∗ ∗

0 0 𝑠 + 1 ∗ ∗

0 0 0
. . . ∗

0 0 0 0 1

)*******+︸�������������������︷︷�������������������︸
�𝐵

·
&''(
𝜆𝐴0
...

𝜆𝐴𝑛max

)**+ =
&''''(
𝑏
𝑎1
...

𝑎𝑛max

)****+
with 𝑠 + 1 in the s-th row. The matrix B is invertible, and hence, we can choose 𝐴1, . . . 𝐴𝑛max such that
𝑎𝑖 = 0 if and only if 𝑖 ≠ ℓ. Note that 𝜆 is not yet determined, as it also depends on 𝐴0, but the condition
of 𝑎𝑖 being zero or nonzero is independent of 𝜆. Furthermore, note that since B is triangular, the values
of 𝑎𝑖 are independent of 𝐴0. Finally, we need to choose 𝐴0, such that the surgery obstruction vanishes.
Consider Hirzebruch’s signature formula:

𝜎(𝜂ℓ) = sign(𝑊 ′
ℓ) =

〈
L(𝑊 ′

ℓ ), [𝑊
′
ℓ]
〉
=
〈
L(𝑊 ′

ℓ), 𝑓∗ [𝑆
𝑘 × 𝑀]

〉
=
〈
L(𝑆𝑘 )L(𝑇𝑀 ⊕ 𝜉ℓ), [𝑆

𝑘 × 𝑀]
〉
=
〈
L(𝑇𝑀 ⊕ 𝜉ℓ), [𝑆

𝑘 × 𝑀]
〉

= 𝑠𝑚 · 𝜆 · 𝐴0 + 𝜆 · 𝑧0,

where 𝑧0 is some number independent of 𝐴0 and 𝑠𝑚 is the leading coefficient of L as in the proof of
Lemma 3.1. Since 𝑠𝑚 ≠ 0, we can choose 𝐴0 �

𝑧0
𝑠𝑚

so that 𝜎(𝜂ℓ) vanishes independently of 𝜆.
The case 𝑚 ≠ (𝑟 + 1) · 𝑖min for all r is very similar. By the same computation as (6), we have for all

𝑟 ≥ 0,

𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′ℓ)
𝑟 ∪ 𝑝𝑚−𝑖min ·𝑟 (𝑇𝑀 ⊕ −𝜉ℓ)

= 𝑝𝑖min (𝑇𝑀)𝑟 ∪ 𝜆𝐴𝑟 ∪ 𝑢𝑘 × 𝑥𝑟︸��������������������������������︷︷��������������������������������︸
=𝜆𝐴𝑟 ·𝑢𝑘×𝑢𝑀

+ ∗ ·𝑢𝑘 × 𝑢𝑀 .

This implies that the respective matrix B has the same form as above with 𝑠 + 1 replaced by 1. The rest
of the argument is verbatim to the first case.

If ℓ = 1, the above system of linear equations reduces to 𝑎2 = 𝑎3 = · · · = 𝑎𝑛max = 0. From the
shape of B, this implies that 𝐴2 = · · · = 𝐴𝑛max must be 0 as well, and hence, bundle 𝜉 ′1 only has three
nonvanishing Pontryagin classes – namely,

𝑝0 (𝜉
′
1) = 1

𝑝𝑚−𝑖min (−𝜉
′
1) = 𝜆𝐴1 · 𝑢𝑘 × 𝑥

𝑝𝑚 (−𝜉 ′1) = 𝜆𝐴0 · 𝑢𝑘 × 𝑢𝑀 .

As noted above, every Pontryagin number of 𝑇𝑀 ⊕ −𝜉 ′1 contains precisely one Pontryagin class of
𝜉 ′1. Since 𝑝𝑖𝑚𝑖𝑛 (𝑇𝑀) is the smallest Pontryagin class of M, we deduce that the only possibly nonvan-
ishing Pontryagin numbers of 𝑇𝑀 ⊕ −𝜉 ′1 are

〈
𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′1) ∪ 𝑝𝑚−𝑖min (𝑇𝑀 ⊕ −𝜉 ′1), [𝑆

𝑘 × 𝑀]
〉

and〈
𝑝𝑚 (𝑇𝑀 ⊕ −𝜉 ′1), [𝑆

𝑘 × 𝑀]
〉
. By construction,〈

𝑝𝑖min (𝑇𝑀 ⊕ −𝜉 ′1) ∪ 𝑝𝑚−𝑖min (𝑇𝑀 ⊕ −𝜉 ′1), [𝑆
𝑘 × 𝑀]

〉
≠ 0.

Since 𝜎(𝜂1) = 0 by construction, we deduce that
〈
𝑝𝑚(𝑇𝑀 ⊕ −𝜉 ′1), [𝑆

𝑘 × 𝑀]
〉

is nonzero as well since
the leading coefficient in the L-polynomial is nontrivial by [Hir95, p. 12]. �
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3.2. Proof of Corollary C

(i) Consider the linear homomorphism Ω𝑑+𝑘 −→ Q𝑛max given by

[𝑋] ↦→
(〈
𝑝𝑖min (𝑇𝑋)

ℓ ∪ 𝑝 𝑑+𝑘
4 −ℓ ·𝑖min

(𝑇𝑋), [𝑋]
〉)

ℓ=1,...,𝑛max
.

If E denotes the vector space generated by 𝐸1, . . . 𝐸𝑛max from Theorem B, the composition

E → Fibℎ (𝑀, 𝑘) → Ω𝑑+𝑘 ⊗ Q→ Q𝑛max

is given by a diagonal matrix with nonzero entries on the diagonal by Theorem B. Hence, the first
map is forced to be injective.

(ii) Let 𝑝𝐼 [_] � 〈𝑝𝐼 (_), [_]〉 be a monomial Pontryagin number and let 𝑀 𝜄
→ 𝐸4𝑚 𝜋

→ 𝑆𝑘 be
a fiber homotopy trivial bundle. We will show that 𝑝𝐼 [𝐸] is a linear combination of (𝑝𝑒

𝑖min
∪

𝑝𝑚−𝑒 ·𝑖min [𝐸])𝑒=0..𝑛max . This implies that 𝑝𝐼 [_] restricted to Fibℎ
𝑀,𝑘 is a linear combination of

(𝑝𝑒
𝑖min

∪ 𝑝𝑚−𝑒 ·𝑖min [_])𝑒=0..𝑛max . Again, since Ω∗ is classified by Pontryagin numbers, this implies that
dim Fibℎ

𝑀,𝑘 ≤ 𝑛max+1. Furthermore, the signature of any fiber bundle 𝐸 → 𝑆𝑘 is trivial. Since every
coefficient in the L-polynomial is nontrivial by [BB18], this gives one nontrivial linear relation
among the functionals (𝑝𝑒

𝑖min
∪ 𝑝𝑚−𝑒 ·𝑖min [_])𝑒=0...𝑛max restricted to Fibℎ

𝑀,𝑘 , implying our claim:

dim Fibℎ
𝑀,𝑘 = dim(Fibℎ

𝑀,𝑘 )
∗ ≤ 𝑛max.

Now, let us consider the Wang-sequence:

· · · −→ 𝐻𝑛 (𝑀)
𝛿

−→ 𝐻𝑘+𝑛 (𝐸)
𝜄∗

−→ 𝐻𝑘+𝑛 (𝑀) −→ . . . .

Furthermore,

𝜄∗𝑝𝑖 (𝑇𝐸) = 𝜄∗𝑝𝑖 (𝜋
∗𝑇𝑆𝑘 ⊕ 𝑇𝜋𝐸) = 𝜄∗𝑝𝑖 (𝑇𝜋𝐸) = 𝑝𝑖 (𝜄

∗𝑇𝜋𝐸) = 𝑝𝑖 (𝑇𝑀)

for 𝑇𝜋𝐸 the vertical tangent bundle of E. The fiber homotopy trivialization ℎ : 𝐸 → 𝑀 × 𝑆𝑘 yields
a retraction 𝑠 � pr𝑀 ◦ℎ : 𝐸 → 𝑀 of 𝜄, in particular, (𝑠 ◦ 𝜄)∗𝑇𝑀 = 𝑇𝑀 . Therefore, 𝑝𝑖 (𝑇𝑀) =
𝜄∗𝑝𝑖 (𝑠

∗𝑇𝑀), and by the above computation, it follows for all i that (𝑝𝑖 (𝑇𝐸) − 𝑝𝑖 (𝑠
∗𝑇𝑀)) = 𝛿(𝑥𝑖)

for some 𝑥𝑖 ∈ 𝐻4𝑖−𝑘 (𝑀). Since products of elements in the image of 𝛿 vanish by [Whi78, p. 337,
Corollary 3.3], we can multiply out

𝑝𝐼 (𝑇𝐸) =
∏
𝑖∈𝐼

(𝛿(𝑥𝑖) + 𝑝𝑖 (𝑠
∗𝑇𝑀)) = 𝑠∗𝑝𝐼 (𝑇𝑀) +

∑
𝑖∈𝐼

𝛿(𝑥𝑖) ∪ 𝑠∗𝑝𝐼\{𝑖 } (𝑇𝑀).

The first summand vanishes for degree reasons, and by our assumption on M, there exist 𝑎𝑖 ∈ Q

such that for 𝑛𝑖 = 𝑚−𝑖
𝑖min

we have

𝑝𝐼\{𝑖 } (𝑠
∗𝑇𝑀) = 𝑎𝑖 · 𝑝𝑖min (𝑠

∗𝑇𝑀)𝑛𝑖 = 𝑎𝑖 · (𝑝𝑖min (𝑇𝐸) − 𝛿(𝑥𝑖min ))
𝑛𝑖 .
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Again using that products in the image of 𝛿 vanish, we compute

𝑝𝐼 (𝑇𝐸) =
∑
𝑖∈𝐼

𝑎𝑖 · 𝛿(𝑥𝑖) ∪ (𝑝𝑖min (𝑇𝐸) − 𝛿(𝑥𝑖min ))
𝑛𝑖

=
∑
𝑖∈𝐼

𝑎𝑖 · 𝛿(𝑥𝑖) ∪ 𝑝𝑖min (𝑇𝐸)
𝑛𝑖

=
∑
𝑖∈𝐼

𝑎𝑖 · (𝑝𝑖 (𝑇𝐸) − 𝑝𝑖 (𝑠
∗𝑇𝑀)) ∪ 𝑝𝑖min (𝑇𝐸)

𝑛𝑖 (7)

=
∑
𝑖∈𝐼

𝑎𝑖 · 𝑝𝑖 (𝑇𝐸) ∪ 𝑝𝑖min (𝑇𝐸)
𝑛𝑖 −

∑
𝑖∈𝐼

𝑎𝑖 · 𝑝𝑖 (𝑠
∗𝑇𝑀) ∪ 𝑝𝑖min (𝑇𝐸)

𝑛𝑖 .

