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Abstract
We develop anapproximation for the buffer overflow probability of a stable tandem network in dimensions three
or more. The overflow event in terms of the constrained random walk representing the network is the following:
the sum of the components of the process hits n before hitting 0. This is one of the most commonly studied rare
events in the context of queueing systems and the constrained processes representing them. The approximation
is valid for almost all initial points of the process and its relative error decays exponentially in n. The analysis is
based on an affine transformation of the process and the problem; as n → ∞ the transformed process converges to
an unstable constrained random walk. The approximation formula consists of the probability of the limit unstable
process hitting a limit boundary in finite time. We give an explicit formula for this probability in terms of the
utilization rates of the nodes of the network.

1. Introduction

Tandem networks, where each customer must visit a sequence of servers, are one of the simplest forms
of Jackson networks (see Figure 1). The embedded random walk X corresponding to a Jackson network
represents the number of customers at each node of the network waiting for service right after arrivals
and service completions. Each step of X corresponds to either an arrival to or a service completion of
the network. Since the number of customers is always nonnegative, X is constrained to remain in Zd

+
where Z+ = {0, 1, 2, 3, ...} and dimension d is the number of service nodes (or queues) in the system.
This paper concerns embedded constrained randomwalks of tandem networks (i.e., tandemwalks) with
d ≥ 3. We assume the network (equivalently, the corresponding random walk X) to be stable, i.e., we
assume that the arrival rate to the system is less than the service rate at each node (see (2) and (5)). We
are interested in the probability pn that the sum of the components of X equals n before X hits the origin
given that X starts from an initial point x ∈ Zd

+.
The probability pn has the following physical interpretation: suppose that the customers/packets in

the system are stored in a system-wide joint buffer of size n− 1. Then the first time the components of
X sum to n is also the first time the system experiences a buffer overflow event and pn is the probability
that a buffer overflow occurs before the system empties (i.e., before X hits the origin) given that the
process starts from the initial position X0 = x (note that pn is a function of the initial position x; when
no emphasis is needed on the initial position, we will simply write pn). If we divide the trajectory of X
into independent cycles consisting of times spent between X’s hitting times to the origin, pn is the prob-
ability that the buffer overflows in the current cycle. The probability pn has a geometric interpretation
as well: it is the probability that X hits the exit boundary consisting of all points in Zd

+ whose coordi-
nates sum to n before hitting the origin. Stability of X implies that pn decays exponentially in n, hence
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2 A. Devin Sezer

Figure 1. d tandem queues.

Figure 2. Derivation of the limit problem via an affine transformation in two dimensions.

our event of interest (the probability of hitting the exit boundary before hitting the origin) is rare for n
large.

Computation/approximation of pn turns out to be a nontrivial problem (see the literature review
below); the difficulty arises from the multidimensionality of the problem and the constraining bound-
aries of the process. A hallmark of Jackson networks is the product form formulas for their stationary
distributions. The work [65] develops an explicit approximation formula similar to these product form
formulas for pn in the case of the two-dimensional tandem walk (the exact formula is (18) with
y = (n − x(1), x(2)) and x(i) are the components of x ∈ Z2+) and proves that the relative error of
the approximation decays exponentially in n. The analysis in [65] is based on an affine transformation
of X and pn; the goal of the present work is to extend these results and analysis to dimensions d ≥ 3.

The affine transformation approach consists of changing the coordinate system by an affine transfor-
mation so that the origin of the new coordinate system is on the exit boundary; letting n → ∞ gives
a limit process Y and a limit probability (see Figure 2 for an example in two dimensions). The limit
process Y is unconstrained in its first coordinate which makes it unstable; the limit probability is the
probability of the process Y hitting the limit exit boundary in finite time. The main results of the present
work are:

(1) Theorem 2.1 which proves that the limit probability approximates pn with decaying exponential
error for almost all initial points in scaled coordinates,

(2) Definition 4.7 of a harmonic system (consisting of a regular graph and a system of equations asso-
ciated with its nodes and edges) and Theorem 4.8 which constructs a harmonic function given the
solution of a harmonic system.

(3) Definitions and results in Section 5 culminating with Theorem 5.7 giving an explicit formula for
the limit probability. Definitions and results in Section 5 preceding Theorem 5.7 define a specific
class of harmonic systems and their solutions for the d dimensional tandem walk. By Theorem 4.8
these solutions give harmonic functions for the limit process. Theorem 5.7 proves that the right
linear combination of these functions gives us the limit probability.

(4) Corollary 6.1 which derives the exponential decay rate of pn(xn) for any sequence xn such that
xn/n → x with

∑d
j=1 x(j) ≤ 1 (i.e., the large deviations analysis of pn).

More detailed statement of our results and a summary of our analysis are provided in subsection 2.1
below.
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In addition to [65], the works [1, 5] employ the affine transformation approach to derive approxima-
tion results similar to those derived in the present work: [1] treats the case of the constrained simple
randomwalk in two dimensions and [5] treats theMarkovmodulated tandem randomwalk in two dimen-
sions. We next discuss the novelties of the present work as compared to [1, 5, 65]. As already noted, all
of these works treat only two dimensions; they use the two-dimensional structure of the problem at every
step of their analysis. Let us begin with the derivation of the formula for the limit probability. A function
is said to be harmonic with respect to a Markov process if its value at a given point equals the average of
its values at the neighboring points where the average is taken with respect to the jump probabilities of
the process (see [55, Definition 1.1, page 40] or (20) in our setting); sub and super harmonic functions
are defined similarly. In the two-dimensional nonmodulated case (treated in [1, 65]) the formula for the
limit probability is constructed from the roots of two quadratic equations in two variables (upon fixing
one of the variables, the determination of the solutions reduces to the quadratic formula), one has to
check if the resulting functions are harmonic with respect to a limit process and whether an appropriate
linear combination of them has the right value on the limit boundary. Since the resulting functions have
at most two terms, only two functions are needed in the linear combination and the limit boundary is a
line (a single dimension). These make the above steps straightforward in [1, 65]. In the modulated case
treated in [5], the situation is similar, i.e., the arguments crucially make use of the two-dimensionality
of the problem.

In d dimensions treated in the present work, the computation of the limit probability proceeds in
two stages. In the first stage we introduce harmonic systems (Definition 4.7) for general Jackson net-
works: these are regular graphs whose nodes and edges define equations to be solved. We first prove
that solutions of these systems give harmonic functions (Theorem 4.8); the corresponding stage and
results are elementary in two dimensions and are not presented as a separate stage. In the second stage
we introduce a specific class of harmonic systems for the tandem case whose graphs have up to 2d−1

nodes (see Section 5 and the graphs Gd,d defined in (127)-(129)). That 1) the solutions of the equations
represented by these graphs exist 2) they have a linear combination that has the correct value on the
limit boundary are nontrivial to prove (see Propositions 5.5 and Theorem 5.7). The two-dimensional
case provides almost no insight into whether these arguments, structures and solutions exist in higher
dimensions. Furthermore, the dimension d is now a variable itself; so a case by case analysis in fixed
number of steps (as is possible in a fixed dimension) is not possible.

A difficulty in d dimensions is the lower dimensional boundaries of the state space. In the computa-
tion of the limit probability these boundaries come up when checking the harmonicity of the candidate
limit function in d dimensions: the arguments must treat all 2d − 2 boundaries of different dimensions
whereas in 2 dimensions there is only a single one-dimensional boundary. The increasing complexity
of the geometry of the problem is also reflected in the analysis of the relative error: a priori it is not
clear that the relative error analysis for the two-dimensional case provided in [65] would generalize to d
dimensions. And indeed, we have not been able to produce a direct generalization. One of the reasons
is as follows: in [65] (as well as in [1] and [5]) the harmonic functions that make up the limit approxi-
mating function are also used in the relative error analysis. These works are able to use these harmonic
functions in the relative error analysis in two dimensions because in two dimensions they consist of a
few terms. The number of terms grows exponentially in d resulting in functions with complex formulas
(see (17); in comparison the same formula in two dimensions is (18)) and it is not clear how they can
be used in the error analysis. For this reason the present work develops superharmonic functions with
simpler structures that allow us to establish upper bounds on the relative error (see subsections 3.1, 3.2
and 3.3). We further comment on how dimension impacts the convergence argument in subsection 3.4.

The use of superharmonic functions in the convergence analysis leads to a third novelty in the cur-
rent paper compared to [1, 5, 65]: in their relative error analysis, all of these previous works make an
assumption on the inequality of the jump rates. Such an assumption is no longer needed in the relative
error analysis of the present work thanks to the use of the superharmonic functions mentioned above
whose construction requires only stability and not the inequality assumption. We further comment on
this improvement at the end of subsection 2.1.
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Another novelty compared to [1, 5, 65] is the more precise nature of the relative error analysis:
these earlier works simply state that the relative error decays exponentially in n. In the present work,
we give precise rates of convergence as a function of the initial position. Finally, as a corollary of our
results we derive the large deviation decay rate of the buffer overflow probability for any initial point
in the scaled domain (see the paragraph below or Section 6); this was not done in [1, 5, 65]. These and
further challenges and new features of the analysis compared to [1, 5, 65] are discussed in detail using
mathematical notation in subsection 2.1 below.

Next, we give a summary of other results and approaches from the current literature on the approx-
imation of pn and similar quantities. As far as analytical approximations go, the currently available
literature (excepting [1, 5, 65] discussed above) focuses on large deviations (LD) analysis, i.e., on the
computation of the decay rate of pn in n. This rate is computed for general Jackson networks in [32, 35]
as

lim
n→∞

−1
n
log pn(xn) = − log d, (1)

for x = xn, xn/n → 0. As already noted above, a corollary of our approximation formula is the extension
of this result to any sequence xn/n → x ∈ A := {x ∈ Rd

+,
∑d

j=1 x(j) ≤ 1} (Corollary 6.1 in Section 6 and
(23) below). We are not aware of other results in the currently available literature that gives LD decay
rates for exit probabilities of constrained random walks in arbitrary dimension where the initial point is
arbitrary (as is the case in Corollary 6.1).

To the best of our knowledge, beyond LD analysis, most of the currently available literature on the
approximation of pn focuses on simulation techniques. Since pn is small for typical values of n, its effi-
cient simulation requires variance reduction algorithms such as importance sampling (IS). The article
[53] appears to be the first work on IS simulation of pn for two tandem queues and the exit boundary
{x ∈ Zd

+ : x(1) + x(2) = n} (the same as the one studied in the present work); this work notes that
the constrained dynamics of X causes static changes of measure implied by large deviations analysis
to have poor performance. As a remedy, [53] introduces dynamic IS measures which depend on the
position of X. The work [32] notes that static changes of measure perform poorly for the exit boundary
{x : x(1) + x(2) = n} for a range of parameter values. An IS change of measure to estimate pn is said
to be asymptotically optimal if the variance of the corresponding IS estimator decays at twice the rate
of the large deviation decay rate of pn. The work [23] develops asymptotically optimal and dynamic IS
changes of measure for this problem using subsolutions of the limit Hamilton Jacobi Bellman (HJB)
equation arising in the LD analysis.Works [22, 26, 60, 61] generalize these results to higher dimensions,
more general dynamics and exit boundaries. A recent article on the construction of IS algorithms based
on subsolutions of the limit HJB equations is [10], which treats the approximation of pn for the tandem
walk. All of these works assume that the initial position of X satisfies x = xn where xn/n → 0.

A general Jackson network is said to be stable if the average arrival rate to each node is less than the
service rate of that node. A well known fact about the embedded random walk of such a network is that
its stationary distribution is multivariate geometric where the parameter of each component is equal to
the utilization rate of that node (this is what we refer to above as the “product form formulas” for the
stationary distribution). Since the embedded random walk has a stationary distribution, it is reversible,
i.e., when it is observed backward in time it is again a Markov chain and its transition probabilities are
K ′ (x, y) = K (y, x)c(y)/c(x) where K is the transition matrix of the forward process and c is the sta-
tionary distribution. A vein of research in the effective simulation of the hitting probability Px (gn < g0)
makes use of the reversed process. Heuristic simulation algorithms based on reversibility are developed
in [52]. The work [6] develops strongly efficient simulation algorithms using the reversed process; the
analysis and the simulation algorithm are based on an exact representation of the hitting probability in
terms of the reversed process with initial distribution taken to be the stationary distribution conditioned
on the exit set; [6] assumes that the initial point x remains bounded as n → ∞ (in particular xn/n → 0
as n → ∞).
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An approach to the approximation of pn(xn), xn/n → 0, combining asymptotic analysis and simula-
tion is given in [47]; see Section 8 for a review of this work. There is a vast literature on the analysis and
simulation of rare events similar to pn of constrained random walks in particular, and on the analysis of
constrained random walks in general; see, e.g., [2, 3, 6, 7, 9, 11–19, 21, 22, 24, 26–30, 34–38, 40–44,
46, 48, 49, 52, 54, 56–58, 61, 62, 66]. [65, Section 6] gives a detailed review of a number of these works
that are most relevant to the analysis in the present paper. For the reader’s convenience we reproduce
an updated summary in Section 8. For further reviews we refer the reader to [1] and [5]; the review in
[1] has a greater focus on simple random walks (i.e., random walks with increments ei and −ei) and the
one in [5] focuses on Markov modulated dynamics. An extensive review of the importance sampling
literature that is related to the problem studied in this paper can be found in [8].

The next section provides the mathematical framework of the paper (i.e., definitions of the domains,
boundaries, the processes, the stopping times and probabilities of interest) and lists the main results
of the paper. The same section also provides a detailed mathematical outline of the ideas involved in
the proofs. The error analysis linking the probability of interest to the limit probability is presented
in Section 3; since the proofs can be involved due to the general dimension d of the problem, to give
the reader some idea in a simpler setting, subsection 3.4 provides some of the arguments for the fixed
dimension d = 2 and comments on how they change with d ≥ 3.

Sections 4 and 5 are devoted to the computation of the limit probability: Section 4 introduces a
framework that reduces the construction of harmonic functions with respect to the limit process to the
construction of systems of equations (which we call harmonic systems) represented by graphs and their
solutions. This reduction can be done for general Jackson networks and for complex valued harmonic
functions without additional effort. For this reason Section 4 is presented in this generality. Note that
the results in Section 4 do not construct any harmonic functions, they give one way of constructing
them by constructing harmonic systems and solving them. Section 5 explicitly constructs harmonic
systems for the tandem case and provides solutions for them. By the results of Section 4, these solu-
tions define a class of harmonic functions for the limit process. Theorem 5.7, the final result in Section
5, presents an explicit formula for the limit probability as a linear combination of these harmonic
functions.

Section 6 derives the large deviations decay rate of pn as a corollary of Theorems 2.1 and 5.7, for
any initial point in the scaled domain. Section 7 provides two numerical examples on the approxima-
tion results obtained in Theorems 2.1 and 5.7. In the first example we take d = 4 and in the second
example d = 14. In both examples we take n= 60. In the first example the numbers d and n are small
enough to allow a precise numerical calculation of pn by iterating the harmonic equation that pn sat-
isfies; the approximation of pn given by Theorems 2.1 and 5.7 are compared with the results of this
calculation. For d = 14 and n= 60 the exact computation based on the iteration of the harmonic equa-
tion satisfied by pn is no longer feasible. For the comparison we use the large deviations approximation
and an IS estimation based on the change of measure implied by the approximate formula given in
Theorem 5.7.

Section 8 provides a detailed and comparative review of some of the works cited above. In Section 9
we further comment on our results and on future work. A list of symbols and notation used throughout
the paper can be found after Section 9.

2. Definitions and statement of results

For an integer d ≥ 3 let X be a random walk with independent and identically distributed increments
{I1, I2, I3, ...}, Ik ∈ V ⊂ Zd , constrained to remain in Zd

+, i.e., the sequence {Ik} is independent of
X0 ∈ Zd

+ and

Xk+1 = Xk + c(Xk , Ik+1), k = 0, 1, 2, 3, ..., (2)
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where

c : Zd
+ × Zd ↦→ Zd

+, c(x, v) :=
v, if x + v ∈ Zd

+,

0, otherwise.

The random variables X0, I1, I2,.... are assumed to be defined on a measurable pair (Ω,ℱ) equipped
with a family of probability measures, Px, x ∈ Zd

+, such that Px (X0 = x) = 1. When the initial point
plays no role we will simply write P. Define

ℱ0 := {Ω,∅},   ℱk := f({I1, I2, ..., Ik}),   k ∈ {1, 2, 3, ...}.

The process X is adapted to the filtration F = {ℱk , k = 1, 2, 3, ...}. All of the processes appearing below
are adapted to the same filtration.

We will use the function notation to indicate the components of a vector, e.g., x =

(x(1), x(2), ..., x(d)) for x ∈ Zd
+. The constraining boundaries of X are

mj = {x ∈ Zd : x(j) = 0}, j ∈ {1, 2, 3, ...d}. (3)

We focus on the case when X represents d queues in tandem (a tandem network). This means that the
set of possible increments of X are

V = {e1,−e1 + e2, ...,−ej + ej+1, ...,−ed−1 + ed ,−ed}, (4)

ei (j) =
1, if i = j,

0, otherwise,

i, j = 1, 2, 3, ..., d; {ei, i = 1, 2, 3, ..., d} are the unit vectors in Zd . The distribution of the increments is
given as follows:

P(Ik = e1) = _,
P(Ik = ei+1 − ei) = `i, i = 1, 2, 3, ..., d − 1,
P(Ik = −ed) = `d ,

where _ + ∑d
i=1 `i = 1 and _, `1, `2, ...`d > 0 (if _, µi are given as jump rates of a continuous time

tandem network, we renormalize them so that they sum to 1 and we use the renormalized jump rates as
the jump probabilities of the embedded random walk). We assume X to be stable:

_ <
d

min
i=1

`i (5)

which implies

di := _/`i, d := max
i

di ≤ 1. (6)

For

An :=

{
x ∈ Zd

+ :
d∑

i=1
x(i) ≤ n

}
, (7)
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and mAn := {x ∈ Zd
+ :

∑d
i=1 x(i) = n} define the stopping time

gn := inf{k ≥ 0 : Xk ∈ mAn}; (8)

gn is the first time the sum of components of X equals n, in particular, g0 is the first time X hits the
origin.

Our probability of interest is

pn(x) := Px (gn < g0), (9)

x ∈ An.

