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Abstract

Critical point behaviour of the diffusion length y for the solutions of the radiative transfer
equation deep in a homogenous medium is studied. The Legendre expansion of the
medium's phase function P(cos <f/) is taken to be an infinite series and is characterized by
the parameters h0, hlt h2, A characteristic equation for y is given in terms of an
infinite continued fraction. From this equation it is shown that as any one of the hn, say
hp, approaches zero, the others being held constant, y behaves as h'p"', where the critical
exponent is found to be vp = \ for all p = 0, 1, 2,

1. Introduction

The theory of radiative transfer finds application in astrophysics, meteorology,
the physics of neutron propagation and the optics of scattering media.

This paper is concerned with the multiple scattering of monochromatic radia-
tion by a macroscopically homogeneous medium of known scattering properties,
where the radiation sources are infinitely far from the region of interest. Such a
situation may be approached by taking an optically thick plane-parallel layer of
the medium which is illuminated from one side only, and considering only regions
far enough from the illuminated surface for the direct radiation to be dominated
by the diffuse (scattered) radiation. The diffuse radiation field approaches a static
relative angular distribution while decreasing in intensity exponentially with
depth with a characteristic length called the "diffusion length" y. This limiting
intensity distribution can be thought of as representing the solution to the
problem of the distribution of brightness over a thickly clouded sky.
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The angular distribution of radiation scattered by a volume element of the
medium is described by a phase function which may be expanded as a series of
Legendre polynomials. The coefficients of this expansion are directly related to
the parameters hn, n = 0, 1, 2,. . . , defined below. As any one of the hn, say hp,
approaches zero, the diffusion length becomes infinite. It was noted by Inonu [5]
that y -» K0/IQ

1/2 as h0 -* 0, where KQ is some constant. This behaviour is
described in statistical mechanical terms (see e.g. Stanley [13]) by saying that y
plays the role of a correlation length and hQ that of an order parameter, with a
critical point h0 = 0 and a corresponding critical exponent of v0 = \ (i.e. y goes
as h~Q

v° near h0 = 0). The aim of this paper is to generalize this result by
examining the critical point behaviour of y as any one hp vanishes, the other hn

remaining finite.
It is found that for « < 1, where « is the albedo for single scattering defined

below, restriction of the discussion to situations where only hp vanishes leaves
only the h0 -* 0 case, as we find that in this case hp -> 0 implies h0 -» 0. This
case is illustrated by light scattering, for which w < 1 always. For w > 1 we find
that y behaves as h~"' as hp approaches the critical point hp = 0, with the critical
exponent vp— \, for all p. The scattering of neutrons is an example of this case,
where u> is called the number of secondaries and may exceed unity. From the
viewpoint of the theory of critical behaviour, the radiative transfer equation with
w > 1 offers an example of a system with an infinite number of order parameters,
and may repay further investigation because of this point.

2. The equation of radiative transfer

To define the parameters that characterize a physical system, consider a beam
of radiation incident normally on a plane layer of infinitesimal thickness ds. Of
the energy incident on the layer, a fraction a ds is scattered from the beam and a
fraction K ds experiences true absorption, i.e. is transformed into other forms of
energy. The emission of secondaries in neutron scattering can be represented by a
negative value of K. a is called the scattering coefficient and K the coefficient of true
absorption. K = K + a is the extinction coefficient and determines the fraction of
radiation removed from the direct beam, w = a/K is called the albedo for single
scattering. Note that we are assuming that the whole radiation field is monochro-
matic, and in particular that no change in energy occurs upon scattering.

Distance into a plane layer of the medium is conveniently measured by the
optical depth T, measured along a direction normal to the illuminated surface so
that the unscattered intensity of a beam travelling in the positive T-direction is
attenuated as e~T, following Beers' Law.
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{31 Critical behaviour in radiative transfer 247

F r o m the definition of the extinction coefficient, it is clear that the optical
dep th at a distance / into the medium is given by

= ('Kds.Jo
This definition follows that of Van der Hulst [4]. Lang [7], and Paltridge and

Platt [11]. However we note in passing that Chandrasekhar's [1] "normal optical
thickness" for which he also uses the symbol T is given in our notation by the
complementary integral //" K ds.

Let / ( T , B) be the total radiance at an optical depth r propagating in the
direction fi = (6, <j>). In other words / ( T , Q) dQ, do cos 6 is the power transferred
across the surface area do, in the solid angle dQi from the direction S2, where B
makes an angle 0 with the surface do [11]. This quantity / is referred to as the
specific intensity by Chandrasekhar [1].