For the second sum in this formula, we note that there exist 𝑏𝑖 ∈ Q such that for 𝑚𝑖 = 𝑖
𝑖min

we have∑
𝑖∈𝐼

𝑎𝑖 · 𝑝𝑖 (𝑠
∗𝑇𝑀) ∪ 𝑝𝑖min (𝑇𝐸)

𝑛𝑖

=
∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖 𝑝𝑖min (𝑠
∗𝑇𝑀)𝑚𝑖 ∪

(
𝛿(𝑥𝑖min ) + 𝑝𝑖min (𝑠

∗𝑇𝑀)
)𝑛𝑖

=
∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖

(
𝑛𝑖

1

)
𝛿(𝑥𝑖min ) ∪ 𝑝𝑖min (𝑠

∗𝑇𝑀)𝑚𝑖+𝑛𝑖−1

+
∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖

(
𝑛𝑖

1

)
𝑝𝑖min (𝑠

∗𝑇𝑀)𝑚𝑖+𝑛𝑖 .

Note that 𝑚𝑖 + 𝑛𝑖 = 𝑚
𝑖min
� ℓ is independent of i and the second summand hence vanishes for degree

reasons. We compute∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖

(
𝑛𝑖

1

)
𝛿(𝑥𝑖min) ∪ 𝑝𝑖min (𝑠

∗𝑇𝑀)𝑚𝑖+𝑛𝑖−1

= 𝛿(𝑥𝑖min) ∪ 𝑝𝑖min (𝑠
∗𝑇𝑀)ℓ−1

∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖𝑛𝑖

=
(
𝛿(𝑥𝑖min) + 𝑝𝑖min (𝑠

∗𝑇𝑀)
)ℓ 1
ℓ

∑
𝑖∈𝐼

𝑎𝑖𝑏𝑖𝑛𝑖︸���������︷︷���������︸
�𝜆

= 𝜆 · 𝑝𝑖min (𝑇𝐸)
ℓ .

Using that 𝑚 − 𝑛𝑖 · 𝑖min = 𝑚 − 𝑚−𝑖
𝑖min

· 𝑖min = 𝑖, we can combine this with (7) to obtain

𝑝𝐼 (𝑇𝐸) =
∑
𝑖∈𝐼

𝑎𝑖 · 𝑝𝑖 (𝑇𝐸) ∪ 𝑝𝑖min (𝑇𝐸)
𝑛𝑖 − 𝜆 · 𝑝𝑖min (𝑇𝐸)

ℓ

=
∑
𝑖∈𝐼

𝑎𝑖 · 𝑝𝑚−𝑛𝑖 ·𝑖min (𝑇𝐸) ∪ 𝑝𝑖min (𝑇𝐸)
𝑛𝑖 − 𝜆 · 𝑝𝑖min (𝑇𝐸)

ℓ .

Since 𝑎𝑖 and 𝜆 do not depend on E but only on M and I, the restriction of the functional 𝑝𝐼 [_] to
Fibℎ

𝑀,𝑘 is contained in the linear span of the functionals (𝑝𝑒
𝑖min

∪ 𝑝𝑚−𝑒 ·𝑖min [_])𝑒=0..𝑛max , as claimed.

3.3. Upper bounds on dim Fibℎ
𝑀,𝑘

Let F̃ib
ℎ

𝑀,𝑘 ⊂ Ω𝑑+𝑘 ⊗ Q denote the linear subspace spanned by homotopy trivial M-block bundles. By
Lemma 2.5, we have F̃ib

ℎ

𝑀,𝑘 ⊂ Fibℎ
𝑀,𝑘 provided that k is in the unblocking range for M. Furthermore,
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by Lemma 3.2, dim(F̃ib
ℎ

𝑀,𝑘 ) ≥ 𝑛max. In this section, we prove sharpness of the upper bound as claimed
in Theorem D or rather its block-analogue.

Proposition 3.3. Let 𝑝 = 𝑝𝑖1 ∪ . . . ∪ 𝑝𝑖𝑠 ∈ 𝐻4𝑚(𝐵𝑂 (𝑑);Q). If 𝑖 𝑗 < 𝑚 − 𝑑
4 for all 𝑗 ∈ {1, . . . , 𝑠},

𝑝𝑖1 (𝑇𝐸) ∪ · · · ∪ 𝑝𝑖𝑠 (𝑇𝐸) = 0 for all blockwise homotopy trivial M-block bundles E.

Proof. If 𝑝𝑖1 (𝑇𝐸) ∪ · · · ∪ 𝑝𝑖𝑠 (𝑇𝐸) were nonzero, we would get an 𝑖 𝑗 such that 𝑝𝑖1 (𝑇𝑀) ∪ . . . ∪�𝑝𝑖 𝑗 (𝑇𝑀) ∪ . . . ∪ 𝑝𝑖𝑠 (𝑇𝑀) ≠ 0 by Lemma 3.1. However, the degree of this product is 4(𝑚 − 𝑖 𝑗 ) > 𝑑,
and hence, the product has to vanish because the cohomology of M vanishes above degree d, leading to
a contradiction. �

Recall that 𝑝(𝑛) is defined to be the number of partitions and the number of those partitions into
natural numbers ≤ 𝑛′ is 𝑝(𝑛, 𝑛′). Proposition 3.3 yields the following upper bound.

Lemma 3.4. dim F̃ib
ℎ

𝑀,4𝑚−𝑑 ≤ 𝑝(𝑚) − 𝑝(𝑚, 𝑚 −
⌈

𝑑+1
4
⌉
) − 1.

Achieving the upper bound
We will now show that this upper bound is sharp (i.e., there exists a manifold for which equality holds).

Definition 3.5. A manifold is said to be P-large if all monomials in rational Pontryagin classes of 𝑇𝑀
are linearly independent.

If 𝜏 : 𝑀 → BO(𝑑) is the classifying map for the tangent bundle 𝑇𝑀 , then M is P-large if and only
if the induced map 𝜏∗ : 𝐻∗(BO(𝑑);Q) → 𝐻∗(𝑀;Q) is injective for ∗ ≤ 𝑑. In the example below, we
construct a P-large manifold, which can be made simply connected in dimensions 𝑑 ≡ 2, 3(4).

Example 3.6. For 𝑛 ≥ 1, let 𝑀𝑛
1 , . . . , 𝑀

𝑛
𝑠𝑛 be a basis for Ω4𝑛 ⊗ Q with the property that each of those

only has one nontrivial monomial Pontryagin number. Since Ω∗ ⊗ Q is generated by {CP2𝑛}𝑛∈N, we
may choose 𝑀𝑛

𝑖 to be simply connected. Consider the following d-dimensional manifold:

𝑀 �

𝑑
4∐

𝑛=1

𝑠𝑛∐
𝑗=1

𝑀𝑛
𝑗 × 𝑆

𝑑−4𝑛.

This manifold has all possible products of Pontryagin classes, and they are all linearly independent
since 𝐻∗(𝑀;Q) =

⊕𝑑/4
𝑛=1

⊕𝑠𝑛
𝑗=1 𝐻

∗(𝑀𝑛
𝑗 × 𝑆𝑑−4𝑛) and for every 𝐼 = (𝑖1, . . . , 𝑖𝑠), there is a unique

𝑗 ∈ {1, . . . , 𝑠 |𝐼 | } such that 𝑝𝐼 (𝑇𝑀
|𝐼 |
𝑗 ) ≠ 0. Note that for 𝑑 � 1 (4), every component of M is simply

connected. If 𝑑 ≡ 2, 3 (4), we can even assume M to be simply connected by performing connected
sums. If 𝑑 ≡ 0, 1 (4), this is not possible since Pontryagin products of top degree would then live in the
1-dimensional space 𝐻𝑑 (𝑀;Q) (resp. in the 0-dimensional space 𝐻𝑑−1 (𝑀;Q)).

For 𝐼 = (𝑖1, . . . , 𝑖𝑠), let |𝐼 | :=
∑
𝑖 𝑗 , and we introduce the short notation

𝑝𝐼 = 𝑝𝑖1 ∪ . . . ∪ 𝑝𝑖𝑠 .

Lemma 3.7. Let M be simply connected and P-large and let 𝐼 = {𝑖1, . . . , 𝑖𝑠} ≠ {𝑚} with |𝐼 | = 𝑚 and
𝑖 𝑗 ≥ 𝑚 − 𝑑

4 for some j. Then there exists a normal invariant 𝜂 ∈ N𝜕 (𝐷
4𝑚−𝑑 × 𝑀) with underlying

(extended) stable vector bundle 𝜉 ′ such that〈
𝑝𝐼 (𝑇𝑀 ⊕ −𝜉 ′), [𝑆4𝑚−𝑑 × 𝑀]

〉
and

〈
𝑝𝑚 (𝑇𝑀 ⊕ −𝜉 ′), [𝑆4𝑚−𝑑 × 𝑀]

〉
are the only nonvanishing monomial Pontryagin numbers of 𝑇𝑀 ⊕ −𝜉 ′ and 𝜎(𝜂) = 0.
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Proof. Since the cup product induces a perfect pairing and all monomials in Pontryagin classes of M
are linearly independent, there exist elements 𝑥𝐽 ∈ 𝐻𝑑−4 |𝐽 | (𝑀) for every collection 𝐽 = ( 𝑗1, . . . , 𝑗𝑡 )
with |𝐽 | < 𝑑

4 such that 𝑥𝐽 ∪ 𝑝𝐽 ′ (𝑇𝑀) = 𝑢𝑀 ∈ 𝐻𝑑 (𝑀) is a generator if 𝐽 = 𝐽 ′ and 𝑥𝐽 ∪ 𝑝𝐽 ′ (𝑇𝑀) = 0
for 𝐽 ≠ 𝐽 ′.