2.1. Summary of results and analysis

As already discussed in the introduction, we will approximate pn using a limit process Y, a limit bound-
ary mB, the associated hitting time g and the limit probability that g is finite. The process Y differs from
X only in the following ways: the 1) the first components of its jumps are reversed (i.e., the jump e1 is
replaced with −e1 and the jump −e1 + e2 is replaced with e1 + e2) and 2) it is not constrained in its first
component (see Figure 2 for an example in two dimensions). The formal definition is as follows. Let
I1 ∈ Rd×d be the diagonal matrix with diagonal entries I1 (1, 1) = −1, I1(j, j) = 1, j ∈ {2, 3, ..., d},
and

Tn : Zd ↦→ Zd , Tn(x) = ne1 + I1x. (10)

Recall the definition (2) of the original walk X, in particular, Ik are the unconstrained increments of X;
define ΩY := Z × Zd−1

+ ,

Jk := I1Ik , Yk+1 := Yk + c1(Yk , Jk+1), (11)

where

c1(y, v) :=
v, if y + v ∈ ΩY ,

0, otherwise.

The initial point Y0 is assumed to satisfy Y0 = y almost surely under Py. Define

B :=
y ∈ ΩY , y(1) ≥

d∑
j=2

y(j)
 ;

the boundary of B is

mB =

y ∈ ΩY , y(1) =
d∑

j=2
y(j)

 . (12)

The limit stopping time

g := inf{k ≥ 0 : Yk ∈ mB}, (13)
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is the first time Y hits mB. As in [65], our goal is to approximate Px (gn < g0) by the limit probability
PTn (x) (g < ∞). Define the process

Yn = Tn(X),

Yn is the same process as X except in a new coordinate system whose origin is the point ne1 ∈ mAn in
the original coordinate system (i.e., it is defined as Y above except that it has an additional constraining
boundary on the line {y ∈ Z2+ : y(1) = n}). The limit process Y and the limit probability Py (g < ∞) are
obtained by letting n → ∞, see Figure 2 for an illustration in two dimensions.

Define

Rd :=
d⋂

i=1

x ∈ Rd
+ :

i∑
j=1

x(j) ≤
(
1 − log d

log di

) ,

R̄d,n :=
d⋃

i=1

x ∈ Zd
+ :

i∑
j=1

x(j) ≥ 1 + n
(
1 − log d

log di

) ,

A =

x ∈ Rd
+ :

d∑
j=1

x(j) ≤ 1
 , (14)

g : Rd
+ ↦→ R, g(x) := min

i∈{1,2,..,d}

©­«1 −
i∑

j=1
x(j)ª®¬ logd di.

Recall that d = maxd
i=1 dj. Let i∗ = argmaxd

i=1di; then Rd ⊂
{
x ∈ Rd

+ :
∑i∗

j=1 x(j) = 0
}
; in particular 1)

Rd is always a measure zero subset of A and 2) Rd = {0 ∈ Rd
+} when i∗ = d. The main convergence

result of the paper is the following:

Theorem 2.1. For n > 0 there exists n0 > 0 such that

|Px (gn < g0) − PTn (x) (g < ∞)|
Px (gn < g0)

≤ dn(1−g(x/n)−n ) , (15)

for all n > n0 and for any x ∈ R̄d,n ⊂ Zd
+. In particular, for xn/n → x ∈ A − Rd ⊂ Rd

+ the relative error
decays exponentially with rate − log(d) (1 − g(x)) > 0, i.e.,

lim inf
n

−1
n
log

( |Pxn (gn < g0) − PTn (xn ) (g < ∞)|
Pxn (gn < g0)

)
≥ − log(d) (1 − g(x)). (16)

For a more precise characterization of the sets R and R̄d,n using an order relation on {1, 2, 3, ..., d},
see (80).

For a finite set a let |a| denote its cardinality. Theorem 5.7 gives the following formula for Py (g < ∞)
under the further assumption `i ≠ `j for i≠ j:

Py (g < ∞) =
d∑

m=1

(
d∏

l=m+1

`l − _

`l − `m

)
d

y(1)−∑m
j=2 y(j)

m (17)

× ©­«
∑

a⊂{1,2,3,..m−1}
(−1) |a |

|a |∏
j=1

a(j+1)∏
l=a(j)+1

`l − _

`l − `a(j)
d

y(l)
a(j)

ª®¬ ,
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where a(j) denotes the jth smallest element of a, a = ∅ is always included in the last sum, and by
convention, a( |a| + 1) = m. For d = 2 (17) reduces to

Py (g < ∞) = `2 − _

`2 − `1
d

y(1)
1 + d

y(1)−y(2)
2

(
1 − `2 − _

`2 − `1
d

y(2)
1

)
, (18)

which equals the formula derived in [65] for this probability for the case d = 2.
A precise statement corresponding to Figure 2 is [65, Proposition 1] which states

lim
n
PTn (y) (gn < g0) = Py (g < ∞), y ∈ B, (19)

for any stable Jackson network in any dimension. In (19) the initial point of the process is specified
and fixed in y-coordinates; in (16) it is specified in scaled x coordinates (as is done in large deviations
analysis). For fixed y ∈ B, the probability PTn (y) (gn < g0) does not decay to 0 in n but converges to the
nonzero probability Py (g < ∞). In (16), where the initial position is fixed in scaled x coordinates, both
of the probabilities Pxn (gn < g0) and PTn (xn ) (g < ∞) decay to 0 exponentially. The limit (16) expresses
that the difference between them decays exponentially faster than Pxn (gn < g0).

A function h : ΩY ↦→ R is said to be Y-(sub/super)harmonic (or (sub/super) harmonic with respect
to Y) if

h(y) = (≤ /≥)Ey [h(Y1)], (20)

for all y ∈ ΩY . Theorem 2.1 reduces the approximation of Px (gn < g0) to the computation of Py (g < ∞).
Considered as a function y ↦→ Py (g < ∞) of y, this probability is the unique mB-determined Y-harmonic
function taking the value 1 on mB (see (122)). Section 4 introduces a method to construct Y-harmonic
functions from solutions to a system of equations defined by a graph G with labeled edges (a “harmonic
system,” see Definition 4.7; the graph G is a variable itself, each harmonic system has its own graph
G). Harmonic systems can be defined using complex numbers resulting in complex valued Y-harmonic
functions and they can be defined for constrained random walks arising from any Jackson network.1
Since this generality comes with no additional effort, in Section 4 we will work in this generality. For
V ∈ C and U ∈ C{2,3,4...,d} define the function [(V,U), ·] : Zd ↦→ C as

[(V,U), y] = V
y(1)−∑n

j=2 y(j)
d∏

j=2
U(j)y(j) , (21)

since y ↦→ log( [(V,U), y]) is linear in y, we call [(V,U), ·] log-linear.2 Each node i of the graph G of
a harmonic system has associated with it a variable (Vi,Ui) ∈ Cd and a coefficient ci ∈ C; each node
represents a constraint of the form (Vi,Ui) ∈ HwhereH is the characteristic surface of Y (see (94)). The
edges between nodes correspond to (1) conjugacy relations between the points (Vi,Ui) and (2) relations
between the coefficients ci. The first main result of Section 4 is Theorem 4.8; which states that any
solution to a harmonic systemwith graph G gives a Y-harmonic function of the form

∑
i∈G ci [(Vi,Ui), ·].

Subsection 4.1 introduces the concept of a simple extension of a constrained random walk associated
with a Jackson network (defined in terms of its jump probability matrix) and the corresponding simple
extension of regular graphs. The main idea here is the following: if a lower dimensional process is
extended in a “simple” way (in the sense of Definition 4.9, an example is shown in Figure 3) to a higher
dimensional process then any harmonic system associated with the lower dimensional process can also
be extended to a harmonic system associated with the higher dimensional process. Furthermore, if

1The works [1, 5] use complex valued harmonic functions in their approximation formulas.
2Recall that for two sets D and R, RD denotes the set of functions from D to R. Setting U ∈ C{2,3,...,d} corresponds to indexing the components

of U by {2, 3, ..., d}, see (21).
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10 A. Devin Sezer

Figure 3. Networks corresponding to p1 and p2 of (110), second is a simple extension of the first.

the lower dimensional system has a solution, that solution can be extended to a solution of the higher
dimensional system (Proposition 4.11).

The limit probability Py (g < ∞) is a Y-harmonic function. It has another important property: it
is mB-determined, i.e., it is completely determined by the value it takes on the boundary mB (namely,
Py (g < ∞) = E[1{g<∞}]). The formal definition for an arbitrary Y-harmonic function is given in
subsection 4.2. We want the Y-harmonic functions we construct from harmonic systems to have this
property as well, i.e., we want them to be completely determined by their values on mB. Proposition
4.13 gives conditions on the solution of a harmonic system so that the harmonic function defined from
it is guaranteed to be mB-determined.

The results in Section 4 reduce the task of construction of harmonic functions to the construction
of harmonic systems and their solutions, i.e., they show that if a given harmonic system has a solution,
then the solution can be used to construct a harmonic function. Section 5 presents a particular class of
harmonic systems for tandem networks and provides solutions for them. In this section, the dimension
of the system is denoted by d and d ≤ d is used as a variable. The harmonic systems defined in Section 5
are based on a sequence of increasing regular graphs Gd,d , d = 1, 2, 3, ..., d; the nodes of Gd,d are the
sets a ∪ {d}, a ⊂ {1, 2, 3, ..., d − 1}, two nodes are connected with an edge labeled d ≥ j ≥ 2 if j lies
in their intersection and the set difference between the nodes equals {j − 1} (see (128), see Figure 5
for an example). The following properties directly follow from their definitions: 1) Gd,d is a simple
extension of Gd,d and 2) Gd+1,d can be written as a disjoint union of the graphs Gk,d , k = 1, 2, ..., d; both
of these properties are used in the proofs of the results that follow. Proposition 5.5 provides a solution
to the harmonic systems defined by the graphs Gd,d . The results of Section 4 imply that these solutions
define mB-determined Y-harmonic functions. Theorem 5.7 then shows that the right linear combination
of these functions equals y ↦→ Py (g < ∞). In addition to the stability assumption, the results in Section 4
(in particular Theorem 5.7) assume

`i ≠ `j for i ≠ j. (22)

The relative error analysis (Theorem 2.1) does not require (22); this is in contrast to previous works [1,
5, 65] using the affine limit approach, all of which do make an assumption analogous to (22) for both the
error analysis and the computation/approximation of Py (g < ∞). Last paragraph of this section further
comments on how assumption (22) was removed from the relative error analysis in the present work.
The last result of the paper is Corollary 6.1 of Theorems 2.1 and 5.7 which generalizes (1) to

lim
n→∞

−1
n
log pn(xn) = − log(d)g(x), (23)

for any xn/n → x ∈ A ⊂ Rd
+. Since this result is based on Theorem 5.7 it also uses the assumption 22.

Results similar to Theorems 2.1 and 5.7 reported in the prior literature are as follows: [65, Proposition
8], [1, Theorem 6.1] and [5, Theorem 6.1] are convergence results similar to Theorem 2.1; the first
concerns the tandemwalk with d = 2, the second the constrained simple randomwalk in two dimensions
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(i.e., the constrained random walk with increments ±ei, i = 1, 2) and the third treats again the two-
dimensional tandem walk but the dynamics are assumed to be Markov modulated (i.e., in addition to X
there is an additional finite state Markov chain M that determines the jump distributions of X). These
prior results state that the relative error on the left side of (16) converges to 0 exponentially at a rate
depending on x; as already noted above, the precise formulation of the decay rate as in the right side of
(16) is new.

The prelimit statement (15) that is specified in terms of an unscaled initial point x is also new. As
already noted, Theorem 2.1 uses only the stability assumption on model parameters; all of the prior
relative error results use an additional assumption corresponding to (22). On the computational side,
for d = 2 [65, Proposition 8] proves Py (g < ∞) = f (y), where f is the function given in (18). For the two-
dimensional constrained simple random walk and the Markov modulated tandem walk exact formulas
for Py (g < ∞) turn out to be not possible in general. Both of these works develop formulas similar
to (18) that approximate Py (g < ∞) with bounded relative error (see [1, Propositions 7.2-7.6] and [5,
Propositions 7.2, 7.3 and 8.3]).

As in [65] we will use the following idea in our analysis of the relative error: because the dynam-
ics of X and Y differ only on m1, the events {gn < g0} and {g < ∞} mostly overlap. This is proved
as follows: (1) find an event containing the difference of the events {gn < g0} and {g < ∞} and
(2) prove that the upper bound event has a small probability. Let ḡ0 = inf

{
k ≥ 0 :

∑d
j=1 Yk (j) = n

}
=

inf
{
k ≥ 0 :

∑n
j=1 Tn(Yk (j)) = 0

}
and let fj,j+1 be the first time X hits mj+1 after hitting mj (see (24) for the

precise definition). Lemmas 3.1, 3.2 and 3.3 show that the difference between {gn < g0} and {g < ∞} is
contained in the union of {ḡ0 < g < ∞} and {fd−1,d < gn < g0}. These results are either evident ormuch
simpler to prove in two dimensions. When d > 2 the constraining boundaries have lower dimensional
subsets. The treatment of these and a general dimension d requires nontrivial inductive and case by case
and arguments (see the proofs of Lemmas 3.1-3.3). An upper bound on the probability Py (ḡ0 < g < ∞)
follows from theMarkov property of Y and an upper bound on Py (g < ∞); in subsection 3.1we construct
an upper bound for this probability. In previous works treating two dimensions the upper bound follows
directly from the computation/approximation of Py (g < ∞): in [65] there is a simple explicit formula for
Py (g < ∞) and in [5] an upper bound can be constructed in terms the Y-harmonic functions used in the
computation of Py (g < ∞). In the present setup the Y-harmonic functions that make up Py (g < ∞) are
more complex (see Theorem 5.7); therefore, in subsection 3.1 we construct simpler Y-superharmonic
functions and corresponding supermartingales that imply the bound we seek on Py (g < ∞). Subsection
3.2 derives an upper bound on the probability Px (fd−1,d < gn < g0) (Proposition 3.9). For the proof,
we construct a supermartingale corresponding to the event {fd−1,d < gn < g0}. The event happens
in d stages (the process moves from stage j to j + 1 upon hitting mj+1); the supermartingale is obtained
by applying one of the Y-superharmonic functions of subsection 3.1 to X at each stage. Because Y has
unconstrained dynamics on m1, the process resulting from the application of these functions to X is not a
supermartingale on m1; to compensate for this we add a strictly decreasing term to the resulting process
(see (62)). As in previous works [1, 5, 65], we truncate time to manage this additional term (see (71)).

As already noted, a key difference between the present work and [1, 5, 65] is that we no longer need to
assume `i ≠ `j, i≠ j in our error analysis (Theorem 2.1). The construction of Y-harmonic functions used
in the computation of Py (g < ∞) requires `i ≠ `j (assumption (22)) or analogous assumptions; this is
the case in the present work (see Section 5) and in all of the previous works [1, 5, 65]. Previous works
[1, 5, 65] use the same Y-harmonic functions in their error analysis as well, therefore their error analysis
also requires an assumption analogous to (22). The graphs associated with the Y-harmonic functions
constructed in Section 5 grow exponentially with dimension d; this means that the corresponding Y-
harmonic functions get more complex as d increases. Their evaluation presents no difficulty unless d is
large (a numerical example with d = 14 is given in Section 7); nonetheless their use in the error analysis
is no longer straightforward and we have not been able to carry out an error analysis based on them.
The Y-harmonic functions of Section 5 are linear combinations of log-linear functions of the form (21)
where at least some of the parameters V and U take values in {1, d1, d2, ...dd}. When we allow the V,
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U parameters to take values that are strictly greater than d, it turns out to be possible to construct Y-
superharmonic functions as linear combinations of d or less log-linear functions, see Propositions 3.4
and 3.6. These superharmonic functions have a much simpler structure and we base our relative error
analysis on them. Their construction requires only the stability assumption. This is why we no longer
need the assumption (22) in our error analysis.

We now move on to the proof of Theorem 2.1, our main convergence result.

3. Error analysis

The goal of this section is to prove Theorem 2.1. This theorem generalizes [65, Proposition 8],
which treats d = 2, to an arbitrary positive dimension d > 0. The proof is based on the stopping
times

f0,1 := inf{k ≥ 0 : Xk ∈ m1},
fj−1,j := inf{k > fj−2,j−1 : Xk ∈ mj}, j = 2, 3, ..., d. (24)

Time g0 is the first time the set of all components of X equal 0; this definition and the dynamics of X
imply g0 ≥ fd−1,d . We will use these stopping times to show that the events {gn < g0} and {g < ∞}
mostly overlap. Define

X̄k+1 = X̄k + c1(X̄k , Ik+1). (25)

X̄ has the same dynamics as X except on m1 where it is not constrained. We assume X̄ and X processes
start from the same point:

X0 = X̄0 = xn. (26)

For the limit analysis we will assume that the Y process has initial point Y0 = Tn(xn). The definitions
(25) and (11) of X̄ and Y and Y0 = Tn (xn) imply Y = Tn (X̄) and X̄ = Tn(Y). Define

ḡn := inf
k :

d∑
j=1

X̄k (j) = n
 . (27)

We note that Y = Tn(X̄) implies ḡn = g, therefore:

Pxn (ḡn < ∞) = PTn (xn ) (g < ∞). (28)

Define S : Zd → Z as

S(x) =
d∑

j=1
x(j). (29)

Why the stopping time fd−1,d plays a key role in our analysis is encoded in the next lemma:

Lemma 3.1.

X̄k (l) ≥ Xk (l), l = 2, 3, ..., j + 1, (30)

X̄k (l) = Xk (l), l = j + 2, j + 3, ..., d, (31)
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S(Xk) = S(X̄k) (32)

for k ≤ fj,j+1, j ∈ {0, 1, 2, 3, ..., d − 1};

S(Xk) ≥ S(X̄k) (33)

for k > fd−1,d .

Note that (32) holds for all j, i.e., S(Xk) = S(X̄k), k ≤ fd−1,d .
Before we give a proof let us outline the main idea: our analysis concerns an event defined in terms

of S(X); X and X̄ may start to differ from each other once X hits m1, but the tandem dynamics of X imply
that for S(X) and S(X̄) to differ, the process must visit sequentially all of the boundaries mi, i = 2, 3, ..., d.

