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ON KELLER’S CONJECTURE FOR CERTAIN
CYCLIC GROUPS
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(Received 3rd June 1977)

1. Introduction

Keller (6) considered a generalisation of a problem of Minkowski (7) concerning
the filling of R™ by congruent cubes. Hajés (4) reduced Minkowski’s conjecture to a
problem concerning the factorization of finite abelian groups and then solved this
problem. In a similar manner Hajés (5) reduced Keller’s conjecture to a problem in
the factorization of finite abelian groups, but this problem remains unsolved, in
general. It occurs also as Problem 80 in Fuchs (3). Seitz (10) has obtained a solution
for cyclic groups of prime power order. In this paper we present a solution for cyclic
groups whose order is the product of two prime powers.

Throughout the paper we shall be dealing with finite abelian groups using the
additive notation. If A,,..., A, are subsets of such a group G and if each g € G can
be expressed uniquely as g = Za,;, a; € A, then we write G = A, + A, + --- + A, and
call this a factorization of G. We shall assume 0 € A,, for each i, since the subsets {A;}
give rise to such a factorization of G if and only if the subsets {g; + A;} do so also, for
any elements g; € G. We denote the order of A; by |A;| and, to avoid trivial cases,
assume |A;] > 1 for each i. If A is a subset of G we define

A-A={g€G|3a),a,€E A withg =a,— a,}.

Note that (A+ b)—(A+b)=A— A forall b € G. A subset A of G is called cyclic if
there exists a € G and an integer n with

A={0,a,2a,...,(n—Da}=[al.

Such a cyclic subset A is a subgroup if and only if the order of a is n. It is clear that
[alwn = [alk + [kal,.. Thus every cyclic set is a sum of cyclic sets of prime order.

Hajos has reduced Keller’s conjecture to the following. If G=A,+ --- + A, + B
where each A; is cyclic, A; = [ai]l,, then there exists i such that nma; € B — B. In the
corresponding Minkowski problem, where the centres of the cubes form a lattice, B
turns out to be a subgroup of G and Hajds solved the problem by showing that in the
quotient group G/B the image of one of the factors A; is a subgroup.

2. Preliminaries

Let G be a cyclic group of order n with generator g. Let M be an irreducible
representation of G. Let p be an nth primitive root of unity. Then M(g) = p“ for some

17

https://doi.org/10.1017/50013091500027747 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500027747

18 A. D. SANDS

integer d, 1<d=n. Let A be a subset of G, A={m g, m.g,...,m,g}. We define
M(A)=S,c4 M(a) =2 p®™. We define A(x) =2 x™. Let n/(d, n) = m. Then p¢ is an
mth primitive root of unity. Let F,,(x) denote the mth cyclotomic polynomial. Then
M(A) =0 if and only if F,(x) divides A(x).

If Ayv+---+A, =G then M(A))... M(A,) = M(G); M(G) =0, provided M is not
the identity representation. Therefore M(A;) = 0 for some i.

We need a generalisation of Theorem 2 of de Bruijn (1). Let n = km. We define

GuuX)=("=DI(x™" =D =1+x"+ -+ +x*m
=TI Fu)I TT Fatx) =[] Futx).
n an it

Let p, q be distinct primes and n = p°q’.

Lemma. Let A(x) be a polynomial with non-negative integer coefficients and
degree less than n. Let F,(x), Fy,(x), ..., Fy,~1(x) divide A(x) where r—1 < e. Then
there exist polynomials P(x) and Q(x) with non-negative integer coefficients such that

A(x) = P(x)Gppr(x) + Q)G g(x).

Proof. The case r =1 is Theorem 2 of (1). We proceed by induction on r. Since
F.(x),..., Fy,(x) divide A(x) we may assume the existence of polynomials
P,(x), Qi(x) with non-negative integer coefficients such that

A(X) = Pl(x)Gn,p’_l(x) + Ql(x)Gn,q(x)-

Fpp-(x) divides A(x). Since F,,~i(x) divides G,,(x) but is relatively prime to
Gn,-1(x) we deduce that F,,--i(x) divides P(x). By Theorem 2 of (1) there exist
polynomials P(x) and Q,(x) with non-negative integer coefficients such that

Pl(x) = P(x)Gnlp"',p(x)+ QZ(X)GnIp'_'.q(x)-

Substituting for P,(x) we have

A(X) = P(x)GnIp’_‘,p(x)Gn.p"'(x) + QZ(x)Gnlp’_'.q(x)Gn,p'_l(x) + Ql(x)Gn,q(x)
= P(X)Gn.p'(x) + (Qz(x)Gn/q,p"'(x) + Ql(x))Gn,q(x)-

The result follows by induction.

In the case r— 1 = e a simpler result holds, since F,(x) - F,,(x) ... Fy,e(x) = G, 4(x).
Thus A(x) = Q(x)G,4(x), and, from considerations of degree, it is clear that Q(x) has
non-negative integer coefficients.

3. Keller’s conjecture for cyclic groups of order p°q’

Seitz (10) has proved Keller’s conjecture for cyclic groups of order p®, p a prime.
Fraser and Gordon (2) gave a negative answer to Problem 82 of Fuchs (3) for finite
abelian groups but obtained a positive answer for cyclic groups. From this it may be
deduced that Keller’s conjecture holds for ‘good’ cyclic groups. The only cases not
covered by results in Seitz (10) are the cyclic groups of order p°q. Since we are about
to prove a more general result we do not include the details of this deduction.
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Theorem 1. If G is a cyclic group of order p°q’ where p, q are distinct primes and
G=A+---+A+B

where A; = [a;],, is a cyclic set, i =1,...,k, then there exists j such that nja; € B - B.

