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Abstract

Let M = G/K be a generalized flag manifold, that is, an adjoint orbit of a compact, connected and
semisimple Lie group G. We use a variational approach to find non-Kähler homogeneous Einstein metrics
for flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics
as critical points of the scalar curvature functional under fixed volume.
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1. Introduction

A Riemannian manifold (M, g) is called Einstein if the metric g has constant
Ricci curvature, that is, Ricg = cg, for some c ∈ R. This equation, known as the
Einstein equation, reduces to a system of nonlinear second-order partial differential
equations, and general existence results are difficult to obtain. A common strategy
for constructing Einstein metrics is to assume that M is a homogeneous Riemannian
manifold; this is the case when a Lie group G of isometries acts transitively on M.
Then the Einstein equation reduces to a more manageable system of (nonlinear)
polynomial equations, which in some cases can be solved explicitly (see [Bes, NRS]).

If (M, g) is a compact Riemannian manifold of volume one, then a result of Hilbert
states that g is Einstein if and only if g is a critical point of the scalar curvature
functional T :M1→ R, given by

T (g) =

∫
M

S (g) d volg
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on the set M1 of Riemannian metrics of unit volume (see [Bes]). For a compact
homogeneous Riemannian manifold (M = G/K, g) of a compact connected Lie
group G, one can show that the G-invariant Einstein metrics of volume one are
precisely the critical points of T restricted toMG

1 , the set of G-invariant Riemannian
metrics of volume one. This variational approach has led to several important existence
and nonexistence results for homogeneous Einstein metrics (see, for example, [Bom,
BWZ, DKe, WZ2]). For a detailed exposition on homogeneous Einstein manifolds
and their classification problem we refer to Besse’s book [Bes], and for more recent
results to the surveys [LWa, NRS].

Let G be a compact connected semisimple Lie group and let g = TeG be its Lie
algebra. A generalized flag manifold is a (compact) homogeneous space of the form
M = G/C(S ), where C(S ) is the centralizer of a torus S in G. This condition can be
reformulated as follows: M is the orbit of an element γo ∈ g under the adjoint action
Ad : G × g→ g, that is,

M = Ad(G)γo = {Ad(g)γo : g ∈G} ⊆ g.

In fact, it can be shown that the stabilizer of this action K = {g ∈G : Ad(g)γo = γo} is
the centralizer of the torus S γo = {exp tγo : t ∈ R} ⊆G generated by the one-parameter
subgroup exp tγo of G. In particular, K is connected (see [Bes]). If S γo = T is a
maximal torus in G, then K = C(S γo ) = T and M = G/T is called a full flag manifold.
The classification of flag manifolds is based on painted Dynkin diagrams and can been
found in several sources (see [Ale, AlA, BFR]). There is an infinite family for each
of the classical Lie group types, and a finite number for each of the exceptional Lie
groups. Note that in this work, following [AlA], we paint the Dynkin diagram in the
opposite way to [BFR].

As we will see in Section 3, a flag manifold M = G/C(S ) can also be identified
with a compact simply connected complex homogeneous space of the form GC/P
(also known as a complex flag manifold), where P is a parabolic subgroup. Thus M
admits a finite number of invariant complex structures. In particular, for any such
complex structure there is a unique G-invariant Kähler–Einstein metric. The problem
of finding non-Kähler–Einstein metrics on generalized flag manifolds was first studied
by Alekseevsky in [Ale]. For some of these spaces the standard metric is Einstein since
they appear in the work of Wang and Ziller (see [WZ1]), where they classified all nor-
mal homogeneous Einstein manifolds. In [Kim], Kimura used the variational method
of [WZ2] to find all G-invariant Einstein metrics for all flag manifolds for which the
isotropy representation decomposes into three nonequivalent irreducible summands.
In [Sak], Sakane gave an explicit expression for the Ricci tensor of full flag manifolds
of classical Lie groups, and then by using the theory of Gröbner bases he proved the
existence of non-Kähler homogeneous Einstein metrics. Finally, in [Arv], the first
author found new G-invariant Einstein metrics on certain generalized flag manifolds
with four isotropy summands, by using a Lie-theoretic description of the Ricci tensor.

In this paper we study generalized flag manifolds M = G/K of a compact connected
simple Lie group G, for which the isotropy representation decomposes into two
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T 1. Generalized flag manifolds for which m has two irreducible summands.