The angular distribution of the radiation scattered by a microscopic volume is
described in general by the phase function P(£l,Q'), where B = (0, <J>) and
8' = (0', <J>') are the directions of propogation of the scattered and incident
radiation respectively, and the position r direction is taken as the polar axis. The
normalization is such that

fp(Q,Q')dQ' =

so that P(S2, fi')/(47r) is the ratio of the radiance scattered into the direction fi to
the incident radiance from the direction fi'. For problems with unpolarized
radiation, the phase function depends only on ^, the angle between fi and fi'.
Only this type of phase function will be considered in this paper and so we write
it P(cos\p).

The phase function may be expanded as a sum of Legendre polynomials of the
first kind:

P(cos^) = £ (2« + ^x.P^cos*). (2.1)

In practical cases, e.g. Mie scattering from a sphere of radius R, or potential
scattering of neutrons, it is in fact most convenient to define the phase function
through the series (2.1), the coefficients being determined from the wave equation
satisfied by the field, although it is also possible to represent the phase function as
a finite sum of the square modulus of complex valued functions (scattering
amplitudes) for which an integral equation exists.

In the case of scattering by a potential V(r), much is known about the
properties of the Legendre series (2.1). When Jo

r r\V(r)\ dr exists, and the poten-
tial is bounded absolutely by e*r for large r, Martin [9] has shown that the infinite
Legendre series for the differential cross section which is analogous to equation
(2.1) converges inside an ellipse in the z = cos ^ plane with foci at z = ±1 and

https://doi.org/10.1017/S0334270000004896 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004896


248 I. F. Grant and B. H. J. McKellar [4)

semi-major axis 1 + 2\i2/k2, where k is the wave number. The general conver-
gence property of infinite Legendre series of the type (2.1) in the complex plane is
that they converge uniformly and absolutely inside the ellipse

1 + , . / . . , - 1 . (2-2)
I R 2 + 1 \ 2 ( R 2 - 1 \ 2

\ 2R I \ 2R }

where z = x + iy and R is the radius of convergence of the power series
L^L0(2/7 + Y)xnz

n [10]. The series defines an analytic function of z inside the
ellipse. It follows that

{In + l ) X n ~ R-", (2.3)

so that, since R > 1, in the potential scattering case (2n + l)xn approaches zero
exponentially fast as n -» oo.

We are unaware of a similar detailed analysis of the Mie scattering case.
However using the representation of the an given by Chu and Churchill [2], one
can show that, for n + 1 > lekr, where r is the radius of the sphere and k is the
wave number, and n > 3 and ekr > 1,

( p x \ n - 3

vfr) •
Here K is an n independent constant. This reflects the well known fact that the
coefficients decrease rapidly for n » 2kr. The parameter R defining the ellipse
(2.2) is given by

Rl = Urn" (2»

Thus we see that in this case the series (2.1) is absolutely and uniformly
convergent in the entire cos 6 plane, and defines an analytic function of cos 6 in
the whole plane.

For both potential scattering and Mie scattering the Legendre series (2.1) is
absolutely and uniformly convergent on the closed real interval (-1,1) in cos *p,
so integration of (2.1) term by term over this interval is justified, and the
coefficients xn can be expressed in terms of the phase function by

Xn = l[1 P (cos <l>)Pn(cosxp)d (cost). (2.4)

One can in principle consider weaker conditions on /'(cos \p) than analyticity in
an ellipse containing (-1,1). For example, if for JC = cos \p e (-1,1), the function
P(x)(l — x2)'1/4 is summable over (-1,1), the series (2.1), with coefficients
defined by (2.4) is convergent to M ^ * + 0) + P(x - 0)] at every x in the open
set (-1,1). Moreover the coefficients xn in this case are such that (2n + l)xn =
O(n~1/2) as n -* oo [3]. For our purposes it suffices to assume these weaker
conditions on /'(cos \p).
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The definition of the phase function P(f i , S2') leads immediately to the integro-

differential equation of radiative transfer [1,6,7,11]

_«_ j p ( cc o s ^ ) / ( T j n , } ^ ( 2 5 )

where ju. = cos 0. This is the form of the equation which does not separate the
unscattered beam from the diffuse radiance. Again we note that Chandrasekhar's
T is the complement of ours, so that the right hand side of his equation of
radiative transfer (his equation 63) is the negative of ours.

3. The radiation field in deep layers

The following properties of the radiation field in deep layers (T » 1) come
from physical considerations [12]:

(i) The role of direct (unscattered) radiation is negligible compared to that of
the diffuse radiation.