Proof. The processes X and X̄ have the same dynamics except on m1 where only X is constrained and
by assumption (26) they start from the same point. Therefore, until they hit m1 they move together, i.e.,

Xk = X̄k ,

for k ≤ f0,1. These prove (30), (31) and (32) for j = 0. For j ≥ 1 we will use induction. Assume (30),
(31) and (32) hold for j = j0 < d − 1; let us prove that they will also hold for j = j0 + 1. We will do
this by another induction on k, fj0,j0+1 ≤ k ≤ fj0+1,j0+2. Note that there is a nested induction here, one
induction on j another on k- we will refer to the induction on j as the outer induction and to the one on
k as the inner induction. For k = fj0,j0+1 the statements hold by the outer induction hypothesis. Now
assume that (30), (31) and (32), j = j0 + 1, hold for k ≤ k0 for some fj0,j0+1 ≤ k0 < fj0+1,j0+2. We want
to show that they must also hold for k = k0 + 1. We argue based on the possible positions of X and X̄ at
time k0:

(1) Xk0 ∈ Zd
+ − ⋃d

j=1 mj: this and the inner induction hypothesis imply X̄k0 (l) > 0 for l = 2, 3, ..., d;
furthermore X̄ is not constrained on m1. These imply

Xk+1 = Xk + Ik+1, X̄k+1 = X̄k + Ik+1,

i.e., both X and X̄ change by the same increment. Therefore, all of the relations (30), (31) and (32)
are preserved from time k = k0 to k = k0 + 1.

(2) Xk0 can also be on the boundary of Zd
+; recall that fj0+1,j0+2 is the first time X hits mj0+2 after time

fj0,j0+1. Therefore, Xk0 ∉ mj0+2, since fj0,j0+1 ≤ k0 < fj0+1,j0+2. Then if Xk0 is on the boundary of Zd
+

it must be on one of the following:

Xk0 ∈ mM :=

( ⋂
m∈M

mm

) ⋂ ( ⋂
m∈Mc

mc
m

)
,

for some M ⊂ {1, 2, 3, ..., j0 + 1, j0 + 3, ..., d}:
(a) if Ik0+1 = e1, or Ik0+1 = −em + em+1 for some m ∈ Mc: the increment e1 is not constrained for X

and X̄ regardless of their position. For the case Ik0+1 = −em+em+1: Xk0 ∈ mc
m means Xk0 (m) > 0.

This and the inner induction hypothesis ((30) and (31)) imply X̄k0 (m) > 0 if m> 1; furthermore
X̄ is not constrained on m1. These imply

Xk0+1 = Xk0 + Ik0+1, X̄k0+1 = X̄k0 + Ik0+1.

Once again this implies that the relations (30) and (31) are preserved from time k = k0 to
k = k0 + 1.
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(b) If Ik0+1 = −em + em+1 for m ≥ (j0 + 1) + 2, m ∈ M: Xk0 ∈ mM implies Xk0 (m) = 0. By the inner
induction hypothesis X̄k0 (m) = Xk0 (m) for m ≥ (j0 + 1) + 2. Therefore, X̄k0 (m) = 0 as well.
These imply that the increment −em + em+1 is constrained both for X and X̄:

Xk0+1 = Xk0 , X̄k0+1 = X̄k0 , (34)

and the relations (30), (31) and (32) are trivially preserved from time k = k0 to k = k0 + 1.
(c) If Ik0+1 = −em + em+1, 2 ≤ m ≤ j0 + 1, m ∈ M: we know by the induction hypothesis that

X̄k0 (m) ≥ Xk0 (m). If X̄k0 (m) = Xk0 (m) then the increment −em + em+1 is constrained both for X
and X̄, (34) holds and the relations (30), (31) and (32) are trivially preserved from time k = k0
to k = k0 + 1. If X̄k0 (m) > Xk0 (m) then the increment −em + em+1 is unconstrained for X̄ while
it is constrained for X:

Xk0+1 = Xk0 , X̄k0+1 = X̄k0 − em + em+1.

The linearity of S and S(−em + em+1) = 0 imply that (32) is preserved at time k0 + 1. All of the
components X̄ (l), l ≠ m,m + 1 remain unchanged from k0 to k0 + 1. Therefore, the relations
(30) and (31) are trivially preserved for these components; in particular, this shows that (31)
holds at time k0 + 1 with j = j0 + 1 because m,m + 1 ≤ (j0 + 1) + 2. To complete the proof it
suffices to show that (30) holds for j = j0 +1 and k = k0 +1 for components l =m and l = m+1.
For l = m + 1,

X̄k0+1(m + 1) = X̄k0 (m + 1) + 1 ≥ Xk0 (m + 1) = Xk0+1(m + 1).

For l =m: recall that we are treating the case X̄k0 (m) > Xk0 (m), i.e., X̄k0 (m) ≥ Xk0 (m) + 1.
Therefore:

X̄k0+1(m + 1) = X̄k0 (m + 1) − 1 ≥ Xk0 (m + 1) = Xk0+1(m + 1);

these prove that (30) holds at time k0 + 1 with j = j0 + 1.
(d) Finally, it may happen that 1 ∈ M and Ik0+1 = −e1 + e2. In this case, Xk0 ∈ m1 and therefore

the increment Ik0+1 is canceled by the constraining map c for X; X̄ is unconstrained on m1,
therefore, the increment Ik0+1 is not constrained for X̄. Therefore,

X̄k0+1(l) = X̄k0 (l), Xk0+1(l) = Xk0 (l), l = 3, 4, ..., d,

and

X̄k0+1(2) = X̄k0 (2) + 1, Xk0+1(2) = Xk0 (2).

These imply that the relation (30) and (31) for j = j0 + 1 are preserved from time k0 to k0 + 1.
The preservation of (32) follows from the linearity of S and S(−e1 + e2) = 0 as in the last part.

This case by case analysis completes the inner induction step and hence the outer induction step.
Finally, let us consider the case k ≥ fd−1,d . Note that Xk ∈ md for k = fd−1,d . If Ik+1 = −ed and

X̄k ∉ md we have:

Xk+1 = Xk , X̄k+1 = X̄k − ed , (35)

an application of S to both sides of the above equations and (32) imply S(Xk+1) = S(X̄k+1) + 1; thus
S(Xk+1) > S(X̄k+1) can happen after time fd−1,d . A case by case analysis parallel to the one given above
shows that (33) is preserved at all times after fd−1,d . �
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The previous lemma implies

Lemma 3.2. Suppose X0 = x ∈ Zd
+, x≠ 0. The stopping times gm, ḡm, for any m ≥ 0, and fd−1,d satisfy:

(1) fd−1,d ≥ gm if and only if fd−1,d ≥ ḡm.

(2)

gm = ḡm (36)

over the event {fd,d+1 ≥ gm} = {fd,d+1 ≥ ḡm}.
(3)

gm ≥ ḡm (37)

if m < S(x) and

gm ≤ ḡm (38)

if m > S(x).

Proof. By definition gm ≤ fd−1,d if and only if

S(Xk) = m,

for some k ≤ fd−1,d and ḡm ≤ fd−1,d if and only if

S(X̄k) = m,

for some k ≤ fd−1,d . By the previous lemma S(Xk) = S(X̄k) for k ≤ fd−1,d . These imply the first two
parts of the current lemma. Similarly,

gm = inf{k ≥ 0 : S(Xk) = m}, ḡm = inf{k ≥ 0 : S(X̄k) = m};

S(X̄k) = S(Xk) for k ≤ fd−1,d by Lemma 3.1, (32). Therefore, for gm ≤ fd,d+1

gm = inf{fd−1,d ≥ k ≥ 0 : S(Xk) = m} = inf{fd−1,d ≥ k ≥ 0 : S(X̄k) = m} = ḡm,

i.e, (36) holds.
The relations (32) and (33) imply that

S(X̄k) ≤ S(Xk). (39)

for all k ≥ 0.Wewill argue the case when m < S(x), the opposite case is argued similarly. By definition,
S(Xgm ) = m. This and (39) imply S(X̄gm ) ≤ m. The process S(X̄) jumps by increments of −1 (happens
when X̄ jumps by −ed) and 1 (happens when X̄ jumps by e1). It follows that X̄ must take all of the values
m,m + 1,m + 2, ...,S(x) in the time interval k ∈ {0, 1, 2, ...., gm}. This implies ḡm ≤ gm. �
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We now express the difference between the events {gn ≤ g0} and {g < ∞} = {ḡn < ∞} in terms of
the stopping times fd−1,d and ḡ0. For two events E1 and E2 let Δ denote their symmetric difference:

E1ΔE2 := (E1 − E2) ∪ (E2 − E1). (40)

Lemma 3.3. For X0 = x, 0 < S(x) < n

{gn < g0}Δ{ḡn < ∞} ⊂ {gn < g0, gn > fd−1,d} ∪ {ḡ0 < ḡn < ∞} (41)

holds.

Proof. Break down {gn < g0} and {ḡn < ∞} into two as

{gn < g0} = {gn < g0, gn ≤ fd−1,d} ∪ {gn < g0, gn > fd−1,d},
{ḡn < ∞} = {ḡn < ∞, ḡn ≤ fd−1,d} ∪ {ḡn < ∞, ḡn > fd−1,d}. (42)

That gn = ḡn for gn ≤ fd−1,d and fd−1,d ≤ gn if and only if fd−1,d ≤ ḡn imply

{gn < g0, gn ≤ fd−1,d} ⊂ {ḡn < ∞, ḡn ≤ fd−1,d}. (43)

On the other hand,

{ḡn < ∞, ḡn ≤ fd−1,d} = {ḡn < ∞, ḡn ≤ fd−1,d , ḡ0 < ḡn} ∪ {ḡn < ∞, ḡn ≤ fd−1,d , ḡ0 > ḡn}; (44)

g0 ≥ ḡ0 by (38) (for the case m= 0) and gn = ḡn for ḡn ≤ fd−1,d by (36); therefore

{ḡn < ∞, ḡn ≤ fd−1,d , ḡ0 > ḡn} ⊂ {gn ≤ fd−1,d , g0 > gn}.

The last line, (42), (43) and (44) imply

{gn < g0}Δ{ḡn < ∞}
⊂ {gn < g0, gn > fd−1,d} ∪ {ḡn < ∞, ḡn > fd−1,d} ∪ {ḡn < ∞, ḡn ≤ fd−1,d , ḡ0 ≤ ḡn}. (45)

Next we decompose {ḡn < ∞, ḡn > fd−1,d} into two:

{ḡn < ∞, ḡn > fd−1,d} = {ḡn < ∞, ḡn > fd−1,d , ḡ0 < ḡn} ∪ {ḡn < ∞, ḡn > fd−1,d , ḡ0 > ḡn}.

The assumption 0 < S(x) < n, (37) and (38) imply gn ≤ ḡn and g0 ≥ ḡ0; furthermore by the first part of
Lemma 3.2 gn > fd−1,d if and only if ḡn > fd−1,d ; these imply

{ḡn < ∞, ḡn > fd−1,d , ḡ0 > ḡn} ⊂ {gn > fd−1,d , g0 > gn}.

The last two displays give:

{ḡn < ∞, ḡn > fd−1,d} ⊂ {ḡn < ∞, ḡn > fd−1,d , ḡ0 < ḡn} ∪ {gn > fd−1,d , g0 > gn}.

This and (45) imply (41). �
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By this lemma, the numerator of the relative error

|Px (gn < g0) − PTn (x) (g < ∞)|
Px (gn < g0)

is bounded by

|Pxn (gn < g0) − PTn (xn ) (g < ∞)| ≤ Pxn ({gn < g0}Δ{ḡn < ∞})
≤ Pxn (gn < g0, gn > fd−1,d) + Pxn (ḡ0 < ḡn < ∞).

The next two subsections derive upper bounds on the last two probabilities. Subsection 3.3 following
them 1) derives a lower bound on the denominator Pxn (gn < g0) of the relative error 2) combines the
upper and lower bounds obtained to give a proof of Theorem 3.15.

3.1. Upper bound on Px (ḡn <∞)

Recall Px (ḡn < ∞) = PTn (x) (g < ∞) (see (28)). The function y ↦→ Py (g < ∞) is Y-harmonic. In
Sections 4 and 5 we will compute this Y-harmonic function exactly and see that y ↦→ Py (g < ∞) has
a rather intricate structure. It turns out to be possible to derive the upper bounds we need using much
simpler Y-superharmonic functions. We will first derive an upper bound on the probability Pxn (ḡn <

∞) = PTn (x) (g < ∞); the bound we seek on Pxn (ḡ0 < ḡn < ∞) will follow from the bound on Py (g < ∞)
by the Markov property of Y.

The n variable plays no role here and therefore we will derive the bound and the superharmonic
functions in terms of the Y process- the bound for the X̄-process will follow by the change of variable
x = Tn(y).

A real valued function h is said to be Y-superharmonic on a set A ⊂ ΩY if

Ey [h(Y1)] ≤ h(y), y ∈ A. (46)

We say h is Y-superharmonic if A = ΩY .
Define

hk,r (y) := ry(1)−∑k
j=2 y(j) , k ∈ {1, 2, 3, ..., d}, r > 0. (47)

Note that log(hk,r) is linear in y, i.e., hk,r is log-linear. This property of the function is compatible with
the dynamics of the Y process in the sense that it reduces questions about its (sub/super) harmonicity
to algebraic equations/inequalities involving r. The choice of the particular linear combination y(1) −∑k

j=2 y(k) has to do with exit boundary mB: note that hd,r (y) = 1 for y ∈ mB, which is the boundary
behavior that we are interested in; hk,r for k < d can be thought of as lower dimensional versions of
hd,r . We will be using log-linear functions in the next sections as well when we construct classes of
Y-harmonic functions.

Proposition 3.4. The function hk,r satisfies

Ey [hk,r (Y1)] − hk,r (y) =


hk,r (y)
(
_

(
1
r − 1

)
+ `1(r − 1)

)
, if k = 1,

hk,r (y)
(
_

(
1
r − 1

)
+ `k (r − 1)1mc

k
(y)

)
, if k ∈ {2, 3, ..., d}.

(48)

In particular, for r ∈ (d, 1), h1,r is Y-superharmonic and for k ∈ {2, 3, 4, ..., d} hk,r is Y-superharmonic
on ΩY − mk .
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18 A. Devin Sezer

In the proof we will use the following basic fact:

Lemma 3.5. For r ∈ (d, 1) and any k ∈ {1, 2, 3, 4, ..., d}

_
(1
r
− 1

)
+ `k (r − 1) < 0. (49)

Proof. The function r ↦→ _( 1r − 1) + `k (r − 1) is strictly convex for r ∈ (0,∞) and equals 0 for
r = _/`k ≤ d and r = 1. It follows that it is strictly below 0 on the interval (d, 1). �

Proof of Proposition 3.4 The distribution of Y1 and the definition of hk,r imply

Ey [hk,r (Y1)] = hk,r (y)
©­«_1r + `kr1mc

k
(y) + `k1mk (y) +

∑
j≠k

`j
ª®¬ ; (50)

subtracting hk,r (y) = hk,r (y)
(
_1 +

∑d
j=1 `j

)
from the last expression gives (48). For k = 1, Y1 is not

constrained on m1, therefore (50) in that case reduces to

Ey [hk,r (Y1)] = hk,r (y)
©­«_ 1

d
+ `1d +

∑
j≠1

`j
ª®¬ .

The rest of the argument remains the same for k = 1. The inequality (49) and (48) imply

Ey [hk,r (Y1)] − hk,r (y) < 0, y ∈ ΩY , if k = 1,
Ey [hk,r (Y1)] − hk,r (y) < 0, y ∈ ΩY − mk if k ∈ {2, 3, ..., d}.

This proves the Y-superharmonicity of hk,r (on ΩY for k = 1 and on Ω − mk for k > 1). �

We note above that h1,r is Y-superharmonic. The function hk,r , for k > 1, on the other hand is Y-
superharmonic everywhere except on mk . For example, h2,r (i.e., the case k = 2) is not Y-superharmonic
on m2. We ask the question: can we linearly combine it with h1,r , which is Y-superharmonic on m2, so
that the linear combination is Y-superharmonic everywhere? An attempt to answer this question for
general k and the differences (48) lead to the following coefficients:

W1 := 1, Wk :=
1
d
minj<k Wj (_(1 − 1/r) + `j (1 − r))

_(1/r − 1) , k = 2, 3, ..., d. (51)

By (49), Wk > 0 for r ∈ (d, 1). Now define

h2,k,r :=
k∑

j=1
Wjhj,r . (52)

Proposition 3.6. For any k = 1, 2, 3, ...d and r ∈ (d, 1) the function h2,k,r is
Y-superharmonic.

Proof. We assume throughout that r ∈ (d, 1). The proof is by induction. By definition h2,k,r = hk,r for
k = 1 and we know that h1,r is Y-superharmonic by the previous proposition. Now assume that h2,k,r is

https://doi.org/10.1017/S0269964825100077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825100077


Probability in the Engineering and Informational Sciences 19

Y-superharmonic for some k < d; we will prove that h2,k+1,r must also be Y-superharmonic. The function
hk+1,r is Y-superharmonic onΩ−mk+1 by the previous proposition; the function h2,k,r is Y-superharmonic
by the induction hypothesis. These and Wk+1 > 0 imply that h2,k+1,r is Y-superharmonic on Ω − mk+1.
Therefore, it suffices to prove that h2,k+1,r is Y-superharmonic on mk+1. Choose any y ∈ mk+1 and let

k0 = max{j ≤ k + 1 : y(j) > 0} ∨ 1,

where, by convention the max of the empty set is −∞. By the induction hypothesis h2,k0−1,r is
Y-superharmonic on mk . Therefore it suffices to prove that

h2,k0,k+1,r :=
k+1∑
j=k0

Wjhj,r

satisfies the Y-superharmonicity condition for the chosen y. The definition of k0 implies y(j) = 0 for
k0 < j ≤ k + 1. This and the definition of hk,r imply hj,r (y) = hk0,r (y) for all k0 ≤ j ≤ k + 1. Then

Ey [h2,k0,k+1,r (Y1)] − h2,k0,k+1,r (y)

= hk0,r (y)
©­«_

(
1
r
− 1

) k+1∑
j=k0+1

Wj + Wk0

(
_

(
1
r
− 1

)
+ `k0 (r − 1)

)ª®¬ . (53)

The definition (51) and j > k0 implies

Wj ≤
1
d

1

_

(
1
r − 1

) Wk0

(
_

(
1 − 1

r

)
+ `k0 (1 − r)

)
.

Substituting this in (53) gives

Ey [h2,k0,k+1,r (Y1)] − h2,k0,k+1,r (y)

≤ hk0,r (y)Wk0
d − (k + 1) + k0

d

(
_

(
1
r
− 1

)
+ `k0 (r − 1)

)
< 0,

which completes the induction step. �

Applying the Y-harmonic function h2,d,r to the process Y we obtain the supermartingale h2,d,r (Yk),
which gives us the bound we seek on Py (g < ∞):

Proposition 3.7. For y ∈ ΩY and r ∈ (d, 1)

Py (g < ∞) ≤ 1
Wd

h2,d,r (y). (54)

Proof. Let m be a positive integer. The optional sampling theorem applied to the supermartingale k ↦→
h2,d,r (Yk) at the stopping time m ∧ g gives

h2,d,r (y) ≥ Ey [h2,d,r (Yg∧m)]
= Ey [h2,d,r (Yg)1{g≤m}] + Ey [h2,d,r (Ym)1{g>m}] .
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20 A. Devin Sezer

By definition h2,d,r ≥ 0 and h2,d,r/Wd ≥ hd,r = 1 on mB. These and the previous display imply

h2,d,r (y)/Wd ≥ Py (g ≤ m).