Without loss of generality, let 𝑖1 be the biggest element of I and let 𝑎1 be the number of elements in I
equal to 𝑖1. By assumption, 𝑖1 ≥ 𝑚 − 𝑑

4 and 𝑝𝐼\{𝑖1 } (𝑇𝑀) ≠ 0, since M is P-large. By Section 2.2, there
exists a normal invariant 𝜂 such that the underlying stable vector bundle 𝜉 → 𝑆𝑘 ×𝑀 has the following
Pontryagin classes:

𝑝0 (−𝜉
′) = 1

𝑝𝑖1 (−𝜉
′) = 𝜆 · 𝑢4𝑚−𝑑 × 𝑥𝐼\{𝑖1 }

𝑝𝑖 (−𝜉
′) = 0 for 𝑖 < 𝑖1

𝑝𝑖 (−𝜉
′) = 𝜆 · 𝑢4𝑚−𝑑 ×

∑
𝐽 : |𝐽 |=𝑚−𝑖

𝐴𝐽 𝑥𝐽 for 𝑖 > 𝑖1

for a generator 𝑢4𝑚−𝑑 ∈ 𝐻4𝑚−𝑑 (𝑆4𝑚−𝑑) and 𝐴𝐽 to be determined later. Note that for |𝐽 | = 𝑚 − 𝑖, the
degree of 𝑥𝐽 is 𝑑 − 4|𝐽 | = 4𝑖 − (4𝑚 − 𝑑). The same computation as the first one in the proof of Lemma
3.1 that

𝑝𝐼 (𝑇𝑀 ⊕ −𝜉 ′) = 𝜆𝑎1 · 𝑢4𝑚−𝑑 × 𝑢𝑀 ≠ 0.

It remains to show that we can choose 𝐴𝐽 such that all other monomial Pontryagin numbers are trivial.
Now let 𝐼 ′ = (𝑖′1, . . . , 𝑖

′
𝑡 ) be different collection with again |𝐼 ′ | = 𝑚, 𝑖′1 the maximum and 𝑎′1 the number

of elements in 𝐼 ′ equal to 𝑖′1. Then

𝑝𝐼 ′ (𝑇𝑀 ⊕ −𝜉 ′) =
𝑡∏

𝑗=1
𝑝𝑖′𝑗

(𝑇𝑀 ⊕ −𝜉 ′) =
𝑡∏

𝑗=1

𝑖′𝑗∑
𝑎=0

𝑝𝑎 (−𝜉
′) ∪ 𝑝𝑖′𝑗−𝑎 (𝑇𝑀)

=
𝑡∏

𝑗=1

&'(𝑝𝑖′𝑗
(𝑇𝑀) +

𝑖′𝑗∑
𝑎=𝑖1

𝑝𝑎 (−𝜉
′) ∪ 𝑝𝑖′𝑗−𝑎 (𝑇𝑀)

)*+.
If 𝑖′𝑗 < 𝑖1 for all j, then the sum on the right vanishes and for degree reasons so does the entire expression.
If 𝑖′1 = 𝑖1, then we get

𝑝𝐼 ′ (𝑇𝑀 ⊕ −𝜉 ′) =
∏

𝑗 : 𝑖′𝑗<𝑖′1

𝑝𝑖′𝑗
(𝑇𝑀) ∪

∏
𝑗 : 𝑖′𝑗=𝑖′1

(
𝑝𝑖′𝑗

(𝑇𝑀) + 𝑝𝑖′𝑗
(−𝜉 ′)

)
= 𝑝𝐼 ′ (𝑇𝑀)︸����︷︷����︸

=0

+
∏

𝑗 : 𝑖′𝑗<𝑖′1

𝑝𝑖′𝑗
(𝑇𝑀) ∪

&'(
∑

𝑗 : 𝑖′𝑗=𝑖′1

𝑝𝑖1 (−𝜉
′) ∪ 𝑝𝑖1 (𝑇𝑀)𝑎′

1−1)*+
= 𝑝𝑖1 (−𝜉

′) ∪ 𝑝𝐼 ′\{𝑖1 } (𝑇𝑀)

= 𝜆 · 𝑢4𝑚−𝑑 × 𝑥𝐼\{𝑖1 } ∪ 𝑝𝐼 ′\{𝑖1 } (𝑇𝑀),

where the second equality follows from the observation that 𝑝𝑛 (𝜉) ∪ 𝑝𝑛′ (𝜉) = 0 for 𝑛, 𝑛′ ≥ 1. By
the choice of 𝑥𝐽 , we have that 𝑥𝐼\{𝑖1 } ∪ 𝑝𝐼 ′\{𝑖1 } (𝑇𝑀) = 0, and therefore, 𝑝𝐼 ′ (𝑇𝑀 ⊕ −𝜉 ′) = 0 unless
𝐼 = 𝐼 ′. It remains to investigate the case 𝑖′1 > 𝑖1. The strategy is to choose the coefficients 𝐴𝐽 by
downwards induction with respect to |𝐽 |. Note that we have already chosen 𝐴𝐽 for |𝐽 | ≥ 𝑚 − 𝑖1 to be
either 0 or 1. Let 𝐽 = ( 𝑗1, . . . , 𝑗𝑟 ) with |𝐽 | ≥ 1 and let us assume that 𝐴𝐽 ′ is already chosen for all
𝐽 ′ with |𝐽 ′ | > |𝐽 |. By the choice of the Pontryagin classes of −𝜉 ′, this implies that 𝑝𝑖 (−𝜉

′) is already
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determined for all 𝑖 < 4(𝑚 − |𝐽 |) � 𝑖𝐽 . If there exists a 𝑗 ∈ 𝐽 such that 𝑗 > 𝑖𝐽 , we set 𝐴𝐽 = 0. If not,
let 𝐼 ′ � {𝑖𝐽 , 𝐽} :=: {𝑖′1, . . . , 𝑖

′
𝑡 } and note that by assumption, |𝐼 ′ | = 4𝑚 and 𝑖′1 is the largest entry of 𝐼 ′.

We again denote the number of indices agreeing with 𝑖′1 by 𝑎′1. We compute

𝑝𝐼 ′ (𝑇𝑀 ⊕ −𝜉 ′) =
𝑡∏

ℓ=1

&'(𝑝𝑖′
ℓ
(𝑇𝑀) +

𝑖′ℓ∑
𝑎=𝑖1

𝑝𝑎 (−𝜉
′) ∪ 𝑝𝑖′

ℓ
−𝑎 (𝑇𝑀)

)*+
=

∏
ℓ : 𝑖′

ℓ
=𝑖′1

(
𝑝𝑖′

ℓ
(𝑇𝑀) + 𝑝𝑖′

ℓ
(−𝜉 ′) +

𝑖′ℓ−1∑
𝑎=𝑖1

𝑝𝑎 (−𝜉
′) ∪ 𝑝𝑖′

ℓ
−𝑎 (𝑇𝑀)

)
∪

∏
ℓ : 𝑖′

ℓ
<𝑖′1

(
𝑝𝑖′

ℓ
(𝑇𝑀) +

𝑖′ℓ∑
𝑎=𝑖1

𝑝𝑎 (−𝜉
′) ∪ 𝑝𝑖′

ℓ
−𝑎 (𝑇𝑀)

)
.

(8)

Extracting all summands containing 𝑝𝑖′1
(−𝜉), we obtain

(8) = 𝑎′1𝑝𝑖′1
(−𝜉 ′) ∪ 𝑝𝐼 ′\{𝑖′1 }

(𝑇𝑀)︸����������︷︷����������︸
=𝑝𝐽 (𝑇 𝑀 )

+
&'(
∏

ℓ : 𝑖′
ℓ
=𝑖′1

𝑝𝑖′
ℓ
(𝑇𝑀) +

𝑖′ℓ−1∑
𝑎=𝑖1

𝑝𝑎 (−𝜉
′) ∪ 𝑝𝑖′

ℓ
−𝑎 (𝑇𝑀)

)*+ ∪
∏

ℓ : 𝑖′
ℓ
<𝑖′1

(
· · ·

)
︸������������������������������������������������������������������������������︷︷������������������������������������������������������������������������������︸

�𝜆·𝐵𝐼 ′

.

Note that the highest index of a Pontryagin class of −𝜉 ′ appearing in 𝐵𝐼 ′ is strictly smaller than 𝑖′1 = 𝑖𝐽 .
Hence, it is only dependent on 𝐴𝐽 ′ with |𝐽 ′ | < |𝐽 |, and by our assumption, this summand is already
determined. We get

𝑝𝐼 ′ (𝑇𝑀 ⊕ −𝜉 ′) = 𝑎′1𝜆 · 𝑢4𝑚−𝑑 ×
∑

𝐽 : |𝐽 |=𝑚−𝑖′1

𝐴𝐽 𝑥𝐽 ∪ 𝑝𝐽 (𝑇𝑀)︸�����������︷︷�����������︸
=

⎧⎪⎪⎨⎪⎪⎩
0 if 𝐽 ≠ 𝐽

𝑢𝑀 if 𝐽 = 𝐽

+𝜆 · 𝐵𝐼 ′

= 𝜆 · (𝑎′1𝐴𝐽 · 𝑢4𝑚−𝑑 × 𝑢𝑀 + 𝐵𝐼 ′ ).

Therefore, we can choose 𝐴𝐽 for all J with |𝐽 | = 𝑚 − 𝑖𝐽 such that 𝑝𝐼 ′ (𝑇𝑀 ⊕ −𝜉 ′) = 0 for all 𝐼 ′
with 𝑖′1 = 𝑖𝐽 .7 It remains to specify 𝐴{0} and hence 𝑝𝑚 (−𝜉). By the same argument as in the proof of
Lemma 3.2, we can choose 𝐴{0} such that 𝜎(𝜂) = 0 which finishes the proof. �

Corollary 3.8. For a simply connected, P-large manifold M of dimension 𝑑 ≥ 5, we have

dim F̃ib
ℎ

𝑀,4𝑚−𝑑 = 𝑝(𝑚) − 𝑝(𝑚, 𝑚 −

⌈
𝑑 + 1

4

⌉
) − 1.

Proof. Since the oriented cobordism ring is classified by Pontryagin numbers, the functionals given by
evaluating monomial Pontryagin numbers are all linearly independent. Let I𝑚,𝑑 � {𝐼 = {𝑖1, . . . 𝑖𝑠} : 𝐼 ≠
{𝑚}, |𝐼 | = 𝑚 and 𝑖 𝑗 ≥ 𝑚 − 𝑑/4 for some 𝑗}. By Lemma 3.7, there exists for every 𝐼 ∈ I𝑚,𝑑 an

7Note that 𝐼 ′ ≠ 𝐼 since 𝑖′1 > 𝑖1 by assumption.
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M-block bundle 𝐸𝐼 → 𝑆𝑘 such that 〈𝑝𝐽 (𝐸𝐼 ), [𝐸]〉 ≠ 0 if and only if 𝐼 = 𝐽 for all 𝐽 ∈ I𝑚,𝑑 . Therefore,
(𝐸𝐼 )𝐼 ∈I𝑚,𝑑 is also linearly independent, and the claim follows from

|I𝑚,𝑑 | = 𝑝(𝑚) − 𝑝(𝑚, 𝑚 −

⌈
𝑑 + 1

4

⌉
) − 1

and from the upper bound in Lemma 3.4. �

The proof above also shows the following lemma, which states a similar result but does not require
the set of all possible Pontryagin classes to be linearly independent.