(ii) The radiation intensity does not depend on azimuth.
(iii) The relative angular distribution of the intensity does not depend on

optical depth.
Thus we consider only solutions of (2.2) of the form

Substitution of this form into (2.2) gives the integral equation

which has k as an eigenvalue and fk(n) as the corresponding eigenfunction. We

are interested in the smallest nonnegative eigenvalue k0 since it has been proved

[4] that only the corresponding eigenfunction fo(fi) (and also the eigenfunction

/ 0 ( - /x ) corresponding to -k0) is non-negative for - 1 < ju < 1, a necessary prop-

erty of any physical solution [4]. It is k0 which is called the inverse diffusion

length. Its reciprocal is the diffusion length y.

4. Critical point behaviour and the diffusion length

The eigenvalue k0 (and hence y = k^1) depends only on « and Xo> Xi» X2>
Define

hn={2n + l)(l-o>Xn). (4.1)
Note that as n -> oo, equation (2.4) implies that xn -• 0, so that hn -» 2n + 1.
Van de Hulst [4] described how, when the Legendre series (2.1) terminates at

https://doi.org/10.1017/S0334270000004896 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004896


250 I. F. Grant and B. H. J. McKellar |6]

n = N, a finite integer, the characteristic equation for y may be written as the
continued fraction

hoy = 1 (4.2)

i,v - 9

hNy-(N+l)QN+1(y)/QN(y)

where Qn(y) is the Legendre function of the second kind of order n.
For a given phase function for which the Legendre series is finite with TV terms,

we know all of the hn, and hence we can solve the relation (4.2) for y, choosing
the largest solution if necessary. Suppose we have a situation where all of the hn

are fixed to be non-zero. If we now let just one of them, say hp, approach zero,
then y will approach infinity. It was noted by Inonu [5] that y -* KofiQ

l/2 as
h0 -» 0 and by McKellar and Box [5] that y -> Kxh\x/1- as *! -» 0 (Ko and Kx

some constants). The behaviour of y as hp -* 0 is described by the critical
exponent vp, where y goes as h~p"'. The major result of this paper is that vp = j for
all p.

5. The infinite continued fraction

We first extend (4.2) to the case of an infinite Legendre series given that none
of the hn vanish, by replacing the right-hand side of (4.2) with an infinite
continued fraction to obtain

*oY = ! (5.1)

h2y-9

It is necessary to prove that the right-hand side of (5.1) converges to hoy, given
that all of the hn are fixed and non-zero. We do this under the restrictions that
hn ~ In + 1 as r t -»oo , which is a consequence of our assumptions about the
infinite series (2.1) representing P(cos \p) [3], and also that for a particular value
of p, hp is small enough that the largest solution y of (5.1) is greater than a
constant to be defined below which depends only on the fixed hn. This is
acceptable since we are only interested in the limit y -* oo, as hp -» 0.
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The definition and properties of continued fractions may be found in Wall [14].
The value of a convergent infinite continued fraction is defined to be the limit of
the sequence of its convergents, where a convergent is the finite continued
fraction which results from truncation of the infinite fraction. Any finite con-
tinued fraction may be expressed rationally. Thus the nth convergent of the
fraction appearing in (5.1) is

hny

where An(y) and Bn(y) are polynomials in y given by the recurrence relations

n nl n 1 n-2> ^ ^

D —» L . , D vi *-Ti H <L ^

•O r t — " nY n — 1 — n — 2 » ^ "^»

with the initial values

i4x 1 i4 2 1 A2y
Bx hiy' B2 hny-J_

h2y

The right-hand side of (5.1) is said to converge if the sequence An(y)/Bn{y)
converges, and its value is then defined to be the limit of that sequence.

Kuscer [6] defined the sequence of polynomials starting with go(x) = 1,
gi(x) = hox and continuing by the recurrence relation

gn+i(x) = -^Ti[hnx8n(x) -ngn-i(x)]. (5.3)

Van de Hulst [2] examined the ratio

rn(x) = gn(x)/gn-i(
x)>

defined for n > 1, and noted that (5.3) leads to the recurrence relation

It will be convenient to define the set of linear fractional transformations

Then (5.4a) may be written

rn=L(rn+l). (5.4b)

Van de Hulst took the n -» oo limit of (5.4a) to show that, under the assumption
hn — In + 1, the limit as n -* oo of rn(y) is r(y) where

https://doi.org/10.1017/S0334270000004896 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004896


252 I. F. Grant and B. H. J. McKellar [ s |

Van de Hulst wrote the characteristic equation for 7 as

Repeated application of (5.4b) to the right-hand side gives

* o Y = / i / 2 - " / f l - i k ( Y ) ] , ">1. (5.5)

We precede the proof of (5.1) by specifying the range of 7 for which conver-
gence of its right-hand side will be shown.