Letting m → ∞ gives (54). �

By definition

Px (ḡn < ∞) = PTn (x) (g < ∞). (55)

The bound on Px (ḡ0 < ḡn < ∞) now follows from the previous proposition and the Markov property of
X̄:

Proposition 3.8. For r ∈ (d, 1), x ∈ Z × Zd−1
+ and 0 < S(x) < n

Px (ḡ0 < ḡn < ∞) ≤ rn 1
Wd

d∑
j=1

Wj . (56)

Proof. By (55), (54) in x coordinates is

Px (ḡn < ∞) ≤ 1
Wd

h2,d,r (Tn(x)) =
1
Wd

d∑
j=1

Wjhd,r (Tn(x)) =
1
Wd

d∑
j=1

Wjrn−∑j
k=1 x (k) .

This, x ∈ Z × Zd−1
+ and 0 < r < 1 imply

Px (ḡn < ∞) ≤ rn 1
Wd

d∑
j=1

Wj, (57)

for S(x) = 0. We now condition on ℱḡ0 :

Px (ḡ0 < ḡn < ∞) = Ex [1{ ḡ0<∞}1{ ḡ0<ḡn }1{ ḡn<∞}]
= Ex [E[1{ ḡ0<ḡn }1{ ḡ0<∞}1{ ḡn<∞} |ℱḡ0]]
= Ex [1{ ḡ0<∞}1{ ḡ0<ḡn }E[1{ ḡn<∞} |ℱḡ0]],

The strong Markov property of X̄ implies

= Ex

[
1{ ḡ0<∞}1{ ḡ0<ḡn }PX̄ḡ0

(ḡn < ∞)
]
.

This, S(X̄ḡ0) = 0 and (57) imply (56). �

3.2. Upper bound on Px (fd−1,d < gn < g0)

The goal of this subsection is to prove the following bound:

Proposition 3.9. For any n > 0 there exists n0 > 0 such that

Px (fd−1,d < gn < g0) < dn(1−n ) , (58)

for all n > n0 and x ∈ An.
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As in the previous section and as in two dimensions treated in [65] we will construct a supermartin-
gale to upper-bound Px (fd−1,d < gn < g0). The event {fd−1,d < gn < g0} consists of at most d + 1
stages: the process X starts on or away from m1, then hits m2, then hits m3, etc. and finally hits mAn after
hitting md without ever hitting 0. Roughly, the supermartingale will be constructed by applying one
of the functions h2,k,r to the process X at each of these stages. The next lemma is used to adjust the
definition so that the defined process remains a supermartingale as X jumps from one stage to the next.

For k ∈ {2, 3, ..., d} define

Wk−1,k :=
Wk−1

Wk−1 + Wk
. (59)

Lemma 3.10. For k ∈ {2, 3, ..., d} and r ∈ (d, 1)

min
y∈mk

h2,k−1,r (y)
h2,k,r (y)

≥ Wk−1,k (60)

for y ∈ mk .

Proof. By their definition

hk−1,r (y) = hk,r (y) = ry(1)−∑k−1
j=2 y(j)

.

for y ∈ mk . This and the definition of h2,k−1,r , h2,k,r imply

h2,k−1,r (y)
h2,k,r (y)

=

ry(1)−∑k−1
j=1 y(j)

(
Wk−1 +

∑k−2
j=1 Wjr

∑j
l=2 y(l)

)
ry(1)−∑k−1

j=1 y(j)
(
Wk + Wk−1 +

∑k−2
j=1 Wjr

∑j
l=2 y(l)

)
for y ∈ mk; this and Wj, r > 0 imply (60). �

Define

Γj :=
j∏

i=2
Wi−1,i, (61)

and

S′
k := Γjh2,j,r (Tn(Xk)) for fj−1,j < k ≤ fj,j+1, j = 0, 1, 2, 3, ..., d,

where, by convention, Γ0 = Γ1 = 1, h2,0,r = rn, f−1,0 = −1 and fd,d+1 = ∞; in particular, S′
k = rn for

k ≤ f0,1 and S′
k = Γdh2,d,r (Tn(Xk)) for k > fd−1,d . The supermartingale that we will use to upper-bound

the probability Px (fd−1,d < gn < g0) is

Sk := S′
k − k ©­«_

(
1
r
− 1

) d∑
j=1

Wj
ª®¬ rn. (62)

Proposition 3.11. The process {Sk , k = 0, 1, 2, 3, ...} is a supermartingale.

Proof. The proof is a case by case analysis.We begin byXk ∉ m1, i.e.,Xk (1) > 0. There are two subcases
two consider: k = fj−1,j for some j ≥ 1 and k ≠ fj−1,j for all j ≥ 1. For k ≠ fj−1,j, S′

k = Γjh2,j,r (Tn(Xk))
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S′
k+1 = Γjh2,j,r (Tn(Xk+1)) for some j ∈ {0, 1, 2, 3, ..., d}; the functions h2,j,r are Y-superharmonic by

Proposition 3.6 and therefore h2,j,r (Tn(·)) are X-superharmonic on mc
1 . It follows from these that

Ex [S′
k+1 |ℱk] ≤ S′

k (63)

over the event {Xk ∉ m1} ∩ {k ≠ fj−1,j, j = 1, 2, 3, ..., d}}. If k = fj−1,j for some j ∈ {2, 3, 4, ..., d}
we have S′

k = Γj−1h2,j−1,r (Tn(Xk)) and S′
k+1 = Γjh2,j,r (Tn(Xk+1); h2,j,r is Y-superharmonic and therefore

h2,j,r (Tn(·))is X-superharmonic on mc
1 . These imply

Γjh2,j,r (Tn(Xk)) ≥ E[Γjh2,j,r (Tn(Xk+1)) |ℱk] = E[S′
k+1 |ℱk] (64)

over the event {k = fj−1,j} ∩ {Xk ∉ m1}. That Xk ∈ mj for k = fj−1,j and Lemma 3.10 imply

S′
k = Γj−1h2,j−1,r (Tn(Xk)) ≥ Γjh2,j,r (Tn(Xk)).

This and (64) imply

S′
k ≥ E[S′

k+1 |ℱk]

over the event {k = fj−1,j} ∩ {Xk ∉ m1.}. This and (63) imply S′
k ≥ E[S′

k+1 |ℱk]; subtracting
k
(
_
r + ∑d

j=1 `j

)
rn from the left and (k + 1)

(
_
r + ∑d

j=1 `j

)
rn from the right gives

Sk ≥ E[Sk+1 |ℱk]

over the event {Xk ∉ m1}.
For x ∈ Zd

+, define

L∗(x) := {l ∈ {2, 3, 4, ...d}, x(l) ≠ 0} (65)

and

d∗(x) := |L∗(x) |;

l1(x) < l2(x) < · · · < ld∗ (x) are the members of L∗. Two conventions 1) ld∗+1(x) = d+1 and 2) l1 = d+1
if d∗ = 0, i.e., if L∗(x) = ∅. For Xk ∈ m1, there are two cases to consider: 1) k = fj−1,j for some j and 2)
k ≠ fj−1,j for all j. For the latter case

S′
k = Γjh2,j,r (Tn(Xk)), S′

k+1 = Γjh2,j,r (Tn(Xk+1)), (66)

for some j. For ease of notation, let us abbreviate lm (Xk) to lm, and d∗(Xk) to d∗. Decompose h2,j,r (Tn (x))
as

h2,j,r (Tn(x)) =
(l1−1)∧j∑

l=1
Wlhl,r (Tn(x)) +

d∗∑
m=1

(lm+1−1)∧j∑
l=lm

Wlhl,r (Tn(x)), (67)

where we use the conventions set above. Let us begin by considering any of the inner sums in the second
sum in the last display. By the definition of lm and lm+1, Xk (lm) > 0 and Xk (l) = 0 for lm < l < lm+1. This
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implies hl,r (Tn(Xk)) = hlm,r (Tn(Xk)) for lm < l < lm+1. These, lm > 1, Proposition 3.4, the definition
(51) of Wl and the dynamics of X imply

E

[ (lm+1−1)∧j∑
l=lm

Wlhl,r (Tn(Xk+1)) |ℱk

]
−

(lm+1−1)∧j∑
l=lm

Wlhl,r (Tn(Xk))

= hl,r (Tn(Xk))
(
_

(
1
r
− 1

) (lm+1−1)∧j∑
l=lm+1

Wl + Wlm

(
_

(
1
r
− 1

)
+ `lm (r − 1)

))
≤ 0.

Summing the last inequality over m gives

E

[
d∗∑

m=1

(lm+1−1)∧j∑
l=lm

Wlhl,r (Tn(Xk+1)) |ℱk

]
−

d∗∑
m=1

(lm+1−1)∧j∑
l=lm

Wlhl,r (Tn(Xk)) ≤ 0. (68)

Similarly, the definition of l1 implies, Xk (l) = 0 for l < l1, this and hl,r (Tn(x)) = rn−∑l
m=1 x (m) imply

hl,r (Tn(Xk)) = rn for l < l1 over the event {Xk ∈ m1}. These and the dynamics of X imply

E

[ (l1−1)∧j∑
l=1

Wlhl,r (Tn(Xk+1)) |ℱk

]
−

(l1−1)∧j∑
l=1

Wlhl,r (Tn(Xk))

= h1,r (Tn(Xk))
(
_

(
1
r
− 1

) (l1−1)∧j∑
l=1

Wl

)
= rn

(
_

(
1
r
− 1

) (l1−1)∧j∑
l=1

Wl

)
≥ 0

over the event {Xk ∈ m1}. Putting together the last display, (68), (67) and 0 < Γj ≤ 1 give

E[Γjh2,j,r (Tn(Xk+1)) |ℱk] ≤ Γjh2,j,r (Tn(Xk)) +
(
_

(
1
r
− 1

) d∑
l=1

Wl

)
(69)

over the event ∩d
j=1{Xk ∈ m1, k ≠ fj−1,j}; this and (66) imply

E[S′
k+1 |ℱk] ≤ S′

k + rn

(
_

(
1
r
− 1

) d∑
l=1

Wl

)
.

Moving the last expression to the left of the inequality sign and subtracting k
(
_

(
1
r − 1

) ∑d
l=1 Wl

)
from

both sides give E[Sk+1 |ℱk] ≤ Sk over the same event. It remains to show

E[Sk+1 |ℱk] ≤ Sk (70)

over the event ∪d
j=1{Xk ∈ m1, k = fj−1,j}. In this case

S′
k = Γj−1h2,j−1,r (Tn(Xk)), S′

k+1 = Γjh2,j,r (Tn(Xk+1)),

for some j ∈ {1, 2, 3, ..., d} and Xk ∈ mj . By Lemma 3.10

S′
k = Γj−1h2,j−1,r (Tn(Xk)) ≥ Γjh2,j,r (Tn(Xk));

this and (69) imply (70). �
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The upper bound on Px (fd−1,d < gn < g0) now follows from the supermartingale constructed above:

Proof of Proposition 3.9 There is no loss of generality in assuming n < 1, otherwise 1− n ≤ 0 and (58)
holds trivially.

To use the supermartingale S to bound Px (fd−1,d < gn < g0) < dn(1−n ) ) we need to truncate time by
an application of the following fact (see [23, Proposition A.1 and its proof] or [59, Theorem A.1.13]):
there exists c1 > 0 and n0 > 0 such that Px (gn ∧ g0 > c1n) ≤ d2n for n > n0. Although they give the
same results, the truncation argument varies in [1, 5, 65]; below we closely follow the one given in [5].
We decompose Px (fd−1,d < gn < g0):

Px (fd−1,d < gn < g0) ≤ Px (fd−1,d < gn < g0 ≤ c6n) + d2n. (71)

To bound the last probability, we apply the optional sampling theorem to the supermartingale S of (62)
at the bounded terminal time [ = c6n ∧ g0 ∧ gn:

rn = S0 ≥ Ex [S[]

= Ex

S′
[ − [

©­«_
(
1
r
− 1

) d∑
j=1

Wj
ª®¬ rn


≥ Ex

[
S′
[

]
− c6n

©­«_
(
1
r
− 1

) d∑
j=1

Wj
ª®¬ rn, (72)

S′ > 0 implies

Ex [S′
[] ≥ E[S′

[1{fd−1,d<gn<g0≤c6n}] . (73)

Over the event {fd−1,d < gn < g0 ≤ c6n} we have:

[ = gn,

S′
[ = Γdh2,d,r (Tn(Xgn)) = Γd

d∑
j=1

Wjhj,r (Tn(Xgn)) ≥ ΓdWdhd,r (Tn(Xgn)) = ΓdWd .

This, (72) and (73) imply

1
WdΓd

rn ©­«1 + c6n
©­«_

(
1
r
− 1

) d∑
j=1

Wj
ª®¬ª®¬ ≥ Px (fd−1,d < gn < g0 ≤ c6n). (74)

This inequality holds for any r ∈ (d, 1) in particular for r = d1−n /3. Now choose n0 so that for n > n0
we have

d−nn /3 ≥ ©­«1 + c6n
©­«_

(
1
r
− 1

) d∑
j=1

Wj
ª®¬ª®¬ 1

WdΓd

and dn(1−n ) > dn(1−2n /3) + d2n. Then (74) (with r = d1−n /3) and (71) imply (58). �
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3.3. Completion of the analysis

As the last step, we derive a lower bound on Px (gn < g0). Following [1, 5] we will do this via
subharmonic functions. Define

x ∈ Zd
+ ↦→ gi,n(x) = hi,di (Tn(x)) = d

n−∑i
j=1 x (j)

i , k = 1, 2, 3, ...d,

and

gn(x) := max
i∈{1,2,3,...,d}

gi,n(x). (75)

Proposition 3.12.

gn(x) − dn ≤ Px (gn < g0). (76)

Proof. That gi,n(x) = hi,di (Tn(x)) and the calculation in the proof of Proposition 3.4 give

Ex [gi,n(X1)] − gi,n(x) = gi,n(x)
(
_( 1

di
− 1) + `k (di − 1)1mc

k
(x)

)
.

The right side of this equality is 0 for x ∈ mc
k and positive for x ∈ mk . It follows that gi,n is X-subharmonic

on Zd
+. Therefore, k ↦→ gi,n(Xk) is a submartingale. The stability of X implies that g0 < ∞ almost surely.

This, that k ↦→ gi,n(Xk) is a submartingale and the optional sampling theorem give

gi,n(x) ≤ E[gi,n (Xgn)1{gn<g0 }] + E[gi,n(0)1{gn>g0 }]

gi,n ≤ 1 on mAn and gi,n(0) = dn
i imply

≤ Px (gn < g0) + dn
i .

Applying maxi∈{1,2,3,...,d} to both sides gives (76). �

Define the order relation 4 on the nodes {1, 2, 3, ..., d} as follows:

i 4 j if di ≤ dj and i ≤ j. (77)

It follows from its definition that 4 is a partial order relation (it is reflexive, antisymmetric, transitive).
Define

ℳ := {i ∈ {1, 2, 3, ..., d} : �j ∈ {1, 2, 3, .., d} such that dj ≥ di and j > i}. (78)

The set ℳ consists exactly of the maximal elements of the relation 4. d is the maximum of
{1, 2, 3, ..., d}, therefore there can be no j ∈ {1, 2, 3, ..., d} satisfying j > d, this implies that d ∈ ℳ

always holds, in particular, ℳ is never empty. A similar argument implies di ≠ dj for i, j ∈ ℳ. Let us
label members of ℳ by i1, i2,..., i |ℳ | so that

di1 > di2 > di3 > · · · > di|ℳ | ; (79)

i1 < i3 < · · · < i |ℳ | and i |ℳ | = d once again follow from the definitions just given.
The point x ∈ An must satisfy gn(x) > dn for the bound (76) to be nontrivial. Note that for gn(x) > dn

we have gn(x)/(gn (x) − dn) > 0. In the proof of Theorem 3.15, we also need a uniform upper bound on
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this ratio. To identify points x ∈ An ⊂ Zd
+ for which such an upper bound holds we need the following

definitions. Let

Rd :=
⋂
i∈ℳ

x ∈ Rd
+ :

i∑
j=1

x(j) ≤
(
1 − log d

log di

) , (80)

Rd,n := {x ∈ Zd
+ : x/n ∈ Rd},

R̄d,n :=
⋃
i∈ℳ

x ∈ Zd
+ :

i∑
j=1

x(j) ≥ 1 + n
(
1 − log d

log di

) .

R̄d,n is almost the complement of Rd,n (we say “almost” because of the 1 appearing in the definition of
R̄d,n. The 1 corresponds to taking an additional step out of the boundary of Rd,n. This ensures a uniform
upper bound on gn(x)/(gn(x) − dn), see the proof of the next proposition). The next proposition shows
that 0 < gn (x)/(gn(x) − dn) < 1/(1 − d) holds for x ∈ R̄d,n. Note that if

∑minℳ
j=1 x(j) ≥ 1 then

x ∈ R̄d,n ⊂ Zd
+; in particular R̄d,n = {x ∈ Zd

+ :
∑d

j=1 x(j) ≥ 1} if ℳ = {d} (i.e., if dd ≥ di for all i).

Proposition 3.13. The following hold:

gn(x) = max
i∈ℳ

d
n−∑i

j=1 x (j)
i for x ∈ Zd

+, min
x∈An

gn(x) = dn, (81)

{x :∈ Zd
+ : gn(x) = dn} = Rd,n, (82)

and

0 <
gn(x)

gn(x) − dn ≤ 1
1 − d

, (83)

for x ∈ R̄d,n ⊂ Zd
+.

Proof. For i≠ j and x ∈ Zd
+, the definitions of 4, gi,n and gj,n imply

gi,n(x) ≤ gj,n (x),

if i 4 j. Therefore, one can replace the index set {1, 2, 3, ..., d} in (75) with ℳ; this implies the first
statement in (81).

Reversing the order of min and max gives

min
x∈An

gn(x) = min
x∈An

max
i∈{1,2,3,...,d}

gi,n(x) ≥ max
i∈{1,2,3,...,d}

min
x∈An

gi,n(x).

By the definition of gi,n we have

min
x∈An

gi,n(x) = dn
i .

The last two displays imply

min
x∈An

gn(x) ≥ dn.