G simple M = G/K where m =m1 ⊕m2

B` = SO(2` + 1) SO(2` + 1)/U(p) × SO(2(` − p) + 1) (2 ≤ p ≤ `)

C` = Sp(`) Sp(`)/U(p) × Sp(` − p) (1 ≤ p ≤ ` − 1)

D` = SO(2`) SO(2`)/U(p) × SO(2(` − p)) (2 ≤ p ≤ ` − 2)

G2 G2/U(2) (U(2) is represented by the short root of G2)

F4
F4/SO(7) × U(1)

F4/Sp(3) × U(1)

E6
E6/SU(6) × U(1)

E6/SU(2) × SU(5) × U(1)

E7

E7/SU(7) × U(1)

E7/SU(2) × SO(10) × U(1)

E7/SO(12) × U(1)

E8
E8/E7 × U(1)

E8/SO(14) × U(1)

nonequivalent irreducible submodules. Any such space admits a unique G-invariant
complex structure and thus a unique G-invariant Kähler–Einstein metric. The authors
classified these spaces in a recent paper [ArC] and proved that any such flag manifold
is locally isomorphic to one of the spaces listed in Table 1.

Let G be a simple compact Lie group and let K be a connected and closed subgroup.
In recent work [DKe], Dickinson and Kerr used [WZ2, Theorem 3.1] to count the
number E(M) of Einstein metrics for all simply connected homogeneous spaces
M = G/K, whose isotropy representation decomposes into two irreducible summands.
For example, they proved that E(M) = 2 for any flag manifold M = G/K for which
m is a sum of two irreducible submodules (see Table 1). In this work, we apply the
variational method to find these two Einstein metrics. After this work was completed,
the authors were informed by Sakane that solutions of the Einstein equation have
also been obtained in unpublished work of Ohmura [Ohm], using the method of
Riemannian submersions (see [Bes]).

The paper is organized as follows. In Section 2 we recall some facts about compact
homogeneous spaces. In Section 3 we study the structure of a generalized flag
manifold M = G/K of a compact, connected, semisimple Lie group G. In Section 4
we recall how one can determine flag manifolds M = G/K with m =m1 ⊕m2 and
we make a observation on the computation of the dimensions di = dimmi of the
irreducible submodules. In Section 5 we consider a general G-invariant Riemannian
metric g = x1(−B)|m1 + x2(−B)|m2 on M = G/K, and by applying a variational method,
we solve the Einstein equation. We prove the following theorem.
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T 1.1. Let M = G/K be a generalized flag manifold with two irreducible
isotropy summands, that is, m =m1 ⊕m2, and set di = dimmi. Then, up to scale,
M admits two G-invariant Einstein metrics. One, given by x1 = 1 and x2 = 2, is Kähler
and the other, given by x1 = 1 and x2 = 4d2/(d1 + 2d2), is not.

Next we compute the bordered Hessian of the scalar curvature functional with the
volume-one constraint condition and characterize the nature of the solutions (as critical
points) obtained in Theorem 1.1. In particular, we show the following result.

T 1.2. Let M = G/K be a generalized flag manifold with two isotropy
summands. Then the two G-invariant Einstein metrics on M, obtained in Theorem 1.1,
are both local minima of the scalar curvature functional restricted to the space of
G-invariant metrics of volume one.

2. Preliminaries

Let M = G/K be a homogeneous space, where G is a compact connected and
semisimple Lie group and K is a closed subgroup of G. We denote by o = eK
the identity coset of G/K and by g and k the Lie algebras of G and K. Since
the Lie group G is semisimple and compact, the Ad(K)-invariant Killing form
B(X, Y) = tr(ad(X) ◦ ad(Y)) is negative definite. Consider the reductive decomposition
g = k ⊕m where m = k⊥ (with respect to −B) and Ad(K)m ⊆m. Then there is a natural
isomorphism between the tangent space ToM and the linear subspace m. Also, the
isotropy representation χ : K→ Aut(m) of K is equivalent to the adjoint representation
of K restricted on m, that is, χ(K) = AdK |m. Therefore a G-invariant metric g on G/K
is determined by an Ad(K)-invariant inner product on m (see [KoN, NRS]).

Let Q(·, ·) be an Ad(K)-invariant inner product on m (which is a multiple of the
Killing form), and take a Q-orthogonal decomposition

m =m1 ⊕ · · · ⊕mq (2.1)

of m into its Ad(K)-irreducible submodules. For such a decomposition, there is a
family of G-invariant metrics on G/K (or Ad(K)-invariant inner products 〈·, ·〉 on m),
given by

〈·, ·〉 = x1Q|m1 + · · · + xqQ|mq , (2.2)

where (x1, . . . , xq) ∈ Rq
+. This follows immediately from Schur’s lemma, after a

simultaneous diagonalization of the form 〈·, ·〉 and Q. If the representations mi and
m j are pairwise nonequivalent whenever i , j, then the decomposition (2.1) is unique
up to order and any G-invariant metric on G/K has the form (2.2). If the modules
mi and m j are equivalent for some i and j, then 〈mi,m j〉 does not necessarily vanish.
In the rest of this paper, we assume that mi �m j whenever i , j.