Lemma 3.9. Let M be a manifold such that the set of all nontrivial Pontryagin classes of M are linearly
independent and let I be a partition of ℓ ≤ 𝑑 = dim(𝑀) such that 𝑝𝐼 (𝑇𝑀) ≠ 0 is the only nontrivial
monomial Pontryagin class of degree ≥ ℓ. Then there exists a normal invariant 𝜂 ∈ N𝜕 (𝐷

4𝑚−𝑑 × 𝑀)

with underlying stable vector bundle 𝜉 such that〈
𝑝𝐼 (𝑇𝑀 ⊕ −𝜉) ∪ 𝑝4𝑚−|𝐼 | (𝑇𝑀 ⊕ −𝜉), [𝑆4𝑚−𝑑 × 𝑀]

〉
and

〈
𝑝𝑚 (𝑇𝑀 ⊕ −𝜉), [𝑆4𝑚−𝑑 × 𝑀]

〉
are the only nonvanishing monomial Pontryagin numbers of 𝑇𝑀 ⊕ −𝜉 and 𝜎(𝜂) = 0.

This lemma can be used to prove the following.

Corollary 3.10. There exists a manifold M of dimension 𝑑 ≥ 8 divisible by 4 which is nonconnected
but has simply connected components such that

dim F̃ib
ℎ

𝑀,4𝑚−𝑑 = 𝑝(𝑚) − 𝑝(𝑚, 𝑚 −

⌈
𝑑 + 1

4

⌉
) − 1.

Proof. For ℓ ≤ 𝑚, let 𝑃ℓ denote the set of partitions of ℓ and let 𝑃 � ∪ℓ≥1𝑃ℓ . We now construct for each
𝐼 ∈ 𝑃 a manifold 𝑀𝐼 satisfying the hypothesis for Lemma 3.9. This will be done by induction on |𝐼 |.

For |𝐼 | = 1, we have 𝐼 = (1), and hence, CP2 × 𝑆𝑑−4 does the trick.
If |𝐼 | ≥ 2, let 𝑁𝐼 × 𝑆𝑑−|𝐼 | be a simply connected manifold of dimension |𝐼 | whose only nontrivial

monomial Pontryagin number is 𝑝𝐼 . Now, we can make all Pontryagin classes of 𝑀𝐼 of lower degree
linearly independent, and we take connected sums with 𝑀𝐽 for |𝐽 | < |𝐼 |.

We define𝑀 = �𝐼 ∈𝑃𝑀𝐼 . An application of Lemma 3.9 now yields a that for each partition 𝐼∪{𝑚−|𝐼 |}
of m, there exists a manifold 𝑀𝐼 and an 𝑀𝐼 -block bundle such that 𝑝𝐼 ∪ 𝑝𝑚−|𝐼 | and 𝑝𝑚 are its only
nontrivial Pontryagin numbers. Taking the trivial bundle for all other components of M hence yields an
M-block bundle with the same property. �

Remark 3.11. If dim(𝑀) ≥ 8 is divisible by four, then we can even assume that every component of
M is 3-connected. This is clear for all components arising as products of 4𝑛-manifolds and spheres if
𝑛 ≥ 2, as one can choose them to be spin and simply perform surgeries to make them 3-connected.
Finally, one needs to replace CP2 × 𝑆𝑑−4 by the product 𝑋 × 𝑆𝑑−8 for X a 3-connected, nullbordant
8-manifold with nonvanishing first Pontryagin class. Such a manifold can be constructed, for example,
as the linear 𝑆4-bundle over 𝑆4 for which the associated vector bundle 𝑉 → 𝑆4 of rank 5 has nontrivial
first Pontryagin class.

3.4. Pontryagin numbers for topological bundles

Let us now investigate what happens if we leave the smooth world and ask about (ℎ−)sphericity of
Pontryagin classes for topological bundles. Obviously, if a class is h-spherical, then it is h-spherical for
topological bundles as well.
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Now, let 𝜋 : 𝐸 → 𝑆𝑘 be a fiber homotopy trivial, topological M-bundle and let 𝜌 : 𝑀 × 𝑆𝑘 → 𝐸

be a homotopy equivalence over 𝑆𝑘 . Then we obtain an isomorphism 𝜌∗ : 𝐻∗(𝐸)
�

−→ 𝐻∗(𝑀 × 𝑆𝑘 )

of rational cohomology rings. Therefore, 𝐻∗(𝐸) � 𝐻∗(𝑀) ⊕ 𝑢𝑘 · 𝐻∗−𝑘 (𝑀) for 𝑢𝑘 the cohomological
fundamental class of 𝑆𝑘 . Therefore, we have 𝜌∗𝑝𝑖 (𝐸) = pr∗𝑀 𝑝𝑖 (𝑀) + 𝑢𝑘 · 𝑎𝑖 for some 𝑎𝑖 ∈ 𝐻∗(𝑀).
Since 𝑢2

𝑘 = 0, we have

𝜌∗(𝑝𝑖1 · · · 𝑝𝑖𝑟 (𝐸)) =
𝑟∏

ℓ=1
(pr∗ 𝑝𝑖ℓ (𝑀) + 𝑢𝑘 · 𝑎𝑖ℓ ) =

𝑟∑
ℓ=1

𝑝𝑖1 · · · 𝑝𝑖ℓ · · · 𝑝𝑖𝑟 (𝑀) · 𝑢𝑘 · 𝑎𝑖ℓ .

If 𝑝𝑖1 · · · 𝑝𝑖ℓ · · · 𝑝𝑖𝑟 (𝑀) = 0 for all ℓ ∈ {1 . . . 𝑟}, then this enforces 𝑝𝑖1 · · · 𝑝𝑖𝑟 (𝐸) = 0, and we obtain the
same necessary criterion for sphericity as in Theorem A.

Therefore, if M admits a smooth structure, we have that Theorem A holds for topological M-bundles
as well. However, if M is only a topological manifold, one would need a more thorough analysis of
topological block bundles and their unblocking in order to prove the analogue of Theorem A.

4. Applications

4.1. The space R𝐶 (𝑀)

Let us now explain the first application of our result to spaces of metrics satisfying positive curvature
conditions.

It is well known that the Â-genus is not multiplicative in fiber bundles: In [HSS14, Proposition 1.10],
Hanke–Schick–Steimle constructed a fiber bundle 𝐸 → 𝑆𝑘 with Â(𝐸) ≠ 0. Their construction however
‘is based on abstract existence results in differential topology [and] does not yield an explicit description
of the diffeomorphism type of the [. . . ] manifold’ [loc. cit. p. 3]. This has been resolved by Krannich–
Kupers–Randal-Williams in [KKR21], where they constructed a fiber bundle HP2 → 𝐸 → 𝑆4 with
Â(𝐸) ≠ 0. Employing part (ii) of Theorem A together with the computational result [FR21, Lemma
2.5], we can go far beyond their result.

Proposition 4.1. Let M be simply connected and let 𝑘 ≥ 1 be in the unblocking range for M such that
𝑑 + 𝑘 = 4𝑚. Then the following are equivalent:

(i) Â𝑚 is h-spherical for M.
(ii) Â𝑚 is spherical for M.

(iii) M admits a nontrivial rational Pontryagin class.

Proof. Let M be an oriented, simply connected manifold with at least one nontrivial Pontryagin class.
By the last part of Lemma 3.2 together with Lemma 2.5, there exists an M-bundle 𝐸 → 𝑆𝑘 that has only
two nonvanishing monomial Pontryagin numbers – namely, 𝑝𝑚 and 𝑝𝑖min ∪ 𝑝𝑚−𝑖min . By [FR21, Lemma
2.5], this implies that Â(𝐸) ≠ 0, proving the implication (𝑖𝑖𝑖) ⇒ (𝑖). The observation (𝑖) ⇒ (𝑖𝑖) is
trivial, and the proof for (𝑖𝑖) ⇒ (𝑖𝑖𝑖) is the same as for Theorem A; see Remark 1.1 (ii). �

Remark 4.2. This recovers [HSS14, Theorem 1.4] and provides an upgrade: Not only are we able to
identify the diffeomorphism type of the fiber, but our result states that it is correct for generic manifolds.

Next, let us investigate if the bundles we constructed have cross-sections with trivial normal bundle.
This is sometimes desirable for applications to positive curvature, as it allows for fiber-wise connected
sums. We have the following result.

Lemma 4.3. If 𝑖min < 𝑑/4, then the bundle from Proposition 4.1 has a cross-section with trivial normal
bundle.
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Proof. Let triv : 𝑆𝑘 ↩→ 𝑆𝑘 × 𝑀 be the trivial section. Since the bundle E from Proposition 4.1 is fiber
homotopy trivial via 𝑓 : 𝑆𝑘 × 𝑀 � 𝐸 , we get a section 𝑠 � 𝑓 ◦ triv : 𝑆𝑘 → 𝐸 . We have

𝑠∗𝑝𝑛 (𝑇𝐸) = triv∗
(

𝑛∑
𝑖=0

𝑝𝑖 (𝑇𝑀) ∪ 𝑝𝑛−𝑖 (−𝜉
′)

)
=

𝑛∑
𝑖=0

triv∗𝑝𝑖 (𝑇𝑀)︸���������︷︷���������︸
=0 for 𝑖≥1

∪triv∗𝑝𝑛−𝑖 (−𝜉
′) = triv∗𝑝𝑛 (−𝜉

′)

with 𝜉 ′ as in the proof of Lemma 3.2. Recall that the only nonvanishing Pontryagin classes of 𝜉 ′ are
𝑝𝑚−𝑖min and 𝑝𝑚 and let 𝜈𝑠 denote the normal bundle of s. Since the rank of this bundle is bigger than k,
the bundle 𝜈𝑠 is stable in the sense that it is classified by an element in

𝜋𝑘 (BO) = KO−𝑘 (pt) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z for 𝑘 ≡ 0 (4)
Z/2 for 𝑘 ≡ 1, 2 (8)
0 otherwise.