Proof. We may assume that each n; is prime and so, since |A;| divides |G|, equal
to either p or q. Let n = p°q’. We proceed by induction on n. Let g be a generator of
G. We know that for d|n, d > 1, F,(x) divides some A;(x) or Fy(x) divides B(x).

Suppose first that F,(x) divides A;(x). By Theorem 2 of (1)

Aj(x) = P(x)Grp(x) + Q(x)Gpq(x)
where P(x), Q(x) have non-negative integral coefficients. Substituting x = 1 we have
Ai(1)=pP(1)+ qQ(1).
If nj=p we have P(1)=1, Q(1) = 0; if n; = q we have P(1)=0, Q(1)=1. It follows
that A;(x) = G,,(x) or G,q(x) and so that nja;=0€ B — B.

Thus we may suppose that F,(x) divides B(x). Let F,(x), Fy,(x),..., Fypr-1(x)
divide B(x), but F,,-(x) not divide B(x) where r < e. Then F,,/(x) divides some A;(x).
Let A;(x)= D(x) mod (x"" = 1) where the degree of D(x) is less than nfp’, i.e. we
form D(x) from A;(x) by reducing the exponents modulo n/p". Since F,,-(x) divides

both A;(x) and x™?" — 1 it follows that F,,-(x) divides D(x). As above D(x) = G, (x)
or D(x) = G,r4(x). By the Lemma

B(x) = P(x)G,pr(x) + Q(x)G, 4(x),

where P(x), Q(x) have non-negative integral coefficients. Let D(x) = G, ,(x). Then
n;=p and a; = (s(n/p™*") + t(n/p"))g. Thus ma; = u(n/pg. If P(x)+# 0 it follows that
nja; € B— B. Let D(x)= G, ,(x). Then n;=q and a; =(s(n/p'q)+ t(n/p"))g. Then
nja; = u(n/p")g and again n;a; € B — B unless P(x)= 0. Suppose P(x) =0 then B(x) =
Q(x)G,4(x) and B =Q+ H where H ={0,(n/q)g, . ..,(q —1)(n/q)g} is a subgroup of
G. From

G=A|+"' +Ak+Q+H

we have a factorization of the quotient group

GIH=A,+---+A,+Q
By the inductive assumption it follows that nd; € Q — Q for some j, i.e. that
nia; € Q- Q+ H. Since B= Q+ H it is clear that nja; € B— B.

There remains the case where F,(x), Fy,(x),..., Fy,«(x) divide B(x). This leads
again to B(x) = Q(x)G,,(x) and as above, using the inductive assumption, we have
n;a; € B — B for some j.

4. Further results on the factorization of cyclic groups

The first result here is essentially the cyclic case of the Corollary to Satz 5 of
Redei (8).
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Theorem 2. Let G be a finite cyclic group and a an automorphism of G. Then
G = A+ B implies G = a(A)+ B.

Proof. Let g be a generator of G and p an nth primitive root of unity where
|G| =n. Let M be a representation of G such that M(g)=p™ Let a(g)=g* Then
(d,n) =1 and so p™ and p™ are primitive roots of unity of the same order. M(A) =0
if and only if A(p™)=0; A(p™) =0 if and only if A(p™)=0; A(p™) =0 if and only if
M(a(A)) = 0. The result then follows by Hilfssatz 6 of Redei (8).

Theorem 3. If G is a cyclic group then G = A+ B if and only if |G|=|A|B| and
the subsets A— A and B — B contain no non-zero elements of the same order.

Proof. If A— A and B — B intersect only in the zero element it is clear that
|A + B| =|A|B|. Then |A||B| = |G| implies A + B = G.

Conversely let A+ B = G. Then |A||B|=|G]|. Let a,, a, € A and by, b, E B be such
that a,—a, and b,— b, have the same order. Since G is cyclic there exists an
automorphism a of G such that a(a;— a,) = b;— b,. From a(A)+ B = G it follows
that (a(A)— a(A)) N(B - B) =0. Therefore b,— b,=0and so a,—a,=0. Thus A— A
and B — B contain no non-zero elements of the same order.

In (9) it is conjectured for finite abelian groups G that, if G = A + B, then A and B
cannot both generate Gt. This conjecture is known to be true for ‘good’ groups. The
previous result enables us to prove it for cyclic groups of order pq’.

Theorem 4. If G=A+ B and G is a cyclic group of order p°q’, where p, q are
distinct primes, then either Gp(A) # G or Gp(B) # G.

Proof. Let Gp(A)= G. Then either A contains an element a of order pq’ or
elements a; and a, of orders p°q", f, < f, and p“q’, e, < e. In the second case a,— a,
has order p°q’. Thus, in each case, A ~ A contains an element of order p‘q’. Similarly
Gp(B) = G implies that B — B contains an element of order p°q’. By Theorem 3 we
cannot have both Gp(A)= G and Gp(B)=G.

C. B. Swenson has also raised this question for cyclic groups in his thesis (11). One
sees that if G=A+ B and Gp(A)= H# G then H+g = A+ (H N(B + g)) for each
g € G. Assuming that the conjecture holds true he is able to deduce, from a
knowledge of the factorizations of the proper subgroups of G, rather complicated
formulae giving all factorizations of any cyclic group G.
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