Since G is compact and K is a closed subgroup of G, the homogeneous space
G/K is compact. Thus we can apply the variational method to find G-invariant
Einstein metrics on G/K. LetMG

1 denote the set of all G-invariant metrics on G/K of
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volume one. Note that a metric g = 〈·, ·〉 as in (2.2) belongs to MG
1 if and only

if
∏q

i=1 xdi
i = 1, where di = dimmi. The space MG

1 is a flat Riemannian manifold
whose dimension is equal to the number of irreducible summands, since the isotropy
representation of G/K consists of pairwise nonequivalent irreducible representations
(see [BWZ, p. 693]). Let S = S (g) denote the scalar curvature of g = 〈·, ·〉. Then
T (g) = S (g) onMG

1 , since S = S (g) is a constant function, and the G-invariant Einstein
metrics of volume one on G/K are precisely the critical points of the restriction
S |MG

1
:MG

1 → R (see [Bes, p. 121]).
Following [WZ2], given a decomposition (2.1) we define triples [i jk], where

i, j, k ∈ {1, . . . , q} as follows: [i jk] =
∑
α,β,γ(A

γ
αβ)

2, where Aγ
αβ = Q([Xα, Xβ], Xγ) so

that [Xα, Xβ] =
∑
γ Aγ

αβXγ. Here by Xα, Xβ, Xγ we denote Q-orthogonal bases of the
submodules mi,m j and mk respectively. Note that [i jk] is nonnegative and symmetric
in i, j and k.

P 2.1 (See [WZ2]). The scalar curvature of (M = G/K, g = 〈·, ·〉) is given
by

S =
1
2

q∑
i=1

di fi
xi
−

1
4

∑
i, j,k

[i jk]
xk

xix j
, (2.3)

where the numbers fi are defined by −B|mi = fiQ|mi when i = 1, . . . , q.

3. Generalized flag manifolds and painted Dynkin diagrams

3.1. The algebraic description of a flag manifold. Let G be a compact simple
Lie group with trivial center and let γo be an element of its Lie algebra g. In this
section we will give the Lie-theoretic description of the generalized flag manifold
M = Ad(G)γo = G/K, where K = C(S ) is the centralizer of a torus S in G. Choose a
maximal torus T in G which contains the torus S and let h be the Lie algebra of T . Then
S ⊆ T ⊆C(S ) = K and T is also a maximal torus for the isotropy subgroup K. Thus G
and K satisfy rank G = rank K. We will denote by gC and hC the complexifications of
g and h respectively.

Let gC = hC ⊕
∑
α∈R g

C
α be the root space decomposition of gC with respect to the

Cartan subalgebra hC. Here R ⊆ (hC)∗ \ {0} is the root system of gC and gCα is the
root space associated to a root α. Let Π = {α1, . . . , α`} be a system of simple roots
for R, where dim hC = `. Fix a lexicographic ordering on (hC)∗ and let R+ be the set of
positive roots. For any α ∈ R choose root vectors Eα ∈ g

C
α such that B(Eα, E−α) = −1

and [Eα, E−α] = −Hα, where Hα ∈ h
C is determined by the condition B(H, Hα) = α(H)

for all H ∈ hC. In this way we obtain a natural isomorphism between hC and the dual
space (hC)∗. The normalized vectors Eα are such that

[Eα, Eβ] =

Nα,βEα+β if α, β, α + β ∈ R,

0 if α, β ∈ R and α + β < R,
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where Nα,β = N−α,−β ∈ R when α, β ∈ R. Then the real Lie algebra g is given by

g = h ⊕
∑
α∈R+

(RAα + RBα),

where Aα = Eα + E−α and Bα =
√
−1(Eα − E−α) when α ∈ R+ (see [Hel]).

As hC ⊆ kC ⊆ gC, there is a closed subsystem RK of R such that kC = hC ⊕
∑
α∈RK
gCα .

In particular, we can always find a subset ΠK ⊆ Π such that

RK = R ∩ 〈ΠK〉 =

{
β ∈ R : β =

∑
αi∈ΠK

kiαi, ki ∈ Z
}
,

where 〈ΠK〉 is the space of roots generated by ΠK with integer coefficients. Note that
kC is a maximal reductive subalgebra of gC and thus the decomposition kC = z(kC) ⊕ kCss
holds. Here z(kC) is the center of kC and kCss = [kC, kC] is its semisimple part. In fact, the
subset ΠK ⊆ Π is a system of simple roots for the complex semisimple Lie algebra kCss
and RK is the associated root system (see [Kim]). As usual, we set R+

K = R+ ∩ 〈ΠK〉,
RM = R \ RK and R+

M = R+ \ R+
K . Then it can be proved that p, given by

p = hC ⊕
∑
α∈RK

g
C
α ⊕

∑
α∈R+

M

g
C
α ,

is a parabolic subalgebra of gC (see [Ale]).
Let GC be the simply connected complex simple Lie group whose Lie algebra is gC

and let P be the parabolic subgroup of GC generated by p. The homogeneous space
GC/P is a compact, simply connected, complex manifold on which G acts transitively
(see [Wol]). In particular, the isotropy subgroup K = G ∩ P is a connected closed
subgroup of G which is identified with the centralizer of a torus S in G. Thus we
obtain the diffeomorphism GC/P �G/K. The complex representation GC/P implies
that M is a complex manifold, endowed with a G-invariant complex structure. The real
representation G/K = G/C(S ) implies that M is Kähler (see [Bor, Wan]). In general,
M admits several G-invariant Kählerian structures (see [Ale, BoH]).