Since we are only interested in the problem rationally, it suffices to consider the case 𝑘 ≡ 0 (4). It
follows that 𝜈𝑠 is trivial if 𝑝𝑘/4(𝜈𝑠) = 0, and as 𝑝(𝑆𝑘 ) = 1, the Pontryagin class 𝑝𝑘/4 of 𝜈𝑠 satisfies

𝑝𝑘/4(𝜈𝑠) = 𝑝𝑘/4(𝑠
∗𝑇𝐸) = 𝑠∗𝑝𝑘/4(𝑇𝐸) = triv∗𝑝𝑘/4(𝜉) = 0

since by our assumption, 𝑘/4 < 𝑑+𝑘
4 − 𝑖min = 𝑚 − 𝑖min and 𝑝𝑚−𝑖min and 𝑝𝑚 are the only Pontryagin

classes of 𝜉. �

Remark 4.4. If 𝑑 � 0 (4), the requirement from the lemma is automatically fulfilled. If 𝑑 ≡ 0 (4) and
𝑖min = 𝑑/4, then M has only one nonvanishing Pontryagin number – namely,

〈
𝑝𝑑/4 (𝑇𝑀), [𝑀]

〉
. Since

all coefficients in the Â-polynomial are nonzero by [BB18], we have Â(𝑀) = 𝑎 ·
〈
𝑝𝑑/4 (𝑇𝑀), [𝑀]

〉
≠ 0

for some 𝑎 ∈ Z\{0}. If additionally M admits a Spin-structure, then by the Lichnerowicz-formula and the
Atiyah–Singer index theorem [AS63; Lic63], M does not support a metric of positive scalar curvature.
Hence, for a Spin-manifold of positive scalar curvature, we have 𝑖min < 𝑑/4 and Lemma 4.3 applies.

4.1.1. Spin-structures and positive (scalar) curvature
Let M be Spin and let 𝐵DiffSpin(𝑀) be the classifying space for M-bundles with a Spin-structure
on the vertical tangent bundle.8 By [Ebe06, Lemma 3.3.6], the homotopy fiber of the forgetful map
𝐵DiffSpin(𝑀) → 𝐵Diff+ (𝑀) is a 𝐾 (Z/2, 1) if M is simply connected. Therefore, the induced map

𝜋𝑛 (𝐵DiffSpin(𝑀)) ⊗ Q −→ 𝜋𝑛 (𝐵Diff+ (𝑀)) ⊗ Q

is an isomorphism, and we may assume without loss of generality that the bundles from Section 3 carry
a Spin-structure on the vertical tangent bundle and hence on the total space, provided that M admits one.
Theorem E then follows from Proposition 4.1 by a standard argument that goes back to Hitchin [Hit74]
(see [HSS14, Remark 1.5] or [FR21, Proposition 3.7]).

Example 4.5.
(i) The class of manifolds to which Theorem E is applicable contains CP2𝑛+1, HP𝑛, OP2, as well as

iterated products and connected sums of these with arbitrary Spin-manifolds.
(ii) The most interesting examples of spaces R𝐶 (𝑀) are the ones of positive or nonnegative sectional

curvature and positive Ricci curvature metrics. Theorem E implies that for M and 𝑘 ≥ 2 as above, we

8𝐵DiffSpin (𝑀 ) is given by the homotopy quotient Bun(𝑇 𝑁 , 𝜃∗𝑈𝑑) � Diff+ (𝑀 ) for 𝜃 : 𝐵Spin(𝑑) → 𝐵𝑆𝑂 (𝑑) the 2-
connected cover, 𝑈𝑑 → 𝐵𝑆𝑂 (𝑑) the universal oriented vector bundle and Bun(_, _) the space of bundle maps.
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have 𝜋𝑘−1 (R𝐶 (𝑀)) ⊗ Q ≠ 0 for 𝐶 = {Sec > 0,Ric > 0, Sec ≥ 0},provided the respective spaces
are nonempty. The case of nonnegative sectional curvature follows from a Ricci-flow argument; see
[FR21, Proposition 3.3].

According to [Zil14], the only known examples of positively curved manifolds in dimensions 4𝑘 + 3 for
𝑘 ≥ 2 are spheres. Also, all 7-dimensional examples have finite fourth cohomology (cf. [Esc92; Goe14;
GKS04]). Therefore, the answer to the following question appears to be unknown. A positive answer
would yield the first example of a closed manifold that admits infinitely many pairwise non-isotopic
metrics of positive sectional curvature.

Question 4.6. Is there a positively curved manifold of dimension 4𝑘 + 3, 𝑘 ≥ 1 with a nonvanishing
rational Pontryagin class?

For positive Ricci and nonnegative sectional curvature, lots of examples for such manifolds are known;
see Example 4.5.

Applying Theorem E, we get the following classification for the push-forward action on metrics of
positive scalar curvature which uses rigidity results from [ER22] and [Fre21].

Corollary 4.7. Let M be a 2-connected,9 d-dimensional Spin-manifold of positive scalar curvature and
let k be in the unblocking range for M.

(i) Then the orbit map 𝜋𝑘−1 Diff+ (𝑀, 𝐷) → 𝜋𝑘−1 (Rscal>0(𝑀)) factors through a finite group if and
only if (𝑑 + 𝑘) is not divisible by four or all rational Pontryagin classes of M vanish.

(ii) If 𝑘 = 1, then the same holds for Diff+ (𝑀) instead of Diff+ (𝑀, 𝐷).

Proof. The orbit maps

𝜋𝑘−1 (Diff+ (𝑀, 𝐷)) → 𝜋𝑘−1(Rscal>0 (𝑀))

factor through finite groups if all Pontryagin classes of M vanish by [ER22, Theorem F]. Furthermore,
𝜋0 (Diff+ (𝑀)) → 𝜋0 (Rscal>0 (𝑀)) factors through a finite group by [Fre21, Theorem A]. The rest
follows from Theorem E. �

Theorem E also allows to recover the main result from [HSS14] (loc.cit. Theorem 1.1 a) and is
actually slightly more precise on the dimension restriction.

Corollary 4.8. Let 𝑘 ≥ 1 and let N be a Spin-manifold of positive scalar curvature such that 𝑑+𝑘 ≡ 0 (4)
and k is in the unblocking range for N. Then the group 𝜋𝑘−1(Rscal>0 (𝑁)) contains an element of infinite
order (resp. is infinite if 𝑘 = 1).

Proof. Let K be a 𝐾3-surface. Then for 𝑛 � 𝑑 − 4 ≥ 2, the manifold 𝐾 × 𝑆𝑛 satisfies the hypothesis of
Theorem E and there is a 𝐾 × 𝑆𝑛-bundle 𝐸 → 𝑆𝑘 that has nonvanishing Â-genus and admits a cross-
section with trivial normal bundle. Gluing in the trivial 𝑁 \ 𝐷𝑑-bundle along this cross-section yields
an 𝑁#(𝐾 × 𝑆𝑑−4)-bundle over 𝑆𝑘 with nonvanishing Â-genus. Hence, the group 𝜋𝑘−1(Rscal>0 (𝑁#(𝐾 ×

𝑆𝑑−4))) contains an element of infinite order. Since N is cobordant to 𝑁#(𝐾 × 𝑆𝑑−4) in Ω𝑑
Spin(𝐵𝜋1 (𝑁)),

the corresponding spaces of positive scalar curvature metrics are homotopy equivalent by [EF21,
Theorem 1.5]. �

Remark 4.9. A more general result without any dimension restriction has been proven by Botvinnik–
Ebert–Randal-Williams [BER17]. The methods from loc.cit. are, however, not constructive and do not
give a way to decide if the obtained elements arise from the orbit of the action Diff+ (𝑀) � Rscal>0(𝑀).
Furthermore, it is unclear if those elements originate from the spaces RRic>0 (𝑀) or RSec>0 (𝑀).

9The assumption of 2-connectedness stems from employing [ER22, Theorem F], which works for manifolds W where the
inclusion 𝜕𝑊 ↩→ 𝑊 is 2-connected.
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4.2. Obstructions to unblocking

One observation from the proofs in Section 3 is that the construction of block bundles works regardless
of the dimension k of the base sphere. The same cannot be true for actual fiber bundles over spheres
since the tangent bundle of the total space is stably isomorphic to its vertical tangent bundle which is a
vector bundle of rank d. Therefore, all Pontryagin classes of degree ∗ > 2𝑑 vanish. Let 𝐼 = (𝑖1, . . . , 𝑖𝑠)
be such that |𝐼 | � 𝑖1 + · · · + 𝑖𝑠 < 𝑚 and let M be a manifold such that 𝑝𝐼 (𝑇𝑀) = 𝑝𝑖1 · . . . · 𝑝𝑖𝑠 (𝑇𝑀) ≠ 0.
If 𝐼 = (0), assume instead that M has some nonvanishing rational Pontryagin class. Let�𝑃𝑀,𝐼 : 𝜋4𝑚−𝑑 (𝐵D̃iff

+

(𝑀)) ⊗ Q −→ Q

be the map sending a block bundle E classified by f to the Pontryagin number〈
𝑝𝐼 (𝑇𝐸) ∪ 𝑝𝑚−|𝐼 | (𝑇𝐸), [𝐸]

〉
. The following corollary follows from the proof of Theorem A and The-

orem B in Section 3.

Corollary 4.10.

(i) The map �𝑃𝑀,𝐼 is surjective.
(ii) If 𝑚 > 𝑑+2 |𝐼 |

2 , then the following composition is trivial:

𝜋4𝑚−𝑑 (𝐵Diff+ (𝑀)) ⊗ Q −→ 𝜋4𝑚−𝑑 (𝐵D̃iff
+

(𝑀)) ⊗ Q
5𝑃𝑀,𝐼
−−−−→ Q.

(iii) For 1 ≤ 𝑛 ≤ 𝑛max (cf. Equation (5)) and 𝑚 > 𝑑+2𝑛 ·𝑖min
2 , there exists an n-dimensional subspace

N ⊂ 𝜋4𝑚−𝑑 (𝐵D̃iff
+

(𝑀)) ⊗ Q of block-bundles that do not admit the structure of actual fiber
bundles.

Remark 4.11. The same is true for fiber homotopy trivial bundles; that is, the same corollary holds if
𝐵Diff+ (𝑀) and 𝐵D̃iff

+

(𝑀) are replaced by hAut+(𝑀)/Diff+ (𝑀) and hAut+ (𝑀)/D̃iff
+

(𝑀).

Proof of Corollary 4.10.

(i) This is precisely Lemma 3.1.
(ii) By assumption, 𝑚 − |𝐼 | > 𝑑+2 |𝐼 |

2 − |𝐼 | = 𝑑
2 , and if 𝐸 → 𝑆4𝑚−𝑑 is a fiber bundle, then 𝑝𝑚−|𝐼 | (𝑇𝐸) =

𝑝𝑚−|𝐼 | (𝑇𝜋𝐸) = 0 since𝑇𝜋𝐸 is a vector bundle of rank d and therefore its highest possible Pontryagin
class is 𝑝 �𝑑/2� .