On the other hand, gn(0) = maxi∈{1,2,3,...d} d
n
i = dn; this and the last display imply the second statement

in (81).
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Once again, the definition of gi,n implies

{x : gi,n(x) ≤ dn} =
x ∈ Zd

+ :
i∑

j=1
x(j) ≤ n

(
1 − log d

log di

) .

This and gn(x) = maxi∈ℳ d
n−∑i

j=1 x (j)
i imply (82).

Finally, if x ∈ Zd
+ satisfies

∑i
j=1 x(j) ≥ 1 + n

(
1 − log d

log di

)
we have gi,n(x) ≥ dn/di. Then

0 <
gn(x)

gn(x) − dn ≤ gi,n(x)
gi,n(x) − dn ≤ dn/di

dn/di − dn ≤ 1
1 − di

≤ 1
1 − d

,

which implies (83). �

Recall the convention (79); i.e., di1 = d and i1 = minM. Therefore, Rd ⊂ {x ∈ Rd
+ :

∑i1
j=1 x(j) = 0};

in particular Rd has strictly lower dimension than d. If |ℳ | = 1, i.e., if dd > di for all i < d we have
Rd = {0}.

Define

g : Rd
+ ↦→ R, g(x) = min

i∈{1,2,..,d}
(1 −

i∑
j=1

x(j)) logd di, A := {x ∈ Rd
+,

d∑
j=1

x(j) ≤ 1}.

The following lemma follows from the definition of g and the arguments of the previous proposition:

Lemma 3.14. gn(x) = dng(x/n) , maxx∈A g(x) = 1, {x ∈ Rd
+ : g(x) = 1} = Rd .

The upper bound on the approximation error follows from the bounds above:

Theorem 3.15 For n > 0 there exists n0 > 0 such that

|Px (gn < g0) − PTn (x) (g < ∞)|
Px (gn < g0)

≤ dn(1−g(x/n)−n ) (84)

for all n > n0 and for any x ∈ R̄d,n ⊂ Zd
+. In particular, for xn/n → x ∈ A − Rd ⊂ Rd

+ the relative error
decays exponentially with rate − log(d) (1 − g(x)) > 0, i.e.,

lim inf
n

−1
n
log

( |Pxn (gn < g0) − PTn (xn ) (g < ∞)|
Pxn (gn < g0)

)
≥ − log(d) (1 − g(x)). (85)

Proof. By Lemma 3.3

|Pxn (gn < g0) − PTn (xn ) (g < ∞)| ≤ Px (ḡ0 < ḡn < ∞) + Px (fd−1,d < gn < g0) (86)

By Proposition 3.9 we can choose n0 large enough so that

Px (fd−1,d < gn < g0) < dn(1−n /2)

for n > n0. This, (86) and Proposition 3.8 (with r = d1−n /2) give

|Pxn (gn < g0) − PTn (xn ) (g < ∞)| ≤ dn(1−n /2) + dn(1−n /2) 1
Wd

d∑
j=1

Wj .
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for n > n0. This and the lower bound on Px (gn < g) given in Proposition 3.12 imply

|Px (gn < g0) − PTn (x) (g < ∞)|
Px (gn < g0)

≤ 1
gn(x) − dn

©­«dn(1−n /2) + dn(1−n /2) 1
Wd

d∑
j=1

Wj
ª®¬

and by Proposition 3.13 and Lemma 3.14

≤ 1
1 − d

d−ng(x/n) ©­«dn(1−n /2) + dn 1
Wd

d∑
j=1

Wj
ª®¬

=
1

1 − d
d−ng(x/n)+n(1−n ) dnn /2 ©­«1 + 1

Wd

d∑
j=1

Wj
ª®¬ .

Finally, increase n0 if necessary so that 1
1−d d

nn /2
(
1 + 1

Wd

∑d
j=1 Wj

)
< 1 for n > n0; then the last display

and this choice of n0 imply (84); (85) follows from (84), the continuity of g and from the fact that n > 0
can be chosen arbitrarily small. �

3.4. Example in two dimensions

One of the key steps in the above analysis is the the upper bound on Px (fd−1,d < gn < g0) derived in
Proposition 3.9. Let us go over this argument in the case d = 2. We will also comment briefly on the
three dimensional case. The derivation is based on a supermartingale S constructed from the functions
hj,r and h2,j,r , j = 0, 1, 2, ..., d, whose definitions are given in (52). For d = 2 these functions are:

h1,r (y) = ry(1) , h2,r = ry(1)−y(2) ,

h2,1,r (y) = h1,r (y) = ry(1) ,

h2,2,r (y) = h1,r (y) + W2h2,r (y) = ry(1) + W2ry(1)−y(2) ,

where (by definition (51))

W2 =
1
2
_(1 − 1/r) + `1(1 − r)

_(1/r − 1) .

The process S is now defined as:

Sk = S′
k − k(_(1/r − 1) (1 + W2))rn,

S′
k =


rn, k ≤ f1,

h2,1,r (Tn(Xk)) = h1,r (Tn(Xk)) = rn−Xk (1) , f1 < k ≤ f2,

h2,2,r (Tn(Xk)) = Γ2
(
rn−Xk (1) + W2rn−(Xk (1)+Xk (2) )

)
, k > f2,

where, by (61), Γ2 = W1,2 = W1/(W1 + W2) = 1/(1+ W2). Note that S is defined in terms of X. Proving S is
a supermartingale requires the treatment of the following cases: k < f1, f1 < k < f2, k > f2, k = f1
and k = f2. The first case is trivial since for k < f1, S is strictly and deterministically decreasing. For
each of f1 < k < f2 and k > f2 we have the further three cases Xk (1),Xk (2) > 0, Xk (1) ∈ m2 and
Xk (2) ∈ m1. The first two subcases follow from the Y-superharmonicity of h2,1,r and h2,2,r established
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in Proposition 3.6. Let us also check this directly here using the fact that we are dealing with d = 2. We
begin with h2,1,r: by definition h2,1,r (y) = h1,r (y) = ry(1) . From the dynamics of Y1:

Ey [rY1] = _ry(1)−1 + `1ry(1)+1 = ry(1) (_/r + `1r).

Then

Ey [rY1] − ry(1) = ry(1) (_(1/r − 1) + `1(r − 1));

by Lemma 3.5 this last expression is strictly negative, this proves that h1,r is Y-superharmonic (note
that the argument does not depend on whether y(2) = 0 or y(2) > 0). The argument for h2,2,r (y) =

h1,r (y) + W2h2,r (y) = ry(1) + W2ry(1)−y(2) looks at two cases y(2) > 0 and y(2) = 0 separately. In the first
case, proceeding as above, we see:

Ey [h2,r (Y1)] − h2,r (y) = h2,r (y) (_(1/r − 1) + `2(r − 1)) < 0

where the last inequality again follows from Lemma 3.5. The last two displays and W2 > 0 establish
that h2,2,r = h1,r + W2h2,r is Y- superharmonic for y(2) > 0. Note that for y(2) > 0 we are able to argue
Y-harmonicity for h1,r and h2,r separately. For y(2) = 0, h2,r is in fact Y-subharmonic. Therefore, the
linear combination h2,2,r = h1,r + W2h2,r must be considered as a whole. A calculation similar to the
above for y(2) = 0 gives:

Ey [h2,2,r (Y1)] − h2,2,r (y) = h1,r (y)(_(1/r − 1) + `1(r − 1)) + W2h2,r (y) (_(1/r − 1)).

Note that for y(2) = 0 we have h1,r (y) = h2,r (y) = ry(1) ; this and the definition of W2 above yield

= ry(1) (_(1/r − 1) + `1(r − 1) + 1
2
(_(1 − 1/r) + `1(1 − r)))

=
1
2

ry(1) (_(1/r − 1) + `1(r − 1))

which is again strictly negative by Lemma 3.5. These arguments establish that h2,1,r and h2,2,r are Y-
superharmonic which in turn establishes the supermartingale property of S for the cases f1 < k < f2
and k > f2 and Xk ∉ m1.

Now let’s consider the case f1 < k < f2 and Xk ∈ m1, for which

Sk = h1,r (Tn(Xk)) − k_(1/r − 1) (1 + W2)rn

= rn−Xk (1) − k_(1/r − 1) (1 + W2)rn. (87)

From the dynamics of X on m1:

E[Sk+1 |ℱk] − Sk = rn_(1/r − 1) − _(1/r − 1) (1 + W2) < 0, (88)

where we used Xk (1) = 0 for Xk ∈ m1. Note that x ↦→ h1,r (Tn(x)) is X-subharmonic on m1 which leads
to the first and positive term on the right side of the equal sign in (88). The term −k_(1/r−1) (1+W2)rn

in the definition of Sk compensates for this, leading to the second and negative term on the right side
of the equal sign in (88) making the whole difference negative and thus ensuring the supermartingale
property of S for this case.
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For f2 < k ≤ gn and Xk ∈ m1 we have

Sk = Γ2(h1,r (Tn(Xk)) + W2h2,r (Tn(Xk))) − k_(1/r − 1)(1 + W2)rn

= Γ2

(
rn−Xk (1) + W2rn−(Xk (1)+Xk (2) )

)
− k_(1/r − 1) (1 + W2)rn

= Γ2rn−Xk (1) − k_(1/r − 1) (1 + W2) + Γ2W2rn−(Xk (1)+Xk (2) ) .

Compared to (87) there are two new terms here: Γ2 coefficient in front of rn−Xk (1) and the last term. By
its definition 0 < Γ2 < 1, therefore, the supermartingale property for the first two terms can proceed
as in (88). Since we are working over an event that takes place before g0 (first hitting time to (0, 0))
we have Xk ≠ (0, 0) for f2 < k ≤ gn. Therefore, we only have to deal with x ∈ m1 − {(0, 0)} = {x ∈
Z2+ : x(1) = 0, x(2) > 0}. Over this last set x ↦→ rn−(x (1)+x (2) ) is X-superharmonic. This and W2, Γ2 > 0
establish the supermartingale property for the Γ2W2rn−(Xk (1)+Xk (2) ) term.

Note howworking in d = 2 leads to the simple case by case argument above. The second case is partic-
ularly simple: the function x ↦→ rn−(x (1)+x (2) ) is X-superharmonic on m1 (except at x = (0, 0) which can
be omitted because we are working over a time interval before X hits the origin). In higher dimensions,
even when dimension is fixed, this argument does not work. For example, in d = 3, for x = (0, 0, 1) ∈ m1,
the term rn−(Xk (1)+Xk (2) ) cannot be handled by itself, it must be considered in a linear combination with
the −k

(
_((1/r) − 1)∑3

j=1 Wj

)
rn term; or for x = (0, 1, 0) ∈ m1, the term rn−(Xk (1)+Xk (2)+Xk (3) ) must

be considered with the rn−(Xk (1)+Xk (2) ) term. In higher dimensions, points on different lower dimen-
sional boundary points require different linear combinations. The argument in the proof of Proposition
3.11 handles all of the possible cases in arbitrary dimension by partitioning x ∈ m1 according to its
nonzero elements (see (65) and (67)). Similar issues arise in proving that h2,j,r is Y-superharmonic.
In the proof of Proposition 3.6 these issues are handled systematically in arbitrary dimension with an
inductive argument.

Let us now consider the case k = f2, for which we have

Sk = h1,r (Tn(Xk)) − k(_(1/r − 1) (1 + W2))rn

Sk+1 = Γ2h2,2,r (Tn(Xk+1)) − (k + 1) (_(1/r − 1) (1 + W2))rn.

Note that this is one of the transitions that S goes through: S is defined by the function h2,1,r = h1,r for
k = f2 and by the function h2,2,r for k + 1. The term Γ2 is chosen so that the supermartingale property
is preserved during this transition. The details are as follows: for k = f2 we have:

E[Sk+1 |ℱk] − Sk = E[Γ2h2,2,r (Tn(Xk+1) |ℱk] − Γ2h2,2,r (Tn(Xk)) − (_(1/r − 1) (1 + W2))rn

+ Γ2h2,2,r (Tn(Xk)) − h1,r (Tn(Xk)). (89)

The first line is negative by the Y-superharmonicity of h2,2,r and the positivity of _(1/r − 1) (1 + W2).
For the second line we note k = f2 implies Xk ∈ m2, i.e., Xk (2) = 0. Then (recalling Γ2 = 1/(1 + W2))

Γ2h2,2,r (Tn(Xk)) = Γ2(1 + W2)rn−Xk (1) = rn−Xk (1)

h1,r (Tn(Xk)) = rn−Xk (1)

which implies that the difference in (89) is zero. This establishes the supermartingale property of S for
this case. The case k = f1 is handled similarly.

4. Y-harmonic functions from harmonic systems

We now build a framework for the construction of Y-harmonic functions. In this section, we assume the
underlying network to be an arbitrary Jackson network (not necessarily tandem) and we also allow C
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valued harmonic functions. This generality does not lead to any significant complications in the defini-
tions and arguments of the present section compared to the tandem case with only R valued harmonic
functions and it can be useful in the generalization of our results to general Jackson networks. The main
element of the framework is the reduction of the construction of Y-harmonic functions to the solution
of certain equations represented by graphs with labeled edges, which we call harmonic systems (see
Definitions 4.6 and 4.7 below). In the next section, we will define particular harmonic systems for the
tandem case and provide solutions to these.

In this section, we allow V to be the set of possible increments of any constrained random walk
arising from a Jackson network, i.e.:

V = {−ei + ej, i, j ∈ {0, 1, 2, ..., d}, i ≠ j},

where e0 = 0 ∈ Zd ; the unconstrained increments of X takes values in V with probabilities P(Ik =

−ei + ej) = p(i, j) where p ∈ R(d+1)×(d+1)
+ , p(i, i) = 0, i ∈ {0, 1, 2, 3, ..., d} and

∑d
i,j=0 p(i, j) = 1. With

this update to the set of possible increments the definition of X remains unchanged. The increment
−ei + ej represents a customer leaving node i and joining node j where node 0 represents outside of the
system. For a general Jackson network the total service rates are defined as

`i =

d∑
j=0

p(i, j), i ∈ {1, 2, 3, ..., d}.

The Y process is defined as in (11) on m1 with possible increments

VY = {I1v, v ∈ V}
= {v1,j := e1 + ej, vi,1 := −ei − e1, vi,j := −ei + ej, i, j ∈ {0, 1, 2, 3..., d}, i ≠ j}

Yk+1 = Yk + c1(Yk , Jk). (90)

For U ∈ Cd−1 we will index the components of the vector U with the set {2, 3, 4, ..., d}, i.e.,
U = (U(2),U(3), ...,U(d)) (so, more precisely, U ∈ C{2,3,4,...d}). Y-harmonic functions resulting from
solutions of harmonic systems will be linear combinations of functions of the form

y ∈ Zd ↦→ [(V,U), y], (91)

[(V,U), y] := V
y(1)−∑d

j=2 y(j)
d∏

j=2
U(j)y(j) .

y ↦→ [(V,U), y] is log-linear in y, i.e., y ↦→ log( [(V,U), y]) is linear in y. This also means that y ↦→
[(V,U), y] itself is multiplicative, i.e., [(V,U), y + v] = [(V,U), y] [(V,U), v].

For a ⊂ {2, 3, ..., d} and ac = {0, 1, 2, 3, ..., d} − a, define the characteristic polynomial

pa(V,U) := ©­«
d∑

i∈ac,j=0
p(i, j) [(V,U), vi,j] +

∑
i∈a

`i
ª®¬ (92)

the characteristic equation

pa(V,U) = 1, (93)
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and the characteristic surface

Ha := {(V,U) ∈ Cd : pa(V,U) = 0} (94)

of the boundary

ma :=
⋂
i∈a

mi, a ⊂ {2, 3, 4, ..., d}.

Wewill write p instead of p∅. pa is not a polynomial but a rational function; to make it a polynomial one
must multiply it by V

∏d
j=2 U(j); nonetheless, to keep our language simple we will refer to the rational

(92) as the “characteristic polynomial.”
Conditioning Y on its first step gives

Lemma 4.1. Suppose (V,U) ∈ H. Then [(V,U), ·] is Y-harmonic on ΩY − ⋃d
j=2 mj.

Proof. For y ∈ ΩY − ⋃d
j=2 mj we have

Ey [[(V,U),Y1]] − [(V,U), y] = [(V,U), y] (p(V,U) − 1) = 0,

where the last equality follows from (V,U) ∈ H. �

Define the operator Da acting on functions on Zd and giving functions on ma:

DaV = g, V : Zd → C, (95)

g(y) := ©­«
∑
i∈a

`iV (y) +
d∑

i∈ac,j=0
p(i, j)V (y + vi,j)

ª®¬ − V (y);

Lemma 4.2. DaV = 0 if and only if V is Y-harmonic on ma.

The proof follows from the definitions. Define

C(i, V,U) := `i −
d∑

j=0
p(i, j) [(V,U), vi,j] . (96)

Lemma 4.3. For y ∈ mi and (V,U) ∈ H:

Di ( [(V,U), ·]) (y) = C(i, V,U) [(V,U), y] . (97)

Proof.

Di ( [(V,U), ·]) (y) =
©­«`i +

d∑
i′≠i,j=0

p(i′, j) [(V,U), vi′,j] − 1ª®¬ [(V,U), y]
=

©­«`i −
d∑

j=0
p(i, j) [(V,U), vi,j]

ª®¬ [(V,U), y],
where we used 1 = p(V,U) and the multiplicative property of [(V,U), ·] . �
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Lemma 4.4. Suppose (V,U) ∈ H ∩Hi. Then [(V,U), ·] is Y-harmonic on ΩY − ⋃
j∈{2,3,...,d}−{i} mj.

Proof. (V,U) ∈ H and Lemma 4.1 imply that [(V,U), ·] is Y-harmonic onΩY −
⋃d

j=2 mj . That p(V,U) =
1 and pi (V,U) = 1 imply

C(i, V,U) = pi (V,U) − p(V,U) = 0.