In our consideration of (5.5), we want/„(.*:) to be continuous at x — rn+1(y) for
n = 1, 2, If the infinite continued fraction in (5.1) is replaced by its «th
convergent, then the n th degree polynomial equation

( 5 ' 6 )

results, which will have at most n real solutions, and hence a maximum solution
Mn. The denominator of /„(/•„+ 1) is

hny-(n + l)rn+1(r). (5.7)

If (5.7) is zero then

= 0

and (5.6) reduces to

Ensuring that 7 > Mn_2 renders (5.8) false, and then (5.7) is non-zero. For n = 1
and n = 2, having (5.7) equal to zero would reduce (5.6) to hoy = 0 and hoy = 00
respectively, neither of which can be true since both h0 and 7 are always finite
and non-zero. Thus for any «, 7 > Mn_2 implies that (5.7) is non-zero and hence
that/n(x) is continuous at x = rn+l(y).

Because of this, we restrict the discussion to the situations where 7 > Mn for
n = l,...,p — 2, so that fn(x), regarded as a function of the variable x, is
continuous at x = rn+1 for n = 1,... ,p. The discussion is also restricted so that
7 > 3 to ensure 0 < r(y) < \ and, finally, restricted so that

| ^ | | , lorn>p. (5.9)

The supremum is finite since / i n ~2« + lasr t ->oo. Note that these restrictions
on 7 are independent of hp, which will later tend to zero. Restriction (5.9) is
necessary to establish the following result and thence the two lemmas below.
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Let T be the open interval (-1,1). For all n > p and for all x e T,

\hny-(n + l)x\>2n. (5.10)

By the triangle inequality, the left-hand side is greater than \hn\y - (n + l)\x\
which is in turn greater than the right-hand side, since \hn\y > 4n and |JC| < 1.

LEMMA 1. For all n > p,fn maps T into T.

PROOF.

LEMMA 2. For all n > p, if x andy are two points in T then \fn(x) — fn(y)\ <

PROOF. Consider any n > p. Inequality (5.10) implies that the denominators of
both/n and

. . ., _ n(n + 1)

[hny-(n + l)x]2

are non-zero at all x e T, and hence both /„ and its derivative are continuous on
T. For all x e T,

, by (5.10)

2"

Take any two points x, y e T. Since /„ is continuous and differentiable on T, the
Mean Value Theorem may be applied to show that there exist £ e (x, y) such
that /„(*) -fn(y)=m)(x - y). Since £ e T, we know that |/n'(£)| < | , and
the lemma follows.

We now prove that

(5.11)
hp+ly -(P + 2)2

converges to rp+l(y).
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Because rn -» r as n -* oo, we can choose N > p such that n > N implies
\r — rn\< j . Since r < \ (from the y > 3 restriction), n > N implies rn T. Also,
for all n > p we have n/hny e T, since y > 4n/\hny\ implies \n/hny\ < 1.

Let e > 0 be given and choose L > N such that 2~L < e. We show that
n > L + p + 1 implies

n + 1
- r.

< e. (5.12)

Take arbitrary n > L + p + 1. Then n > N and so rn+1 e T. Since n/hny e 71

also, it follows that \rn+l - n/hny\ < 2. Since/, maps Tinto T,fn(rn+1) e Tand
fn("/t>ny) G T. Hence |/n(rn+1) - / n (« / ^ n y ) | < \\rn+1 - n/hny\. Repeating the
argument for each oifn_l,fn_1,... ,fp+1 gives

| • • fn{n/hny) -fp + l • • • fn(rn+1)\ < ( i )"" / > k + 1 - n/hny\

But fp+l • • • fn(n/hny) is simply the finite continued fraction in (5.12) and
fp+i ' "' /n(rn+i) = r

p+i by repeated application of the recurrence relation (5.4b).
Thus (5.12) holds and this shows the convergence of (5.11) to rp+l as n -* oo.

Since rn = /n(rn + 1), and since /„(*) is continuous at rn+1 for n = 1,.. .,p the
composition of functions f1f2 • • • fp(x) is continuous at rp+l and so

1
lim , .

n^x hxy - 4
= r.i-

This is equivalent to (5.1), since rx — hoy and the left-hand side is by definition
the value of the infinite continued fraction on the right-hand side of (5.1).