(iii) By Lemma 3.2, there exist (homotopy trivial) block bundles 𝐸ℓ for 1 ≤ ℓ ≤ 𝑛 with〈
𝑝𝑖min (𝑇𝐸ℓ )

𝑟 ∪ 𝑝𝑚−𝑟 ·𝑖min (𝑇𝐸ℓ ), [𝐸ℓ]
〉
≠ 0 ⇐⇒ 𝑟 = ℓ

which yield linearly independent classes of Ω4𝑚 ⊗ Q and hence in 𝜋4𝑚−𝑑 (𝐵D̃iff
+

(𝑀)) ⊗ Q.
Furthermore, by assumption, 𝑚 − 𝑟 · 𝑖min >

𝑑+2𝑛 ·𝑖min
2 − 𝑛 · 𝑖min = 𝑑

2 . The same argument as in (ii)
shows that these block bundles do not admit the structure of actual fiber bundles.

�

4.3. Sphericity of 𝜅-classes

Next, consider Diff+ (𝑀) the group of orientation preserving diffeomorphisms of M equipped with the
Whitney𝐶∞-topology and 𝐵Diff+(𝑀) the associated classifying space. Since M is assumed to be closed,
for any M-bundle 𝜋 : 𝐸 → 𝐵 with structure group Diff+ (𝑀), there is a map

𝐻4𝑚 (BO(𝑑);Q) → 𝐻4𝑚−𝑑 (𝐵;Q)

sending a characteristic class 𝑐 ∈ 𝐻4𝑚(BO(𝑑);Q) to 𝜅𝑐 (𝐸) � 𝜋! (𝑐(𝑇𝜋𝐸)) where 𝜋! : 𝐻∗(𝐸) →

𝐻∗−𝑑 (𝐵) is the Gysin-homomorphism and 𝑇𝜋𝐸 is the vertical tangent bundle of 𝜋. 𝜅𝑐 (𝐸) is called the
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generalized Miller-Morita-Mumford class or simply 𝜅-class associated to c. For the universal M-bundle
𝜋𝑀 : 𝐸𝑀 → 𝐵Diff+ (𝑀), we hence get universal 𝜅-classes

𝜅𝑐 � 𝜅𝑐 (𝐸𝑀 ) ∈ 𝐻4𝑚−𝑑 (𝐵Diff+ (𝑀);Q).

Let hAut+ (𝑀)/Diff+ (𝑀) be the classifying space for fiber homotopy trivial M-bundles. We define the
maps Ψ𝑀,𝑚 and Ψℎ

𝑀,𝑚 as follows:

𝐻4𝑚(BO(𝑑);Q) 𝐻4𝑚−𝑑 (𝐵Diff+ (𝑀);Q) � hom(𝐻4𝑚−𝑑 (𝐵Diff+ (𝑀));Q)

hom(𝜋4𝑚−𝑑 (𝐵Diff+ (𝑀));Q)

hom(𝜋4𝑚−𝑑 (hAut+ (𝑀)/Diff+ (𝑀));Q)

(𝜋𝑀 )!

hur∗

Ψ𝑀,𝑚

Ψℎ
𝑀,𝑚

where hur denotes the Hurewicz-homomorphism. Obviously, ker(Ψ𝑀,𝑚) ⊂ ker(Ψℎ
𝑀,𝑚). Since the

signature of a fiber bundle over 𝑆𝑘 vanishes, the Hirzebruch L-class lies in ker(Ψ𝑀,𝑚) for all M and m.
The maps Ψℎ

𝑀,𝑚 and Ψ𝑀,𝑚 are both given by 𝑐 ↦→ ( 𝑓 ↦→
〈
𝑓 ∗𝜅𝑐 , [𝑆

4𝑚−𝑑]
〉
), and we have〈

𝑓 ∗𝜅𝑐 , [𝑆
4𝑚−𝑑]

〉
=
〈
𝜅𝑐 (𝐸), [𝑆

4𝑚−𝑑]
〉
=
〈
𝜋!𝑐(𝑇

𝑠
𝜋𝐸), [𝑆

4𝑚−𝑑]
〉

=
〈
𝑐(𝑇 𝑠

𝜋𝐸), [𝐸]
〉
=
〈
𝑐(𝜋∗𝑇𝑆4𝑚−𝑑 ⊕ 𝑇 𝑠

𝜋𝐸), [𝐸]
〉
= 〈𝑐(𝑇𝐸), [𝐸]〉

since 𝑇𝑆4𝑚−𝑑 is stably parallelizable and hence 𝑐(𝑇𝑆4𝑚−𝑑) = 1. With this, Theorem A translates to the
following.

Theorem 4.12. Let M be simply connected and let 𝜏 : 𝑀 → BO(𝑑) be a classifying map for 𝑇𝑀 .
Furthermore, let 𝑘 ≥ 1 be in the unblocking range for M and let 𝑑 + 𝑘 = 4𝑚. Then

(i) If 𝑝 = 𝑝𝑖1 · · · 𝑝𝑖𝑟 ≠ 𝑝𝑚 is a monomial in universal Pontryagin classes of degree 4𝑚, then

𝑝 ∈ ker(Ψℎ
𝑀,𝑚) ⇐⇒ 𝜏∗(𝑝𝑖1 · · · 𝑝𝑖ℓ · · · 𝑝𝑖𝑟 ) = 0 for all ℓ.

(ii) The following are equivalent:
(a) 𝑝𝑚 ∈ ker(Ψℎ

𝑀,𝑚)

(b) 𝑝𝑚 ∈ ker(Ψ𝑀,𝑚)

(c) 𝜏∗𝑝𝑖 = 0 for all 𝑖 ≥ 1
(iii) If

∑
𝑖 𝑗 = 𝑚 ≥ 3 and 𝑖 𝑗 < 𝑚/2 for all j, then

𝑝𝑖1 · · · 𝑝𝑖𝑛 ∈ ker(Ψℎ
CP𝑚 ,𝑚) \ ker(ΨCP𝑚 ,𝑚).

Furthermore, we obtain the following bounds on the dimension of ker(Ψℎ
𝑀,𝑚): For 𝑛max and 𝑝(𝑚, ℓ) as

above, we have

𝑝(𝑚, 𝑚 −

⌈
𝑑 + 1

4

⌉
) + 1 ≤ dim ker(Ψℎ

𝑀,𝑚) ≤ 𝑝(𝑚) − 𝑛max,

where the upper bound is attained for manifolds for which all Pontryagin classes are contained in the
polynomial algebra generated by 𝑝𝑖min (𝑇𝑀).
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A. Rationally fibering a cobordism class over a sphere (with Jens Reinhold)

This appendix promotes the problem of studying the ideal of oriented cobordism classes that have a
representative fibering over a sphere of fixed dimension. Such a class also fibers over any manifold of
smaller dimension; see Proposition A.5. An answer thus has consequences for other bases, too. We are
only interested in the rational version. It turns out that the results from the present paper can be used to
say something new about this problem, which has been solved (even integrally) for dimensions at most
4 some time ago: in this case, the rational answer is that a cobordism class fibers over 𝑆𝑘 for 𝑘 ≤ 4 if
and only if its signature vanishes [Bur66; Neu71; Kah84a; Kah84b]. A variant of the analogous problem
without orientations was originally introduced by Connor and Floyd [CF65]. We describe a construction
that goes beyond the way bundles arise in the preceding paper. Unfortunately, it seems as if even both
ideas combined are not sufficient to solve the problem completely unless 𝑘 ≤ 8. We first outline a more
concrete version of the problem. Let Ω∗ denote the (graded) oriented cobordism ring.

Definition A.1.

(i) An oriented cobordism class 𝛼 ∈ Ω∗ is said to fiber over a manifold B if there is an oriented smooth
fiber bundle 𝑀 → 𝐸𝑑 → 𝐵 such that [𝐸] = 𝛼.

(ii) For 𝑘 ≥ 1, let 𝐴𝑘
∗ ⊂ Ω∗ denote the graded subgroup spanned by cobordism classes that fiber over

𝑆𝑘 and 𝐴𝑘
∗ the respective subgroup spanned by block-fibering classes.

(iii) For given 𝑘, 𝑚 ≥ 1, define 𝑐𝑘 (𝑚) ∈ Z by

𝑐𝑘 (𝑚) � dimQ(Ω4𝑚 ⊗ Q) − dimQ(𝐴𝑘
4𝑚 ⊗ Q) − 1

𝑐̃𝑘 (𝑚) � dimQ(Ω4𝑚 ⊗ Q) − dimQ(𝐴𝑘
4𝑚 ⊗ Q) − 1.

Since any fiber bundle is also a block bundle, we have 𝑐̃𝑘 (𝑚) ≥ 𝑐𝑘 (𝑚). Forming disjoint unions and
products, we see that 𝐴𝑘

∗ and 𝐴𝑘
∗ are ideals in Ω∗ and we may ask what how ideals depend on k. As the

signature of any manifold that (block-)fibers over a sphere vanishes, the two maps

𝐴𝑘
∗ ⊗ Q ↩→ Ω∗ ⊗ Q

L∗
−−→ Q

compose to 0 as do the corresponding ones for 𝐴𝑘
∗ . Since there exist manifolds of nonzero signature in

any dimension divisible by 4, this implies 𝑐𝑘 (𝑚) and 𝑐̃𝑘 (𝑚) are both nonnegative. We may ask if the
above sequence is exact in sufficiently high degrees, or equivalently (see part (ii)):

Problem A.2.

(i) Describe the ideals 𝐴𝑘
∗ ⊂ Ω∗ for all values of k.

(ii) Is 𝑐𝑘 (𝑚) = 0 for fixed k and sufficiently large m?

We will see below that we (at least) need to restrict to degrees 𝑚 ≥ 𝑘/2 for (ii) to be true: there
are more constraints than the vanishing of the signature in lower degrees; see Proposition A.7. The
following is our contribution toward an answer the block-version of Problem A.2.

Theorem A.3. Let 𝑘 ≥ 1 be fixed.

(i) We have 𝑐̃𝑘 (𝑚) = dimΩ4𝑚 ⊗ Q − 1 for 𝑚 < 3𝑘
8 , and 𝑐̃𝑘 (𝑚) ≥ 1 for 𝑚 < 𝑘

2 .
(ii) For 5 ≤ 𝑘 ≤ 8, we have 𝑐̃𝑘 (𝑚) = 0 for 𝑚 ≥ 𝑘 .

(iii) For 9 ≤ 𝑘 ≤ 12, we have 𝑐̃𝑘 (𝑚) ≤ 6 in degrees 𝑚 ≥ 𝑘 .