This and the last two lemmas imply that [(V,U), ·] is Y-harmonic on mi. �

For U ∈ C{2,3,...,d} and j ∈ {2, 3, 4, ..., d} define U{j} ∈ C{2,3,...d} as follows:

U{j}(i) =
1, if i = j

U(i), otherwise.
(98)

For example, for d = 4, j = 4 and U = (0.2, 0.3, 0.4), U{4} = (0.2, 0.3, 1).
For i ∈ {2, 3, 4, ..., d}, multiplying both sides of the characteristic equation p(V,U) = 0 by U(i) gives

a second order polynomial equation in U(i): denote the roots by r1 and r2. From the coefficients of the
second order polynomial we read
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r1r2 =
∑d

j=0 p(i, j) [(V,U{i}), vi,j]∑d
j=0 p(j, i) [(V,U{i}), vj,i]

. (99)

From these two roots, we get two points (V,U1), (V,U2) on H whose components are

U1(i) = r1,U2(i) = r2,

and

U1(j) = U2(j) = U(j), j ≠ i. (100)

By (99)

U1(i)U2(i) =
∑d

j=0 p(i, j) [(V,U{i}), vi,j]∑d
j=0 p(j, i) [(V,U{i}), vj,i]

. (101)

If U1(i) ≠ U2(i) we call (V,U1) ≠ (V,U2) ∈ H i-conjugate. Note that U1{i} = U2{i} = U{i}; therefore
(101) can also be written as

U1(i)U2(i) =
∑d

j=0 p(i, j) [(V,U1{i}), vi,j]∑d
j=0 p(j, i) [(V,U1{i}), vj,i]

. =

∑d
j=0 p(i, j) [(V,U2{i}), vi,j]∑d
j=0 p(j, i) [(V,U2{i}), vj,i]

. (102)

Next proposition generalizes [65, Proposition 4] to the current setup.

Proposition 4.5. Suppose that (V,U1) and (V,U2) are i-conjugate and C(i, V,Uj), j = 1, 2 are well
defined. Then

hV := C(i, V,U2) [(V,U1), ·] − C(i, V,U1) [(V,U2), ·]

is Y-harmonic on mi.

Proof. The definition (96) of C, (97) and linearity of Di imply

Di (hV) = C(i, V,U2)C(i, V,U1) [(V,U1), ·] − C(i, V,U2)C(i, V,U1) [(V,U2), ·]

(100) implies [(V,U1), z] = [(V,U2), z] for z ∈ mi and therefore the last line reduces to

= 0.

Lemma 4.2 now implies that hV is Y-harmonic on mi. �

The class of Y-harmonic functions we identify in this section is based on graphs with labeled edges;
let us now give a precise definition of these.We denote any graph by its adjacencymatrixG; the structure
of G is as follows. Let VG, a finite set, denote the set of vertices of G; let L denote the set of labels.
For two vertices i≠ j, G(i, j) = 0 if they are disconnected, and G(i, j) = l if an edge with label l ∈ L
connects them; such an edge will be called an l-edge. As usual, an edge from a vertex to itself is called a
loop. For a vertex j ∈ VG, G(j, j) is the set of the labels of the loops on j. Thus G(j, j) ⊂ L is set valued.

In graph theory a graph is said to be k-regular if all of its vertices have the same degree (number of
edges) k [20, page 5]. We generalize this definition as follows:
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Definition 4.6. Let G and L be as above. If each vertex j ∈ VG has a unique l-edge (perhaps an l-loop)
for all l ∈ L we will call G L-regular.

Definition 4.7. A Y-harmonic system consists of a {2, 3, 4, ..., d}-regular graph G, the variables
(V,Uj) ∈ Cd , cj ∈ C, j ∈ VG and these equations/constraints:

(1) (V,Uj) ∈ H, cj ∈ C − {0}, j ∈ VG,
(2) Ui ≠ Uj, if i ≠ j, i, j ∈ VG,
(3) Ui,Uj are G(i, j)-conjugate if G(i, j) ≠ 0, i ≠ j, i, j ∈ VG,
(4)

ci/cj = −
C(G(i, j), V,Uj)
C(G(i, j), V,Ui)

, if G(i, j) ≠ 0, (103)

(5) (V,Uj) ∈ Hl for all l ∈ G(j, j), j ∈ VG .

Theorem 4.8 Suppose that a Y-harmonic system with graph G has a solution (cj, (V,Uj), j ∈ VG).
Then

hG :=
∑
j∈VG

cj [(V,Uj), ·] (104)

is Y-harmonic.

In the proof the following decomposition is useful: for y ∈ ma and (V,U) ∈ H:

Da( [(V,U, ·)]) (y) =
(∑

i∈a
`i +

∑
i∈ac,j

p(i, j) [(V,U), vi,j] − 1

)
[(V,U), y]

=
©­«
∑
i∈a

`i −
d∑

i∈a,j=0
p(i, j) [(V,U), vi,j]

ª®¬ [(V,U), y]
=

∑
i∈a

©­«`i −
d∑

j=0
p(i, j) [(V,U), vi,j]ª®¬ [(V,U), y]

=
∑
i∈a

Di ([(V,U, ·)]) (y). (105)

Proof of Theorem 4.8. By Lemma 4.1, all summands of hG are Y-harmonic on ΩY − ⋃d
j=2 mj because

(V,Uj),j ∈ VG are all on the characteristic surface H. It remains to show that hG is Y-harmonic on all
ma ∩ ΩY a ⊂ {2, 3, 4, ..., d} and a ≠ ∅. We will do this by induction on |a|. Let us start with |a| = 1,
i.e., a = {l}, for some l ∈ {2, 3, 4, .., d} Take any vertex i ∈ VG; if l ∈ G(i, i) then (V,Ui) ∈ Hl and
by Lemma 4.4 [(V,Ui), ·] is Y-harmonic on ml. Otherwise, the definition of a harmonic system implies
that there exists a unique vertex j of G such that G(i, j) = l. This implies, by definition, that (V,Ui) and
(V,Uj) are l-conjugate and by Proposition 4.5 and (103)
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ci [(V,Ui), ·] + cj [(V,Uj), ·]

is Y-harmonic on ml. Thus, all summands of hG are either Y-harmonic on ml or form pairs which are so;
this implies that the sum hG is Y-harmonic on ml.

Now assume hG is Y-harmonic for all aʹ with |a′ | = k − 1; fix an a ⊂ {2, 3, 4, ..., d} such that |a| = k
and a i ∈ a; by (105)

Da(hG) = Da−{i} (hG) + Di (hG).

The induction assumption and Lemma 4.2 imply that the first term on the right is zero; the same lemma
and the previous paragraph imply the same for the second term. Then Da(hG) = 0; this and Lemma 4.2
finish the proof of the induction step. �

4.1. Simple extensions

In this subsection, we show how the solution of a harmonic system for a lower dimensional process
can provide solutions for a related harmonic system of a higher dimensional process provided that the
higher dimensional process is a “simple extension” (defined below) of the lower dimensional one.

For two integers d2 > d1 > 0 let pi ∈ R(di+1)×(di+1) ,i = 1, 2, be two transition matrices. Define
p′ ∈ R(d1+1)×(d1+1) as

p′ (i, j) = p2(i, j) (106)

if i ∈ {0, 1, 2, 3, ..., d1}, j ∈ {1, 2, 3, ..., d1} and

p′ (i, 0) = p2(i, 0) +
d2∑

j=d1+1
p2(i, j), i ∈ {1, 2, 3, ..., d1}. (107)

Definition 4.9. We say that p2 is a simple extension of p1 if

p′ = ©­«
d1∑

i,j=0
p′ (i, j)ª®¬ p1, p′ ≠ 0, (108)

p2(i, j) = 0 if i ∈ {d1 + 1, ..., d2}, j ∈ {1, 2, 3, ..., d1}. (109)

An example:

p1 =
©­­«

0 1/7 0
0 0 4/7

2/7 0 0

ª®®¬ , p2 =

©­­­­­­«

0 0.05 0 0 0.02
0 0 0.2 0 0

0.05 0 0 0.05 0
0 0 0 0 0.25
0.2 0 0 0.18 0

ª®®®®®®¬
. (110)

Figure 3 shows the topologies of the networks corresponding to p1 and p2.
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Figure 4. A {2}-regular graph and its simple extension to a {2, 3, 4, 5}-regular graph.

Definition 4.10. Let G be a L-regular. Let L1 ⊃ L be another set of labels. G’s simple extension G1 to
an L1-regular graph is defined as follows: VG1 = VG and

G1(i, j) = G(i, j), i ≠ j, i, j ∈ VG (111)
G1(j, j) = G(j, j) ∪ (L1 − L), j ∈ VG .

To get G1 from G one adds to each vertex of G an l-loop for each l ∈ L1 − L. G is L-regular implies
that G1 is L1-regular. Figure 4 gives an example.

If Y2 is a simple extension of Y1, any solution to a Y1-harmonic system implies a related solution to
a related Y2-harmonic system:

Proposition 4.11. For d2 > d1 > 1 let pi ∈ R(di+1)×(di+1)
+ , i = 1, 2 be transition matrices such that p2

is a simple extension of p1. Let Yi be defined through (90) with d = di, i = 1, 2 and p = pi, i = 1, 2. Let
Gi, i = 1, 2 be {2, 3, ..., di}-regular graphs for Y2 and Y1 such that G2 is a simple extension of G1 (in
the sense of Definition 4.10). Suppose (V,Uk), ck , k ∈ VG1 solve the harmonic system associated with
G1. For k ∈ VG2 = VG1 define U2

k ∈ Cd2+1 as follows

U2
k (j) = U1

k (j), j ∈ {2, 3, 4, ..., d1} (112)

U2
k (j) = V, j ∈ {d1 + 1, d1 + 2, ..., d2}. (113)

Then (V,U2
k ), ck , k ∈ VG2 solves the harmonic system defined by G2 and p2.

The definition (113) extends U1
k ∈ Cd1−1 to U2

k ∈ Cd2−1 by assigning the value V to the additional
dimensions of U2

k . This, (108) and (109) imply that, when U2
k is defined as above, the harmonic system

defined by G2 reduces to that defined by G1; the details are as follows:

Proof. By assumption, (V,U1
k ), ck , k ∈ VG0 satisfy the five conditions listed under Definition 4.7 for

G = G1 and p = p1. We want to show that this implies that the same holds for (V,U2
k ), ck , k ∈ VG2 for

G = G2 and p = p2.
Fix any k ∈ VG1 ; (112) and (113) imply

[(V,U2
k ), v

2
i,j] =


[(V,U1

k ), v
1
i,j], if j ≤ d1,

[(V,U1
k ), v

1
i,0], if j > d1,

(114)

for all i ∈ {0, 1, 2, ..., d1}, j ∈ {0, 1, 2, ..., d2}, i ≠ j. Similarly, (113) implies

[(V,U2
k ), v

2
i,j] = 1 (115)

for all i, j ∈ {0, d1 + 1, d1 + 2, ..., d2}, i ≠ j.
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Let p2 denote the characteristic polynomial of Y2 and let H2 denote its characteristic surface; we
would like to show (V,U2

k ) ∈ H2, i.e., p2(V,U2
k ) = 1.

By (109)

p2(V,U2
k ) =

d1∑
i=0,j=1

p2(i, j) [(V,U2
k ), v

2
i,j] +

d1∑
i=1,j∈{0,d1+1,...,d2 }

p2(i, j) [(V,U2
k ), v

2
i,j] (116)

+
∑

i,j∈{0,d1+1,...d2 }
p2(i, j) [(V,U2

k ), v
2
i,j] .

(106), (114) and (115) imply

=

d1∑
i=0,j=1

p′ (i, j) [(V,U1
k ), v

1
i,j] +

d1∑
i=1,j∈{0,d1+1,...,d2 }

p2(i, j) [(V,U1
k ), v

1
i,0] (117)

+
∑

i,j∈{0,d1+1,...,d2 }
p2(i, j)

(107) implies that the second sum above equals
∑d1

i=1 p′ (i, 0) [(V,U1
k ), v

1
i,0] . Substitute this back in (117)

to get

p2(V,U2
k ) =

d1∑
i,j=0

p′ (i, j) [(V,U1
k ), vi,j] +

∑
i,j∈{0,d1+1,...,d2

p2(i, j)

which, by (108), equals

=
©­«

d1∑
i,j=0

p′ (i, j)ª®¬
d1∑

i,j=0
p1(i, j) [(V,U1

k ), v
1
i,j] +

∑
i,j∈{0,d1+1,...,d2 }

p2(i, j)

(V,Uk) ∈ H, (106), (107) and (109) now give

=

d2∑
i,j=0

p2(i, j) = 1

i.e., (V,U2
k ) ∈ H2. This proves (V,U2

k ) ∈ H2, k ∈ VG2 ,i.e., the first part of Definition 4.7 is satisfied by
(V,U2

k ), ck , k ∈ VG2 for G = G2 and p = p2.

By definition U1
i ≠ U1

j for i≠ j, this and (112) imply U2
i ≠ U2

j , i.e, the second part of Definition 4.7
also holds for (V,U2

k ), ck , k ∈ VG2 for G = G2 and p = p2.
Let us now show that the third part of the same definition is also satisfied. Fix any i≠ j with G2(i, j) =

l ∈ {2, 3, 4, ...., d1} (that G2 is a simple extension of G1 means that G2(i, j) ∈ {2, 3, 4, .., d1}; see (111)).
We want to show that (V,U2

i ) and (V,U2
j ) are l-conjugate, , i.e., that they satisfy (100) and (102):

U2
i (k) = U2

j (k), k ≠ l, (118)

U2
i (l)U2

j (l) =
∑d2

k=0 p2(l, k) [(V,U2
i {l}), v2l,k]∑d2

k=0 p2(k, l) [(V,U2
i {l}), v2k,l]

. (119)
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By definition G2(i, j) = l when G1(i, j) = l; G1(i, j) = l implies that U1
i and U1

j are l-conjugate; in
particular, they satisfy (100). (118) follows from this, (112) and (113).

We next prove (119). For l ∈ {2, 3, 4, ...d1}, U2
j (l) = U1

j (l) and U2
i (l) = U2

i (l); therefore U2
i (l)U2

j (l) =
U1

i (l)U1
j (l). U1

i and U1
j are l-conjugate, in particular, they satisfy (102):

U1
i (l)U1

j (l) =
∑d1

k=0 p1(l, k) [(V,U1
i {l}), v1l,k]∑d1

k=0 p1(k, l) [(V,U1
i {l}), v1k,l]

.

Then to prove (119) it suffices to prove

∑d2
k=0 p2(l, k) [(V,U2

i {l}), v2l,k]∑d2
k=0 p2(k, l) [(V,U2

i {l}), v2k,l]
=

∑d1
k=0 p1(l, k) [(V,U1

i {l}), v1l,k]∑d1
k=0 p1(k, l) [(V,U1

i {l}), v1k,l]
. (120)

This follows from a decomposition parallel to the one given in (116); let us first apply it to the numerator:

d2∑
k=0

p2(l, k) [(V,U2
i {l}), v2l,k] =

d1∑
k=0

p2(l, k) [(V,U2
i {l}), v2l,k] +

d2∑
k=d1+1

p2(l, k) [(V,U2
i {l}), v2l,k]

(106), (107), (108) and (114) imply

=

d1∑
k=1

p′ (l, k) [(V,U1
i {l}), v1l,k] + p2(l, 0) [(V,U1

i {l}), v1l,0] +
d2∑

k=d1+1
p2(l, k) [(V,U1

i {l}), v1l,0]

=
©­«

d1∑
i,j=0

p′ (i, j)ª®¬
d1∑

k=0
p1(k, l) [(V,U1

i {l}), v1k,l] . (121)

A parallel argument for the denominator gives (this time also using (109))

d2∑
k=0

p2(k, l) [(V,U2
i {l}), v2k,l] =

©­«
d1∑

i,j=0
p′ (i, j)ª®¬

d1∑
k=0

p1(k, l) [(V,U1
i {l}), v1k,l] .

Dividing (121) by the last equality gives (120).
The proof that parts 4-5 of Definition 4.7 hold for (V,U2

k ), ck , k ∈ VG2 for G = G2 and p = p2 is
parallel to the arguments just given and is omitted. �

In the following remark, we note several facts that we don’t need directly in our arguments. Their
proofs are very similar to the arguments given above and are left to the reader:

Remark 4.12. Let Y1 and Y2 be as above, i.e, Yi is di dimensional, d1 < d2 and Y2 is a simple extension
of Y1; for y ∈ Zd2 , let y1,d1 be denote the projection of y onto its first d1 coordinates. If h is Y1-harmonic
then, y ↦→ h(y1,d1) is Y2-harmonic. Similarly, let G1 and G2, ck , Ui

k , k ∈ VG1 be as in the previous
proposition; then hG2 (y) = hG1 (y1,d1).
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4.2. mB-determined Y-harmonic functions

A Y-harmonic function h is said to be mB-determined if

h(y) = Ey [h(Yg)1{g<∞}], y ∈ ΩY . (122)

y ↦→ Py (g < ∞) is the unique mB-determined Y-harmonic function with the value 1 on mB. The next
proposition identifies simple conditions under which a Y-harmonic function defined by a harmonic
system is mB-determined.

Proposition 4.13. Let (V,Uj), cj be the solutions of a Y-harmonic system with its graph G and let hG
be defined as in (104). If

|V | < 1, |Uj (i) | ≤ 1, i = 2, 3, ..., d, j ∈ VG,

then hG is mB-determined.

The proof is identical to that of [65, Proposition 5]; for ease of reference we give an outline below:

Proof. Define bn = inf{k : Yk (1) =
∑d

j=2 Yk (j) + n}. The optional sampling theorem and the fact that
hG is Y-harmonic imply

hG (y) = Ey [hG (Yg)1{g≤ bn }] + Ey [hG (Ybn)1{ bn≤g}] .

|Ui | ≤ 1 implies |Ey [hG (Ybn)1{ bn≤g}] | ≤ Vn |VG |maxj∈VG |cj |. This, |V | < 1 and letting n → ∞ in the
last display give

hG (y) = Ey [hG (Yg)1{g<∞}] .
�

5. Harmonic systems for constrained random walks representing tandem networks and the
computation of Py(3 <∞)

Throughout this section, we will denote the dimension of the system with d; the arguments below for d
dimensions require the consideration of all walks with dimension d ≤ d.

We will now define a specific sequence of regular graphs for tandem walks and construct a particular
solution to the harmonic system defined by these graphs. These particular solutions will give us an
exact formula for Py (g < ∞) in terms of the superposition of a finite number of log-linear Y-harmonic
functions.

We will assume

`i ≠ `j, i ≠ j; (123)

this generalizes `1 ≠ `2 assumed in [65]. One can treat parameter values which violate (123) by taking
limits of the results of the present section, we give an example in Section 9.
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The characteristic polynomials for the tandem walk are:

p(V,U) = _
1
V
+ `1U(2) +

d∑
j=2

`j
U(j + 1)
U(j) (124)

pi (V,U) = _
1
V
+ `1U(2) + `i +

d∑
j=2,j≠i

`j
U(j + 1)
U(j) ,

where by convention U(d+1) = V (this convention will be used throughout this section, and in particular,
in Lemma 5.1, (125), and (126)).

(124) implies

Lemma 5.1. For j ∈ {2, 3, 4, ..., d}, (V,U) ∈ H ∩Hj ⇐⇒ `j
U(j+1)
U(j) = `j ⇐⇒ U(j + 1) = U(j).