6. The critical exponents

Several authors have derived the critical exponent for h0. Kuscer [6] suggested
developing y~2 as a power series in h0 by setting gn(y) = 0 and taking n large
enough to give the desired number of terms. Thus

I. (6.1)
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Inonu [5] noted that this showed h0 = 0 is a critical point with exponent
v0 = 1/2. Similarly Sobolev [2] notes that, from the infinite continued fraction in
(5.1), a power series expansion for k0 = y'1 can be made in terms of h1/2, giving

k0 = ( M i ) 1 ' 2 + O(h0), (6.2)
which is equivalent to (6.1). McKellar and Box [5] obtained a similar result as
h1 -» 0 with h0 fixed, showing that hx can also be regarded as an order parameter
with a critical exponent of | .

The approach employed here is to use (5.1) to determine the critical exponent
v , for general/?, by examining the behaviour of

hOy=An(y)/Bn(y), (6.3)

as y -> oo and hp -* 0, and all other hn are held constant, as y -* oo and hp -» 0,
and all other hn are held constant, since the right-hand side of (6.3) approaches
the right-hand side of (5.1) as n -» oo. Note that we must take n > p before hp

appears in equation (6.3).
Rewrite (6.3) as

hoyBn(y)-An(y) = 0- (6.4)
Using the recurrence relation

hoyBn(y) - An(y) = hny[hoyBn_x{y) - An_x(y)}

-n2[hoyBn_2(y)-An_2{y)}, n> 3, (6.5)
which follows from the recurrence relations (5.2) for An(y) and Bn(y), it can be
shown by induction that

hxh0

n>\, (6.6)

where U.n = hoh1 • • • hn. Note that the expression Hn/hjhJ_l does not contain a
factor hj1 or hjlx; it is simply a notational device for the product

h n h n - i ••" h J + x h J _ 2 ••• h x h 0 .

Consider (6.6) only for n > p. Then hp is a factor of Iln . Hence as hp -* 0 and
y -* oo, n n y n + 1 will dominate all other terms containing at least one hp factor,
since they will contain a lower power of y and no smaller power of hp. Recall that
all other A . are fixed, so the only other terms which need be considered are those
not containing a factor hp. Any such terms containing y"~x will dominate any
terms of lower power of y. There are always exactly two such terms if n > p,
namely

php~X
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Keeping only the dominat ing terms of (6.4) gives, in this limit,

n«Y"+1 - W h i r - + i p + v'hW'1 + o{y"~3) = °1 h
P"p-i "P+I"P\

and hence

\_--p-i "/>+i J

This result is now independent of n, and hence true in the n -» 00 limit. So for all

p, y -* Kph'p
l/1 as y -> 00, where

K P2 i ( P + 1 f
1/2

Thus the critical exponent is v = \, for all p = 0, 1, 2,

7. The w < 1 case

It is shown in this section that the mathematical problem examined in this
paper is restricted when applied to the class of physical problems for which
w < 1. This class is important, since it includes all problems of light scattering.
Scattering for which w < 1 is called nonconservative, and cases for which u = 1
are called conservative.

The restriction derives from the inequality [4]

|(2« + 1 ) « X J < ( 2 « + 1)«, (7-1)
which follows from /'(cos ^) being non-negative. From this we have

(2« + l)coX n< (2n + 1)«,
which is equivalent to

using h0 = 1 — u (implied by Xo = 1> which follows from the equations in
Section 2), and hence

(2/i + 1)AO < hn.
Then for 0 < w < 1, which implies 0 < h0 < 1,

0 < *0(2« + 1) < *„•
So for n > 1, /»„ may approach zero only if h0 approaches zero simultaneously. If
u = 1 (conservative scattering), then h0 = 0 and y is infinite. For w > 1, as may
occur in the neutron case, (7.1) becomes

{In + l)h0 <hn< 2(2« + l ) -{In + l)h0.

Since h0 < 0, the possibility of hn approaching zero independently of h0 is
admitted, thereby resulting in the behaviour of y described in this paper.
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8. Conclusion

We have shown that the critical point behaviour of the radiative transfer
equation is such that it can have an infinite number of order parameters, which
we have taken to be hp. When the albedo exceeds unity it is possible for each of
the order parameters to approach the critical value of zero independently, and the
critical exponent for the diffusion length (which plays the role of the correlation
length) is \ for each of these order parameters.

We have not investigated in this paper the critical behaviour as more than one
of the hn becomes zero simultaneously. Because of the infinity of order parame-
ters, this should be a rich field for future study.
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