Regarding the last item, we note that from computer-aided calculations, we know that 𝑐𝑘 (𝑚) = 0 for
𝑘 ≤ 12 and 𝑚 ≤ 1250; see Remark A.11.

We prove Theorem A.3 below. Before doing so, let us elaborate on the consequences of the preceding
paper regarding a partial answer to Problem A.2 for bigger values of k: sharpness of the upper bound
from Theorem D can be reformulated as 𝑐̃𝑘 (𝑚) ≤ 𝑝(𝑚, �(𝑘 − 1)/4�). Note that 𝑝(𝑛, ℓ) = 𝑝(𝑛 − ℓ, ℓ) +

https://doi.org/10.1017/fms.2025.10054 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10054


Forum of Mathematics, Sigma 29

𝑝(𝑛, ℓ − 1). Using 𝑝(𝑛, 1) = 1, a simple induction shows that 𝑝(𝑛, ℓ) = O(𝑛ℓ−1), which yields the
following consequence of Theorem D (see also Remark 1.3).

Corollary A.4. For 𝑘 ≥ 1, 𝑘 � 1(4) and 𝑚 > 𝑘 , we have

𝑐𝑘 (𝑚) ≤ 𝑝(𝑚, �(𝑘 − 1)/4�) = O(𝑚 � (𝑘−1)/4�−1).

Note that for 𝑘 ≡ 1(4), we also have 𝑐𝑘 (𝑚) = O(𝑚 � (𝑘−1)/4�−1) by the observation in Proposition A.5.
The rest of the appendix is devoted to proving Theorem A.3.

Elementary observations

We first collect some elementary facts about the ideals 𝐴𝑘
∗ ⊂ Ω∗.

Proposition A.5. A cobordism class that fibers over 𝑆𝑘 fibers over any (𝑘 − 1)-manifold B.

Proof. Cutting out a (𝑘 + 1)-disk from an oriented nullbordism of 𝐵 × 𝑆1, we see that 𝑆𝑘 and 𝐵 × 𝑆1

can be joined by a connected oriented cobordism W. Applying obstruction theory to a relative CW-
decomposition of (𝑊, 𝑆𝑘 ) and using that the obstructions lie in 𝐻 𝑗 (𝑊, 𝑆𝑘 ; 𝜋 𝑗−1 (𝑆

𝑘 )) = 0 for all j, we
see that W retracts onto 𝑆𝑘 . For any smooth oriented bundle 𝑀 → 𝐸 → 𝑆𝑘 , we can thus extend the
classifying map 𝑆𝑘 → 𝐵Diff+ (𝑀) to W. Restricting this extension to the other end of the cobordism
gives an oriented bundle 𝑀 → 𝐸 ′ → 𝐵 × 𝑆1 with [𝐸 ′] = [𝐸] ∈ Ω4𝑚. Since 𝐸 ′ clearly also fibers over
B, this finishes the proof. �

Remark A.6. Replacing 𝐵Diff+(𝑀) by hAut+ (𝑀)/Diff+ (𝑀), the same proof yields that a fiber homo-
topy trivial M-bundle over 𝑆𝑘 is cobordant to a fiber homotopy trivial 𝑀 × 𝑆1-bundle over B.

Proposition A.5 implies that (𝐴𝑘
∗ )𝑘≥1 forms a decreasing chain of ideals of Ω∗. We next prove part

(i) of Theorem A.3.

Proof. (cf. [Wie21, Lemma. 2.3]) We need to show that for any smooth bundle 𝜋 : 𝐸4𝑚 → 𝑆𝑘 with
𝑑 � (4𝑚 − 𝑘)-dimensional fiber M such that 4𝑚 < 3

2 𝑘 , we have [𝐸] = 0 ∈ Ω4𝑚 ⊗ Q.
Since the tangent bundle𝑇𝐸 is stably isomorphic to the vertical tangent bundle𝑇𝜋𝐸 whose dimension

is d, we deduce that only Pontryagin classes 𝑝𝑖 with 𝑖 ≤ 2𝑑 can be nonzero.
Analyzing the Serre spectral sequence of the fibration𝑀 → 𝐸 → 𝑆𝑘 yields that E has no cohomology

in degrees 𝑑 < ∗ < 𝑘 , and hence, 𝑝𝑖 (𝑇𝐸) = 0 for 𝑖 > 𝑑. If 𝑝(𝑇𝐸) � 𝑝𝑖1 (𝑇𝐸) ∪ · · · ∪ 𝑝𝑖𝑠 (𝑇𝐸) now
is a monomial in Pontryagin classes, then 𝑖 𝑗 ≤ 𝑑 for all j. Hence, if the degree of 𝑝(𝑇𝐸) is at least k,
some sub-product of 𝑝(𝑇𝐸) has degree in the range (𝑑, 2𝑑] ⊂ (𝑑, 𝑘) and hence vanishes. Therefore, all
composite Pontryagin numbers of E are zero, and we deduce that E is rationally nullbordant.

The second part of the assertion immediately follows from Proposition A.7 that we state and prove
next. �

Proposition A.7. Let 𝜋 : 𝐸4𝑚 → 𝑆𝑘 be a fiber bundle with 4𝑚 < 2𝑘 . Then 𝑝𝑖 (𝑇𝐸) = 0 for all 𝑖 > 2𝑚− 𝑘
2 .

(The inequality ensures this number is smaller than m.)

Proof. Let 𝑇𝜋𝐸 be the vertical tangent bundle of 𝜋. We have

𝑝𝑖 (𝑇𝐸) = 𝑝𝑖 (𝑇𝜋𝐸 ⊕ 𝑇𝑆𝑘 ) = 𝑝𝑖 (𝑇𝜋𝐸).

Now rank(𝑇𝜋𝐸) = 4𝑚 − 𝑘 , and so any 𝑝𝑖 (𝑇𝜋𝐸) with 𝑖 ≥ 1
2 (4𝑚 − 𝑘) vanishes. �

Bundles that are trivial as fibrations

Note that the construction from Section 3 yield bundles that are trivial as fibrations. For such bundles,
the following vanishing result holds, which implies that the analogue of Problem A.2 (ii) for fiber-
homotopically trivial bundles has a negative answer.
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Proposition A.8. For a fiber-homotopically trivial bundle 𝑀 → 𝐸4𝑚 → 𝐵 whose base space B is 4ℓ-
connected and 𝑝 ∈ 𝐻 (𝐵𝑆𝑂 (4𝑚);Q) a monomial in Pontryagin classes 𝑝𝑖 with 𝑖 ≤ ℓ, the Pontryagin
number 𝑝(𝐸) vanishes.

Proof. From the assumption that the bundle is trivial as a fibration, we deduce that 𝐸 � 𝑀 × 𝐵. In
particular, we get a retraction 𝐸 → 𝑀 for the inclusion of a fiber. But B is 4ℓ-connected, and hence,
all Pontryagin classes 𝑝𝑖 with 𝑖 ≤ ℓ pull back along this map. Since 𝐻4𝑚(𝑀) = 0, this implies the
assertion. �

Constructing a bundle that is non-trivial as a fibration

In this section, we construct for any 𝑚 ≥ 1 a bundle C𝑃𝑚 → 𝐸 → 𝑆2𝑚 so that 𝑝𝑚
1 (𝐸) ≠ 0 if 𝑚 ≥ 3.

We have seen in Proposition A.8 that the latter is not possible for bundles that are trivial as fibrations.

Construction A.9. Let𝑚 ≥ 1. We construct a smoothC𝑃𝑚-bundle over 𝑆2𝑚 as follows. The topological
group GL𝑚 (C) acts on

C𝑃𝑚 = {[𝑧0 : 𝑧1 : . . . : 𝑧𝑚] | 𝑧𝑖 ∈ C not all 0}

by acting linearly on the last m projective coordinates. This action fixes the point ∗ � [1 : 0 : . . . : 0]
and induces a map

𝐵GL𝑚(C) → 𝐵Diff(C𝑃𝑚, ∗).

The action of a differential on the tangent space of this fixed point produces a map

𝐵Diff (C𝑃𝑚, ∗) → 𝐵GL2𝑚(R),

and it is evident that the composition of these two maps is the canonical map 𝐵GL𝑚(C) → 𝐵GL2𝑚(R)

induced from seeing C as a 2-dimensional real vector space. We now choose a complex m-dimensional
vector bundle over 𝑆2𝑚, classified by a map 𝑆2𝑚 → 𝐵GL𝑚(C), whose underlying 2𝑚-dimensional real
vector bundle 𝜉 has a nonzero Euler number. When composed with the previous map, we obtain a map
classifying a smooth bundle C𝑃𝑚 → 𝐸 → 𝑆2𝑚. Note that this bundle admits a section 𝑠 : 𝑆2𝑚 → 𝐸
since it has a fixed point and the normal bundle of s is precisely given by 𝜉.

Proposition A.10. If 𝑚 ≥ 3, then the bundle from Construction A.9 satisfies and we have

𝑝1 (𝐸)
𝑚 ≠ 0

𝑝𝑖 (𝐸) =

(
𝑚 + 1
𝑖

)
·

(
1

𝑚 + 1

) 𝑖

· 𝑝1 (𝐸)
𝑖 ≠ 0 for 2𝑖 < 𝑚.

In particular, 𝑝𝑖1 ∪ · · · ∪ 𝑝𝑖𝑠 (𝐸) ≠ 0 if
∑
𝑖ℓ = 𝑚 and 𝑖ℓ < 𝑚/2 for all ℓ.