For the tandem walk, the conjugacy relation (101) reduces to

U1(i)U2(i) =


U(3)`2
`1

, i = 2,
U(i−1)U(i+1)`i

`i−1
, i = 2, 3, ..., d.

(125)

For tandem walks the functions C(j, V,U) of (96) reduce to

C(j, V,U) = `j − `j
U(j + 1)
U(j) , (126)

We define {2, 3, ..., d}-regular graphs Gd,d , d ∈ {1, 2, 3, ..., d} as follows:

VGd,d = {a ∪ {d}, a ⊂ {1, 2, 3, ..., d − 1}}; (127)

for j ∈ (a ∪ {d}), j≠ 1, define Gd,d by

Gd,d (a ∪ {d}, a ∪ {d} ∪ {j − 1}) = j if j − 1 ∉ a (128)

and

Gd,d (a ∪ {d}, a ∪ {d}) = {2, 3, 4, ..., d} − a ∪ {d}; (129)

these and its symmetry determine Gd,d completely. We note that vertices of Gd,d are subsets of
{1, 2, 3, ..., d}; we will assume these sets to be sorted, for a ⊂ {1, 2, 3, ..., d}, a(1) denotes the smallest
element of a, |a| the number of elements in a and a( |a|) the greatest element of a. Figure 5 shows the
graph G4,4.

The next two propositions follow directly from the above definition:

Proposition 5.2. Gd,d is the simple extension of Gd,d to a {2, 3, ..., d}-regular graph.

Let Gk
d+1,d denote the subgraph of Gd+1,d consisting of the vertices {a, k, d+1}, a ⊂ {1, 2, 3, ..., k−1}.

Proposition 5.3. One can represent Gd+1,d as a disjoint union of the graphs Gk,d , k = 1, 2, .., d, and the
vertex {d+1} as follows: for a ⊂ {1, 2, 3, ..., k−1} map the vertex a∪{k} of Gd+1,d to a∪{k, d+1}. This
maps Gk,d to the subgraph Gk

d+1,d of Gd+1,d consisting of the vertices a∪{k, d+1}, a ⊂ {1, 2, 3, ..., k−1}.

https://doi.org/10.1017/S0269964825100077 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825100077


42 A. Devin Sezer

Figure 5. Gd,d for d = d = 4.

The same map preserves the edge structure of Gk,d as well except for the d+ 1-loops. These loops on
Gk,d are broken and are mapped to d+ 1-edges between Gk

d+1,d and Gd−1
d+1,d .

Figure 5 shows an example of the decomposition described in Proposition 5.3.
For a ⊂ {2, 3, 4, ..., d} define

c∗a := (−1) |a |−1
|a |−1∏
j=1

a(j+1)∏
l=a(j)+1

`l − _

`l − `a(j)

U∗
a (l) :=


1 if l ≤ a(1)
da(j) , if a(j) < l ≤ a(j + 1),
da( |a | ) if l > a( |a|),

(130)

V∗a := da( |a | ) ,

l ∈ {2, 3, ..., d} (remember that we assume sets ordered and a( |a|) denotes the largest element in the
set). Let us give several examples to these definitions for d = 8:

c∗{5} = 1

U∗
{5} = (1, 1, 1, 1, d5, d5, d5)

c∗{3,6} = − `4 − _

`4 − `3

`5 − _

`5 − `3

`6 − _

`6 − `3
.

c∗{3,5,7} = (−1)2 `4 − _

`4 − `3

`5 − _

`5 − `3

`6 − _

`6 − `5

`7 − _

`7 − `5

U∗
{3} = (1, 1, d3, d3, d3, d3, d3) (131)

U∗
{3,6} = (1, 1, d3, d3, d3, d6, d6)

U∗
{3,5,7} = (1, 1, d3, d3, d5, d5, d7)
U∗
{8} = (1, 1, 1, 1, 1, 1, 1);
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remember that we index the components of U∗ with {2, 3, 4, ..., d}; therefore, e.g., the first 1 on the right
side of the last line is U∗

{8} (2).
It follows from (130) and (130) that

c∗a∪{d1,d2 } = −c∗a∪{d1 }

d2∏
l=d1+1

`l − _

`l − `d1

U∗
a∪{d1 } = U∗

a∪{d1,d}

for any 1 < a( |a|) < d1 < d2 ≤ d and a ⊂ {2, 3, 4, ..., d}; These and Proposition 5.3 imply

Proposition 5.4. For d < d and y ∈ mB

−
( d∏
l=d+1

`l − _

`l − `d

) ∑
a∈VGd,d

c∗a [(V∗a,U∗
a), y] =

∑
a∈VGd

d,d

c∗a [(V∗a,U∗
a), y] (132)

Proposition 5.5. For d ≤ d, let Gd,d be as in (127) and (128). Then (V∗a∪{d} ,U
∗
a∪{d}), c∗a∪{d} , a ⊂

{1, 2, 3, ..., d − 1}, defined in (130), solve the harmonic system defined by Gd,d .

Proof. A dʹ tandem walk is a simple extension of the tandem walk defined by its first d′−1 dimensions.
This, Propositions 5.2, 4.11 and the definitions of V∗ and U∗ above imply that it suffices to prove the
current proposition only for d = d.

The vertices of Gd,d are a∪ {d}, a ⊂ {1, 2, 3, ...., d − 1}, and for all of them we have V∗a∪{d} = dd by

definition (130). Let us begin by showing
(
dd ,U∗

a∪{d}

)
, a ⊂ {1, 2, 3, ...., d − 1} is on the characteristic

surface H of the tandem walk. We will write U∗ instead of U∗
a∪{d} , the set a will be clear from context.

Let us first consider the casewhen a(1) > 1, i.e., when 1 ∉ a; the opposite case is treated similarly and
is left to the reader. Then U∗(l) = 1 for 2 ≤ l ≤ a(1). By definition U∗(i) = U∗(i+1) if a(j) < i < a(j+1);
these and V∗a∪{d} = dd give

p(dd ,U∗) = `d +
a(1)−1∑

j=1
`j + `a(1) da(1) +

∑
j∈ (ac−{1· · ·a(1)−1})

`j

+
∑

j∈ (a−{a(1) } )
`j
U∗(j + 1)
U∗(j) + dd

`d
U∗(d)

(where ac = {1, 2, 3, ..., d−1}−a) and in the last expression we have used the convention U∗(d+1) = V∗;
by definition (130) U∗(a(j + 1)) = da(j) , U∗(a(j)) = da(j−1) and therefore

= `d +
a(1)−1∑

j=1
`j + _ +

∑
j∈ (ac−{1· · ·a(1)−1})

`j

+
|a |∑
j=2

`a(j)
da(j)
da(j−1)

+ `a( |a | )
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`a(j) da(j)/da(j−1) = `a(j−1) implies

= `d +
a(1)−1∑

j=1
`j + _ +

∑
j∈ (ac−{1· · ·a(1)−1})

`j

+
|a |∑
j=2

`a(j−1) + `a( |a | )

= `d +
a(1)−1∑

j=1
`j + _ +

∑
j∈ (ac−{1· · ·a(1)−1})

`j +
∑
j∈a

`j = 1;

i.e., (dd ,U∗) ∈ H.

If a1 ≠ a2 take any i ∈ a1−a2 (relabel the sets if necessary so that a1−a2 ≠ ∅). Let j be the index of i in
a1, i.e., a1(j) = i. Then by definition, U∗

a1∪{d} (j + 1) = di; but i ∉ a2 and (123) imply that no component
of U∗

a1∪{d} equals di, and therefore U∗
a1∪{d} ≠ U∗

a2∪{d} . This shows that U∗
a∪{d} , a ⊂ {1, 2, ..., d − 1}

satisfy the second part of Definition 4.7.
Fix a vertex a ∪ {d} of Gd,d . By definition, for each of its elements l, this vertex is connected to

a ∪ {d} ∪ {l − 1} if l − 1 ∉ a or to a ∪ {d} − {l − 1} if l − 1 ∈ a. Then to show that (V∗a∪{d} ,U
∗
a∪{d}),

a ⊂ {1, 2, 3, ...., d − 1} satisfy the third part of Definition 4.7 it suffices to prove that for each a ⊂
{1, 2, 3, ..., d − 1}, and each l ∈ a ∪ {d} such that l − 1 ∉ a ∪ {d} U∗

a∪{d} and U∗
a∪{d}∪{l−1} are l-

conjugate. For ease of notation let us denote a∪ {l−1} by a1, U∗
a∪{d} by U

∗, U∗
a1∪{d} by U

∗
1 and V∗a1 = V∗a

by V∗ (because we have assumed d = d, both V∗ and V∗1 are equal to dd). We want to show that (V∗,U∗)
and (V∗,U∗

1) are l-conjugate. Let us assume 2 < l < d, the cases l = 2, d are treated almost the same
way and are left to the reader. By assumption l ∈ U∗ but l − 1 ∉ U∗. If l is the jth element of a, i.e.,
l = a(j); then a(k) = a1(k) for k < j, a1(j) = l − 1, a(k − 1) = a1(k) for k > j. This and the definition
(130) of U∗ imply

U∗(i) = U∗
1 (i), i ∈ {2, 3, 4, ..., d}, i ≠ l, (133)

i.e., U∗ and U∗
1 satisfy (100) (for example, for d = 8, U∗

{3,6} is given in (131); on the other hand U∗
{3,5,6} =

(1, 1, d3, d3, d5, d6, d6) and indeed U∗
{3,6} (i) = U∗

{3,5,6} (i), i ≠ 6). Definition (130) also implies

U∗
1 (l) = da1 (j) = dl−1, U∗

1 (l + 1) = da1 (j+1) = dl, (134)

On the other hand, again by (130), and by l − 1 ∉ a, we have

U∗(l) = U∗(l − 1) = da(j−1) and U∗(l + 1) = dl .

Then

1
U∗(l)

U∗(l − 1)U∗(l + 1)`l

`l−1
= dl−1

and, by (134) this equals U∗
1 (l), i.e., U

∗
1 and U∗ satisfy (125). This and (133) mean that (V∗,U∗

1) and
(V∗,U) are l-conjugate.
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Now we will prove that the c∗a∪{d} , a ⊂ {2, 3, 4, ..., d − 1} defined in (130) satisfy the fourth part of
Definition 4.7. The structure of Gd,d implies that it suffices to check that

c∗a
c∗a1

= −
C(l′, dd ,U∗

a1)
C(l′, dd ,U∗

a)
(135)

holds for any l′ ∈ a such that l′ − 1 ∉ a and a1 = a ∪ {l′ − 1}. There are three cases to consider: l′ = 2,
l′ = d and 2 < l′ < d; we will only treat the last as the rest are similar and simpler. For 2 < l′ < d one
needs to further consider the cases a(1) = l′ and a(1) < l′. For b ⊂ {2, 3, 4, ..., d − 1}, c∗b∪{d} of (130)
is the product of a parity term and a running product of d−b(1) ratios of the form (`l −_)/(`l − `b(j) ).
The ratio of the parity terms of a and a1 is −1 because a1 has one additional term. If a(1) = l′ then
a1(1) = l′ − 1 and the only difference between the running products in the definitions of c∗ and c∗1 is
that the latter has an additional initial term (`l′ − _)/(`l′ − `l′−1) and therefore

c∗a
c∗a1

= − `l′ − `l′−1
`l′ − _

.

Because l′ > 2 and l′ − 1 ≥ 2, definition (130) implies U∗(l′) = 1, U∗(l′ + 1) = dl, U∗
1 (l) = dl−1 and

U∗
1 (l + 1) = dl. These and (126) imply

C(l, dd ,U∗
a1)

C(l, dd ,U∗
a)

=
`l′ − `l′−1
`l′ − _

.

The last two display imply (135) for a(1) = l′.
If l′ > a(1), let j > 1 be the position of l in a, i.e., l = a(j). In this case, the definition (130) implies

that the running products in the definitions of c∗a and c∗a1 are a product of the same ratios except for the
(l′)th terms, which is (`l′ − _)/(`l′ − `a(j−1) ) for a and (`l′ − _)/(`l′ − `l′−1) for a1. a1 has one more
element than a, therefore, the ratio of the parity terms is again −1; these imply

c∗a
c∗a1

= − `l′ − `l′−1
`l′ − `a(j−1)

.

On the other hand, l′ ∈ a, j > 1, a1 = a ∪ {l′ − 1} and the definition (130) imply U∗(l′) = d∗(a(j − 1)),
U∗(l′ + 1) = dl′ , U∗

1 (l
′) = dl′−1, and U∗

1 (l
′ + 1) = dl′ and therefore

C(l′, dd ,U∗
a1)

C(l′, dd ,U∗
a)

=
`l′ − `l′−1
`l′ − `a(j−1)

.

The last two displays once again imply (135) for l′ > a(1).
Consider a vertex a∪{d} ofGd,d; by definition (129), the loops on this vertex are {2, 3, ..., d}−a∪{d}.

For l ∈ {2, 3, ..., d} − a ∪ {d} the definition (130) implies

U∗
a∪{d} (l) = U∗

a∪{d} (l + 1);

we have already shown U∗
a∪{d} ∈ H, then, Lemma 5.1 and the last display imply U∗

a∪{d} ∈ Hl for
l ∈ {2, 3, ..., d} − a ∪ {d}; i.e., the last part of Definition 4.7 is also satisfied. This finishes the proof of
the proposition. �
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Proposition 5.6.

h∗d :=
∑

a⊂{1,2,3,...,d−1}
c∗a∪{d} [(dd ,U∗

a∪{d}), ·], (136)

d = 1, 2, 3, ..., d, are mB-determined Y-harmonic functions.

Proof. That h∗d is Y-harmonic follows from Proposition 5.5 and Theorem 4.8. The components of
U∗

a∪{d} , a ⊂ {1, 2, 3, ..., d − 1} and V∗d = dd are all between 0 and 1. This and Proposition 4.13 imply
that h∗d are all mB-determined. �

With definition (136) we can rewrite (132) as

−
( d∏
l=d+1

`l − _

`l − `d

)
h∗d (y) =

∑
a∈VGd

d

c∗a [(V∗a,U∗
a), y] (137)

for y ∈ mB.

Theorem 5.7

Py (g < ∞) =
d∑

d=1

( d∏
l=d+1

`l − _

`l − `d

)
h∗d (y) (138)

for y ∈ B.

For d = 2 (138) reduces to

Py (g < ∞) = f (y),

where f is given in (18). To express (138) as a similar formula, we expand h∗d using (130) and (21) (i.e.,
[(V,U), y] = V

y(d)−∑n
j=2 y(j) ∏d

j=2 U(j)y(j) ):

h∗d (y) = d
y(1)−∑d

j=2 y(j)
d

©­«
∑

a⊂{1,2,3,..d−1}
(−1) |a |

|a |∏
j=1

a(j+1)∏
l=a(j)+1

`l − _

`l − `a(j)
d

y(l)
a(j)

ª®¬ , (139)

where, by convention, we set a( |a| + 1) = d. Substituting this in (138) we get

Py (g < ∞) =
d∑

d=1

( d∏
l=d+1

`l − _

`l − `d

)
d

y(1)−∑d
j=2 y(j)

d (140)

× ©­«
∑

a⊂{1,2,3,..d−1}
(−1) |a |

|a |∏
j=1

a(j+1)∏
l=a(j)+1

`l − _

`l − `a(j)
d

y(l)
a(j)

ª®¬ .
Proof of Theorem 5.7. Let 1 ∈ C{2,3,..,d} denote the vector with all components equal to 1. The
decomposition of Gd into the single vertex {d} and Gd

d , d < d implies that the right side of (138)
equals
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[(dd , 1), y] +
d−1∑
d=1

∑
a∈VGd

d

c∗a [(V∗a,U∗
a), y] +

d−1∑
d=1

( d∏
l=d+1

`l − _

`l − `d

)
h∗d (y)

for y ∈ mB; (137) implies

= [(dd , 1), y],

which, for y ∈ mB, equals 1. Thus, we see that the right side of (138) equals 1 on mB. Proposition 5.6
says that the same function is mB-determined and is Y-harmonic. Then its restriction to B must be indeed
equal to y → Py (g < ∞), y ∈ B, which is the unique function with those properties. �

6. Large deviation rate of pn for an arbitrary initial point

In the next corollary to Theorems 2.1 and 5.7 we derive the exponential decay rate of pn in n for any
scaled initial condition x ∈ A = {x ∈ Rd

+ :
∑d

j=1 x(j) ≤ 1}. Since the argument depends on Theorem 5.7,
we assume (123) (`i ≠ `j if i≠ j) as well as the stability assumption (5); we also continue to denote the
dimension by d.

Recall the function g appearing in Theorem 2.1: g : Rd
+ ↦→ R, g(x) = mind

i=1(1 −
∑i

j=1 x(j)) logd di.

Corollary 6.1. Suppose xn ∈ Zd
+ satisfies xn/n → x ∈ A ⊂ Rd

+. Then

lim
n→∞

−1
n
logPxn (gn < g0) = − log(d)g(x). (141)

Remark 6.2. Note that the function g arises in the derivation of the lower bound (76) on pn (see also
Lemma 3.14). The lower bound (76) implies that g provides us with the large deviations upper bound
for pn (this is (143) below). Surprisingly, as computed in the next proof, Theorems 2.1 and 5.7 imply
that g also determines the large deviations lower bound for pn.

Proof. To prove (141) it suffices to prove

lim sup
n→∞

−1
n
logPxn (gn < g0) ≤ − log(d)g(x) (142)

and

lim inf
n→∞

−1
n
logPxn (gn < g0) ≥ − log(d)g(x). (143)

Let us first assume that x ∈ A ⊂ Rd
+ satisfies x(j) > 0 for all j. From Proposition 3.12 we have the

following lower bound:

dmax
i=1

d
n−∑i

j=1 xn (j)
i − dn ≤ Pxn (gn < g0). (144)

Recall that d = maxd
i=1 di. Let i∗ be so that d = di∗ . The assumptions x(i) > 0 for all i, d ∈ (0, 1),

xn/n → x imply that there exists N such that for n>N we have

0.5d
n−∑i∗

j=1 xn (j)
i∗ < d

n−∑i∗
j=1 xn (j)

i∗ − dn.
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Let j∗ be the maximizer in (144); that the function z ↦→ 0.5z − dn, z ∈ R, is increasing in z implies that
the last inequality continues to hold if we replace i∗ with j∗. These imply

dmax
i=1

0.5d
n−∑i

j=1 xn (j)
i ≤ Pxn (gn < g0) (145)

for n > N . Applying lim sup− 1
n log to both sides gives (142).