Proof. Choose a generator 𝛼 ∈ 𝐻2 (C𝑃𝑚). Then there exists a unique class 𝛽 ∈ 𝐻2(𝐸) that pulls
back to 𝛼 along the inclusion 𝑗 : C𝑃𝑚 → 𝐸 of the fiber. The Serre spectral sequence of the bundle
C𝑃𝑚 → 𝐸

𝜋
−→ 𝑆2𝑚 collapses since the 𝐸2 page is supported in even degrees. Since we are considering

cohomology with rational coefficients, there is no extension problem to solve, and we see that 𝛽𝑚 is
Poincaré dual to a nonzero multiple of 𝑠∗ [𝑆2𝑚], where [𝑆2𝑚] ∈ 𝐻2𝑚 (𝑆2𝑚) denotes the fundamental
class and 𝑠 : 𝑆2𝑚 → 𝐸 is the cross-section. We thus get that 𝛽2𝑚 ∈ 𝐻4𝑚(𝐸) is Poincaré dual to the
self-intersection number of 𝑆2𝑚 in E which equals the Euler number of its normal bundle 𝜉, and hence
is nonzero by construction. Since 𝑆2𝑚 has a trivial tangent bundle, we deduce 𝑗∗𝑝1 (𝐸) = 𝑝1 (C𝑃

𝑚) =
(𝑚 + 1)𝛼2; hence, 𝑝1 (𝐸) = (𝑚 + 1)𝛽2. Hence, indeed, 𝑝𝑚

1 (𝐸) = (𝑚 + 1)2𝑚𝛽2𝑚 ≠ 0.
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The class 𝑝𝑖 (𝐸) is computed as follows:

𝑗∗𝑝𝑖 (𝐸) = 𝑝𝑖 (CP
2𝑚) =

(
𝑚 + 1
𝑖

)
𝑎2𝑖 =

(
𝑚 + 1
𝑖

) (
1

𝑚 + 1

) 𝑖

((𝑚 + 1)𝑎2)𝑖

=

(
𝑚 + 1
𝑖

) (
1

𝑚 + 1

) 𝑖

𝑝1 (CP
2𝑚)𝑖 =

(
𝑚 + 1
𝑖

) (
1

𝑚 + 1

) 𝑖

𝑗∗𝑝1 (𝐸)
𝑖 .

Since 𝑗∗ is injective in degrees smaller than 2𝑚 − 1, the claim follows. The final part follows from

𝑝𝑖1 ∪ · · · ∪ 𝑝𝑖𝑠 (𝐸) =
𝑠∏

ℓ=1

(
𝑚 + 1
𝑖ℓ

) (
1

𝑚 + 1

) 𝑖ℓ

𝑝1 (𝐸)
𝑖ℓ

= 𝑝1 (𝐸)
𝑚 ·

𝑠∏
ℓ=1

(
𝑚 + 1
𝑖ℓ

) (
1

𝑚 + 1

) 𝑖ℓ

︸����������������������︷︷����������������������︸
≠0

≠ 0. �

Proof of Theorem A (iii). Consider the bundle CP𝑘 → 𝐸 → 𝑆2𝑘 constructed in Proposition A.10.
Taking the product with CP2ℓ , we obtain a fiber bundle 𝐸̃ � 𝐸 × CP2ℓ → 𝑆2𝑘 with fiber CP2ℓ × CP𝑛.
We have

𝑝1 (𝑇𝐸)
𝑘+ℓ = (𝑝1 (𝑇CP

𝑛) × 1 + 1 × 𝑝1 (𝑇𝐸))
𝑘+ℓ

=

(
𝑘 + ℓ

𝑘

)
𝑝1(𝑇CP

𝑛)ℓ × 𝑝1 (𝑇𝐸)
𝑘 ≠ 0. �

We next prove part (ii) of Theorem A.3.

Proof. Assume that 5 ≤ 𝑘 ≤ 8 and𝑚 > 𝑘 . Then Corollary A.4 says that 𝑐̃𝑘 (𝑚) ≤ 1. We want to improve
this to 𝑐̃𝑘 (𝑚) = 0. To do so, observe that the proof of Corollary A.4, which was simply a reformulation
of (the sharpness of the upper bound of) Theorem D, only involved bundles that are trivial as fibrations.
For any such bundle, we know from Proposition A.8 that 𝑝𝑚

1 (𝐸) = 0. However, the bundle arising from
Construction A.9 satisfies 𝑝𝑚

1 (𝐸) ≠ 0; we have thus found another element in 𝐴𝑘
4𝑚 which is not fiber

homotopy trivial, and so we have finished the proof. �

Finally, we prove part (iii) of Theorem A.3. Before doing so, let us observe that for 𝑘 ≤ 12, Theorem D
yields bundles 𝐸 → 𝑆𝑘 with all possible monomial Pontryagin classes except for 𝑝𝑎

1 ∪𝑝
𝑗
2. By Proposition

A.8, these classes cannot be realized by fiber-homotopically trivial bundles and are hence the ones we
need to construct.

Proof. For 𝑖 = 1, . . . , 𝑚, let 𝐸𝑖 → 𝑆2𝑖 , denote the CP𝑖-bundle from Construction A.9. First, note that
for 𝑖 ≥ 5, the map 𝑗∗ |𝐻 8 (𝐸) is invertible, and we have

𝑝2 (𝐸𝑖) = ( 𝑗∗)−1𝑝2 (CP
2𝑖) =

𝑖

2
( 𝑗∗)−1𝑝1 (CP

2𝑖)2 =
𝑖

2
𝑝1 (𝐸𝑖)

2.

Next, let 𝑄𝑖 be a manifold of dimension 4(𝑚 − 𝑖) such that 𝑝𝑚−𝑖
1 (𝑄𝑖) ≠ 0 is the only nonvanishing

Pontryagin number and let 𝑋𝑖 � 𝐸𝑖 × 𝑄𝑖 . Note that 𝑋𝑖 is a fiber bundle with fiber CP2𝑖 × 𝑄𝑖 over 𝑆2𝑖 .
We consider the following matrix:

𝐵𝑚 �
(
𝑝

𝑗
2 (𝑋𝑖) · 𝑝

𝑚−2 𝑗
1 (𝑋𝑖)

)
𝑖 = 6 . . . 𝑚
𝑗 = 0 . . .

⌊
𝑚
2
⌋

Note that the rank of 𝐵𝑚 determines the size of the subspace spanned by the 𝑋𝑖’s in Ω4𝑚 ⊗ Q. Since
𝑋𝑖 is not fiber homotopy trivial, this subspace is complementary to the one spanned by the bundles
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constructed in Section 3. Therefore, if rank(𝐵𝑚) ≥
⌊

𝑚
2
⌋
+ 1 − 𝑎 and 𝑘 ≤ 12, then

𝑐̃𝑘 (𝑚) = dim(Ω4𝑚 ⊗ Q) − dim(𝐴𝑘
4𝑚 ⊗ Q) − 1

= 𝑝(𝑚,

⌊
𝑘 − 1

4

⌋
) − rank(𝐵𝑚) − 1

≤ 𝑝(𝑚, 2) − �𝑚/2� + 1 − 𝑎 − 1 = 𝑎.

Now, let us embark the computation of the entries of 𝐵𝑚:

𝑝
𝑗
2 (𝑋𝑖) · 𝑝

𝑚−2 𝑗
1 (𝑋𝑖) = 𝑝

𝑗
2 (𝐸𝑖 ×𝑄𝑖) · 𝑝

𝑚−2 𝑗
1 (𝐸𝑖 ×𝑄𝑖)

=
(
𝑝2 (𝐸𝑖) + 𝑝1(𝐸𝑖)𝑝1(𝑄𝑖) + 𝑝2 (𝑄𝑖)

) 𝑗
·
(
𝑝1 (𝐸𝑖) + 𝑝1 (𝑄𝑖)

)𝑚−2 𝑗
.

By our choice of 𝑄𝑖 , any product containing 𝑝2 (𝑄𝑖) will vanish, and therefore, we can go on with our
computation.

=
(
𝑝2 (𝐸𝑖) + 𝑝1 (𝐸𝑖)𝑝1(𝑄𝑖)

) 𝑗
·
(
𝑝1 (𝐸𝑖) + 𝑝1 (𝑄𝑖)

)𝑚−2 𝑗

= 𝑝1 (𝑄𝑖)
𝑚−𝑖 ·

� 𝑖
2 �∑

𝑛=0
𝑝2 (𝐸𝑖)

𝑛 · 𝑝1 (𝐸𝑖)
𝑗−𝑛 · 𝑝1 (𝐸𝑖)

𝑖−( 𝑗+𝑛) ·

(
𝑗

𝑛

) (
𝑚 − 2 𝑗

𝑖 − ( 𝑗 + 𝑛)

)
= 𝑝1 (𝑄𝑖)

𝑚−𝑖 ·

� 𝑖
2 �∑

𝑛=0

(
𝑖

2

)𝑛

·

(
𝑗

𝑛

) (
𝑚 − 2 𝑗

𝑖 − ( 𝑗 + 𝑛)

)
𝑝1 (𝐸𝑖)

2𝑛 · 𝑝1 (𝐸𝑖)
𝑗−𝑛 · 𝑝1 (𝐸𝑖)

𝑖−( 𝑗+𝑛)

=
𝑝1 (𝑄𝑖)

𝑚−𝑖 · 𝑝1 (𝐸𝑖)
𝑖

2𝑚︸���������������������︷︷���������������������︸
≠0

·

� 𝑖
2 �∑

𝑛=0
2𝑚−𝑛 𝑖𝑛

(
𝑗

𝑛

) (
𝑚 − 2 𝑗

𝑖 − ( 𝑗 + 𝑛)

)

and hence, it suffices to compute or estimate the rank of the following matrix:

𝐴𝑚 = (𝐴𝑚
𝑖 𝑗 ) 𝑖 = 6 . . . 𝑚

𝑗 = 0 . . .
⌊

𝑚
2
⌋ � &'(

� 𝑖
2 �∑

𝑛=0
2𝑚−𝑛 𝑖𝑛

(
𝑗

𝑛

) (
𝑚 − 2 𝑗

𝑖 − ( 𝑗 + 𝑛)

))*+ 𝑖 = 6 . . . 𝑚
𝑗 = 0 . . .

⌊
𝑚
2
⌋ .

Note that for 𝑗 > 𝑖, we have
( 𝑚−2 𝑗
𝑖−( 𝑗+𝑛)

)
= 0 for all 𝑛 ≥ 0, and hence, 𝐴𝑖 𝑗 = 0. Therefore, the matrix A has

the following form, where the asterisks represent nonzero entries:

𝐴 =

&''''''''''(

∗ . . . ∗ 0 . . . 0
. . .

. . .
...

... ∗ 0
∗

...
...

∗ . . . . . . ∗

)**********+
In the first row, there are 7 nonzero entries, so the rank of A is at least

⌊
𝑚
2
⌋
− 5. �

Remark A.11. Computer calculations, for which we thank Marek Kaluba, have shown that the matrix
𝐴𝑚 and hence the matrix 𝐵𝑚 as well have rank equal to

⌊
𝑚
2
⌋
+ 1 for 𝑚 ≤ 1250. This implies that
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𝑐̃𝑘 (𝑚) = 0 for 𝑘 ≤ 12 and 𝑚 ≤ 1250 which can be rephrased in the following way: For every 𝑘 ≤ 12
and any oriented manifold M of dimension at most 5000 with vanishing signature, there exists a 𝜆 ∈ N

such that the 𝜆-fold connected sum of M with itself is cobordant to a fiber bundle 𝐸 → 𝑆𝑘 .
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