The assumption x(j) > 0 for all j means x ∈ A − Rd. For such x, Theorem 2.1 implies

lim inf
n→∞

−1
n
logPxn (gn < g0) = lim inf

n→∞
−1

n
logPTn (xn ) (g < ∞).

Therefore, to prove (143) it suffices to prove

lim inf
n→∞

−1
n
logPTn (xn ) (g < ∞) ≥ − log(d)g(x). (146)

By Theorem 5.7 we know

PTn (xn ) (g < ∞) =
d∑

d=1

( d∏
l=d+1

`l − _

`l − `d

)
h∗d (Tn(xn)). (147)

By (139) and the definition (10) of Tn:

h∗d (Tn(xn)) = d
n−∑d

j=1 xn (j)
d

©­«
∑

a⊂{1,2,3,..d−1}
(−1) |a |

|a |∏
j=1

a(j+1)∏
l=a(j)+1

`l − _

`l − `a(j)
d

xn (l)
a(j)

ª®¬ .
write the a = ∅ term separately in the last display:

= d
n−∑d

j=1 xn (j)
d

©­«1 +
∑

a⊂{1,2,3,..d−1},a≠∅
(−1) |a |

|a |∏
j=1

a(j+1)∏
l=a(j)+1

`l − _

`l − `a(j)
d

xn (l)
a(j)

ª®¬ .
The assumptions x(j) > 0 for all j, xn/n → x and dj < 1 for all j imply that the last sum decays
exponentially in n. This and the last display imply

0.5d
n−∑d

j=1 xn (j)
d ≤ h∗d (Tn(xn)) ≤ 2d

n−∑d
j=1 xn (j)

d , (148)

for n large. Define

ℳ
′ =

{
d ≤ d :

d∏
l=d+1

`l − _

`l − `d
> 0

}
;

ℳ
′ are the indices d for which the coefficients in the sum (147) are positive. This definition of ℳ′,

(147) and (148) imply, for n large,

PTn (xn ) (g < ∞) ≤ 2C0
∑

d∈ℳ′
d

n−∑d
j=1 xn (j)

d ,
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Figure 6. Level curves and relative error in four dimensions.

where C0 = maxd∈ℳ′
∏d

l=d+1
`l−_
`l−`d

> 0. We bound the last term above by

≤ 2C0

d∑
d=1

d
n−∑d

j=1 xn (j)
d .

Applying lim infn − 1
n log to both sides of this inequality gives (146). This concludes the proof of (141)

under the assumption x(j) > 0 for all j ∈ {1, 2, 3, ..., d}.
Let us now extend (141) to {x ∈ A : x(j) > 0, j ≠ d}, i.e., we allow x(d) = 0. Suppose x ∈ A

satisfies x(j) > 0 for j ≠ d and x(d) = 0. Choose X small enough so that
∑d

j=1 x(j) + X < 1. Consider
the sequence x′n = xn + bnXcen. The dynamics of X and the Markov property of X imply:

©­«_
d−1∏
j=1

`j
ª®¬
bnXc

Px′n (gn < g) ≤ Pxn (gn < g) ≤ Px′n (gn < g)`−bnXc
d . (149)

The sequence x′n satisfies x′n/n → x′ = x + Xen. The limit x′ ∈ A satisfies x′ (j) > 0 for all j; therefore,
we know (141) holds for the sequence x′n. Then applying limn→∞ − 1

n log to the upper and lower bound
in (149) and letting X → 0 we get (141) for the sequence xn and the limit x. The extension to the cases
when all other components are allowed to be 0 can be proved by the same argument and induction. �

7. Numerical example

Take a four dimensional tandem system with rates, for example,

_ = 1/18, `1 = 3/18, `2 = 7/18, `3 = 2/18, `4 = 5/18.

For n= 60, and in four dimensions, the probability Px (gn < g0) can be computed numerically by iterating
the harmonic equation Px (gn < g0) = Ex [PX1 (gn < g0))]. Let f (y) denote the right side of (138). Define
Vn = − log(Px (gn < g0))/n and Wn = − log f (Tn (x))/n. The level curves of Vn and Wn and the graph
of the relative error (V − W)/V for x = (i, j, 0, 0, 0) and x = (0, i, 0, j, 0), i, j ≤ n = 60 are shown in
Figure 6; qualitatively these graphs show results similar to those reported in [65]: almost zero relative
error across the domain selected, except for a boundary layer along the x(4)-axis, where the relative error
is bounded by 0.05. The size of the boundary layer is determined by the set Rd of (80) and Theorem
3.15.
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Figure 7. The service rates (blue) and the arrival rate (red) for a 14-dimensional tandem Jackson
network.

Figure 8. The graph of Wn over {x : x(4) + x(14) = 60, x(j) = 0, j ≠ 4, 14}.

Next we consider the 14-tandem queues with parameter values shown in Figure 7.
For n= 60, An contains 6014/14! = 8.99 × 1013 states which makes impractical an exact calculation

via iterating the harmonic equation satisfied by Py (gn < g0). On the other hand, (138) has 215 = 32, 768
summands and can be quickly calculated. Define Wn as before. Its graph over {x : x(4) + x(14) ≤
60, x(j) = 0, j ≠ 4, 14} is depicted in Figure 8.

For a finer approximation of P(1,0,· · · ,0) (gn < g0) we use importance sampling based on Wn.
With 12,000 samples IS gives the estimate 7.53 × 10−20 with an estimated 95% confidence interval
[6.57, 8.48] × 10−20 (rounded to two significant figures). The value given by our approximation (138)
for the same probability is f ((1, 0, · · · , 0)) = 1.77×10−20 which is approximately 1/4th of the estimate
given by IS. The large deviation estimate of the same probability is (_/min14i=1(`i))60 = 4.15 × 10−23.
The discrepancy between IS and (138) quickly disappears as x(1) increases. For example, for x(1) = 4,
IS gives 2.47 × 10−19 and (138) gives 2.32 × 10−19.

8. Literature review

There is a direct correspondence between the structures used in the LD analysis and the subsolution
approach to IS estimation of pn of [23, 25, 26, 59, 61] and those appearing in [1, 5, 65] and in the
present work. The characteristic polynomials of the present work correspond to the Hamiltonians in
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these works and the subsolutions are constructed from points lying on the zero sets of the Hamiltonians.
Both approaches use the functions they construct in their asymptotic analysis and algorithm construc-
tion. We note several important differences: a key difference is the nature of the results: the results in
the present work give very precise (exponentially decaying relative error) deterministic approximation
formulas for the probability of interest whereas the works cited above on IS algorithms construct sim-
ulation algorithms with bounds on the exponential decay rate of the absolute (not relative) variance of
the estimator. Secondly, the works on IS cover only the initial point x = 0, which significantly simpli-
fies the construction of the subsolutions and the asymptotic analysis. Thirdly, the actual construction of
the functions are different. The Y-harmonic functions in Section 4 and 5 are constructed from regular
graphs and from conjugate points lying on the characteristic surfaces. Such structures (functions from
graphs, conjugate points) do not come up in the above cited previous works. Finally, the asymptotic
analysis in the present work and in [1, 5, 65] is based on an affine transformation of the problem and
involves no scaling, whereas IS and classical LD analysis is based on a law of large number of scal-
ing of the problem. An important strength of the IS algorithms developed in these works is that they
can be applied to any stable Jackson network in any dimension (see [23, 26, 63]) with a fairly general
exit boundary (this generality crucially depends on the initial point x = 0). Such a generalization for the
results in the present work is not clear at all.

The work [47] studies the buffer overflow of one of the nodes in a stable network. Let W denote the
stable process representing the network; W is assumed r +m dimensional: the first dimension represents
the node whose overflow event is to be studied, the dimensions 2, 3, .., r represent those nodes that
become unstable when the first node overflows. For n> 0, let gn be the first time the first component
of W hits n let g0 denote the first time W hits the origin 0. Finally, let g4 denote the first time after
time 0, one of the nodes from 1 to r hits 0, i.e., g4 = inf{k : k > 0,W ∈ 4}, where 4 = {x : xj =

0, for some , j ∈ {1, 2, 3, ..., r}}; the main approximation result in [47] is the following: let c4 be the
stationary measure conditioned on 4 and Ec4 be the expectation conditioned on W(0) having initial
distribution c4 . Let 30 be the first return time to 0, i.e., 30 = inf{k > 0 : Wk = 0}. [47, Lemma 1.8]
states, under the assumptions made in the paper,

lim
n→∞

|c(0)P0(gn < 30) − c(Δ)PcΔ (gn < g4) |
c(0)P0(gn < 30)

= 0.

The analysis that leads to this result is based on the h-transform of W where h is a harmonic function
of W away from the set Δ that is of the following form: h(x) = eUx1a(x); [47] gives conditions under
which such an h function exists based on results from [51]. [47] develops the following representation
for c(Δ)PcΔ (gn < g4):

c(Δ)PcΔ (gn < g4) = e−UnEcΔ [h(W (1))Ψ(W (1))]
Ψ(x) = Ex [a−1(�(gn))e−U(� (gn )−n)1{gn<gΔ }], (150)

where� is the h-transform of the processW (ifW is not a nearest neighbor randomwalk onZr+m
+ the for-

mula for Ψ needs to be slightly modified, for details we refer the reader to [47]). For the computation of
the expectation appearing in (150), [47] suggests simulation. [47, Section 3] treats the two-dimensional
constrained random walk on Z2+ with increments (−1, 0), (1, 0), (0,−1), (0, 1), (1, 1); for this process
[47] constructs explicitly an h function of the form h(x) = ax1

1 ax2
2 , where (a1, a2) ∈ R2 is a point on a

curve whose definition is analogous to the definition of the characteristic surfaceH in two dimensions.
Thework [49] employs the ideas of removing constraints on one of the boundaries and using points on

curves associated with the resulting process to study the tail asymptotics of the stationary distribution of
a two-dimensional nearest neighbor randomwalkL constrained to remain inZ2+. To study the asymptotic
decay rate of .(n, k) in n for a fixed k, [49] considers the randomwalkL(1) , which has the same dynamics
as L except that it is not constrained on the vertical axis. Associated with this process, [49] defines two
curves, whose definitions are similar to the definition of the two-dimensional version of the characteristic
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surface of the present work (see the definition of �1 on [49, page 554]) and uses points on and inside
these curves to define solutions to an eigenvalue/eigenvector problem associated with the problem (see
[49, Theorem 3.1]); for the study of tail asymptotics along the vertical axis, [49] uses the same analysis
but this time removing the constraint on the horizontal axis. For further works along this line of research
we refer the reader to [15, 40, 50].

The work [35] develops an explicit formula for the large deviation local rate function L(x, v) of a
general Jackson network, starting from representations of these rates as limits derived in [4, 21]. For
this, [35] employs “free processes;” these are versions of the original process obtained by removing
those constraints from the original process that are not involved in a given direction v at a given point
x ∈ Rd

+. The proofs in [35] use fluid limits for the free process under a change of measure (i.e., a
twisted/h-transformed version of the free process); the changes of measures used here correspond to
using h-functions of the form e〈\ ,x〉 where \ is a point on a characteristic surface (analogous to H
in this work or H in [23]) associated with the process being transformed (see [35, Section 6]). As an
application of its results, [35] computes the limit limn→∞

1
n logE0 [gn] by noting from [53] that this limit

equals

lim
n→∞

−1
n
logP0(gn < g0),

which is the LD decay rate of the probability we have studied in this paper for general stable Jackson
networks; [35] derives the explicit formula

min1≤i≤d − log(di) for the above LD rate using the explicit local rate functions developed in the same
work and the explicit formulas available for the stationary distribution of the underlying process. Note
that the result concerns the initial point x = 0.

The Martin boundary of an unstable process is a characterization of the directions through which the
process may diverge to∞. The idea of using points on characteristic surfaces, and the idea of removing
constraints from the process to simplify analysis, appear also in works devoted to identifying Martin
boundaries of constrained or stopped processes. An example is [36], which identifies the Martin bound-
ary of two-dimensional random walks in Z2+ and which are stopped as soon as they hit the boundary of
Z2+. This work breaks up its analysis into three cases: 1)the directions q ∈ R2

+, where both components
of q are nonzero, 2) the directions q such that q(1) = 0, and 3) directions such that q(2) = 0. For
each of these cases, [36] work with what it calls local processes; the local process for the first case is a
completely unconstrained random walk, the local process for the second case is a process keeping the
horizontal axis (i.e., the vertical boundary is removed) and the third case is the reverse of the last. [36]
uses LD analysis of the local processes, harmonic functions of the form

ha(x) =


x1e〈a,x〉 − Ex [S1(g)e〈a,x〉1{g<∞}], if q(a) = (0, 1),
x2e〈a,x〉 − Ex [S2(g)e〈a,x〉1{g<∞}], if q(a) = (1, 0),
e〈a,x〉 − Ex [e〈a,x〉1{g<∞}], otherwise.

where S is the underlying process, g is the first hitting time to the boundary of Z2+, a is a given point on a
surface associated with S (defined analogous toH), q(a) is the mean direction of S under an exponential
change of measure defined by a (see [36, page 1108]). In this connection let us also cite [42], which
uses geometry and complex analysis to identify the Martin boundary of random walks on Z2, Z × Z+
and Z2+.

Let X be the constrained random walk in Z2+ with increments (1, 0), (−1, 0), (0, 1), and (0,−1) and
let gn be as in (8). A classical problem in computer science going back to [39, section 2.2.2, exercise
13] is the analysis of the following expectation:

E [max(X1(gn),X2(gn))] , (151)
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i.e., the expected size of the longest queue at the time of buffer overflow. This expectation is computed
in [39] for the case P(Ik = (1, 0)) = P(Ik = (0, 1)) = 1/2, P(Ik = (−1, 0)) = P(Ik = (0,−1)) = 0.
Various versions of this problem were treated in [27, 33, 45, 46, 66]. [46] treats a generalization of
this problem where the dynamics of the random walk depend on its position; the approach of [46]
uses large deviations techniques from [31]. [66] treats the approximation of (151) for the case when
the increments have a symmetric distribution as follows: P(Ik = (1, 0)) = P(Ik (0, 1)) = (1 − p)/2
and P(Ik = (−1, 0)) = P(Ik (0,−1)) = p/2; furthermore p < 1/2 is assumed, i.e., the process is
assumed unstable. Under these assumptions, [66] develops an approximation for the expectation in
(151) as n → ∞. The main idea in [66] is the following: under the assumptions of the paper one can
ignore both of the constraining boundaries of the process, to prove this the author uses LD bounds on iid
Bernoulli sequences (see [66, Lemma 3]). Then an explicit computation for the unconstrained process
using elementary techniques gives the desired approximation.

9. Conclusion

In Section 5, we computed Py (g < ∞) under the assumption `i ≠ `j for i ≠ j. One can obtain formulas
for Py (g < ∞) when this assumption is violated by computing limits of (138) as `i → `j; this limiting
process introduces polynomial terms to the formula. For example, for d = 3 and `1 = `2 = `3 = ` we
get

Py (g < ∞) = dȳ(1)

(
1
2

c20 (ȳ(1))
2dy(2)+y(3) + dy(3)

((
c20
2

+ y(3)c20

)
dy(2) + c0

)
ȳ(1) + 1

)
,

where c0 = (` − _)/` and ȳ(1) = y(1) − (y(2) + y(3)). Similar limits can be computed explicitly for
the cases `1 = `2 ≠ `3, `1 = `3 ≠ `2 and `1 ≠ `2 = `3. A systematic study of these cases in three
and higher dimensions remain for future work.

Recall that the computation of Py (g < ∞) (Theorem 5.7) is based on the sequence of regular graphs
Gd,d . We came up with the definitions of these graphs and the solutions of the harmonic systems defined
by them through trial and error. Proposition 5.5 (which proves that the definitions (130) provide a solu-
tion to the harmonic systems defined by Gd,d) consists of a verification argument, i.e., it consists of the
proof that a candidate/proposed solution is really a solution. This type of argument is common in the
solution of differential equations and in stochastic optimal control where one first guesses the solution
and then verifies (using the particular structure of the guess) that it is correct. The structure of Gd,d and
the solution of the harmonic system associated with it depend on the tandem structure of the underly-
ing process since they are directly based on the characteristic equations, conjugacy relations and the C
function associated with the tandem case (see (124), (102) and (126)). These are significantly simpler
in the tandem case than they are in the general case (see (92), (101) and (96)). Therefore, we do not
expect the constructions in Section 5 to easily generalize to arbitrary Jackson networks. Furthermore,
at this point we do not have a systematic way of generating harmonic systems and their solutions for
arbitrary Jackson networks. This appears to be a challenging problem for future research.

Our convergence analysis (Section 3) and the computations in Section 5 also depend nontrivially on
the exit boundary mAn (7). Generalization to other exit boundaries is another important direction that
can be explored in the future.

Symbols and notation

(1) tandem walk X, its increments Ik and the map c constraining X to Zd
+: (2)

(2) constraining boundaries mj: (3)
(3) possible increments V of the tandem walk: (4)
(4) utilization rates dj and d: (6)
(5) domain An: (7), first hitting time gn to the boundary of An: (8), overflow probability pn: (9)
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(6) linear map I1 and affine transformation map Tn: (10)
(7) domain ΩY , limit process Y, its increments Jk and the map c1 constraining Y to ΩY = Z × Zd−1

+ :
(11)

(8) domain B: (12), limit hitting time g: (13)
(9) Sets Rd, A and the function g: (14)

(10) |a| where a is a finite set: the cardinality of a (before (17))
(11) Hitting times fj−1,j: (24)
(12) process X̄: (25)
(13) Hitting time ḡn: (27)
(14) The summation function S: (29)
(15) Symmetric difference Δ: (40)
(16) Y-superharmonicity: (46)
(17) Function hk,r: (47), coefficient Wk: (51), function h2,k,r: (52)
(18) Coefficient Wk−1,k: (59), coefficient Γk: (61)
(19) Process S: (62)
(20) Function gn: (75)
(21) Order relation 4: (77), set ℳ: (78)
(22) Log-linear functions [(V,U), ·] (91)
(23) Characteristic polynomials pa: (92), characteristic equations (93), characteristic surfacesHa: (94)
(24) Operator Da: (95)
(25) Function C:(96)
(26) U{j}: (98)
(27) Definition of an L-regular graph: Definition 4.6
(28) Definition of a harmonic system: Definition 4.7
(29) Simple extensions: Definition 4.9 and Definition 4.10
(30) mB-determined Y-harmonic functions: (122)
(31) Regular graphs Gd,d: (128)
(32) c∗, U∗, V∗: (130)
(33) h∗d : (136)
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