We recall briefly the definition of painted Dynkin diagrams, following [AlA]. Take
ΠM = Π \ ΠK such that Π = ΠK t ΠM . Then all information contained in the pair
(Π, ΠK) can be presented graphically by the painted Dynkin diagram of M = G/K.

D 3.1. Let Γ = Γ(Π) be the Dynkin diagram corresponding to the system of
simple roots Π. By painting black the nodes of Γ corresponding to ΠM = Π \ ΠK , we
obtain the painted Dynkin diagram ΓΠM of the flag manifold G/K.

The subdiagram of white nodes with the connecting lines between them determines
the subsystem ΠK and hence the semisimple part of the Lie algebra of K. Further,
each black simple root, that is, each element of ΠM , gives rise to a U(1)-component,
and hence determines K. Note that we often make use of the diffeomorphism
SU(n) × U(1) � U(n). By using appropriate rules to determine whether different
painted Dynkin diagrams define isomorphic flag manifolds (see, for example, [AlA]),
we can obtain all flag manifolds G/K of a simple Lie group G.
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3.2. Flag manifolds with second Betti number one. We will now study the isotropy
representation for generalized flag manifolds M = G/K with second Betti number
b2(M) equal to one. Recall (see [BoH, p. 507]) that if M = G/K is a generalized
flag manifold defined by a pair (Π, ΠK), then

b2(M) = card(Π \ ΠK) = card(ΠM).

Typical examples of such spaces are the isotropy irreducible compact Hermitian
symmetric spaces. In Section 4, we will see that all flag manifolds with two isotropy
summands have second Betti number equal to one.

Flag manifolds M = G/K with b2(M) = 1 are obtained by painting black only one
simple root in the Dynkin diagram of G, that is, Π \ ΠK = ΠM = {αp} for some fixed
index p between 1 and `. Let g = k ⊕m be a (−B)-orthogonal reductive decomposition
of g. Due to the splitting R+

M = R+ \ R+
K , the Ad(K)-invariant subspace m is given by

m =
∑
α∈R+

M
(RAα + RBα). For a nonnegative integer n, we set

R+(αi, n) =

{
α ∈ R+ : α =

∑̀
j=1

m jα j ∈ R+, mp = n
}
,

and define Ad(K)-invariant subspaces mn of g by mn =
∑
α∈R+(αi,n)(RAα + RBα). Put

q = max{mp : α =
∑`

j=1 m jα j ∈ R+}. Then R+
M =

⋃q
n=1 R+(αi, n) and

m =

q∑
n=1

mn. (3.1)

For simplicity, we set m0 = k. Then when n, m ∈ {1, . . . , q}, we have (see [Ikw, Ith])

[k,mn] ⊆mn, [mn,mm] ⊆mn+m +m|n−m|, [mn,mn] ⊆ k ⊕m2n. (3.2)

Note that the mn are irreducible as Ad(K)-modules. Also, they are nonequivalent to
each other (see [Kim]). Thus (3.1) defines an irreducible decomposition of m, and any
G-invariant metric on G/K is given by (2.2). The following proposition describes the
unique Kähler–Einstein metric on M = G/K.

P 3.2 (See [Bor, BoH]). Let M = G/K be a flag manifold for which b2(M) =

1. Assume that (3.1) defines a decomposition ofm into q irreducible submodules. Then
M admits a unique G-invariant Kähler–Einstein metric given by

g = 〈·, ·〉 = 1(−B)|m1 + 2(−B)|m2 + · · · + q(−B)|mq .

4. Flag manifolds with two isotropy summands

4.1. The classification. Let G be a compact, connected, simple Lie group G and let
Π = {α1, . . . , α`} be a system of simple roots of the associated root system R. In [ArC],
the authors proved that flag manifolds M = G/K with m =m1 ⊕m2 are in a one-to-
one correspondence with pairs (Π, ΠK) of the form Π \ ΠK = ΠM = {αp} for which the
height of the simple root αp is 2. Recall that the height of a simple root αp ∈ Π is the
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positive integer cp in the expression for the highest root ã =
∑`

i=1 ciαi ∈ R in terms of
the elements of Π. We describe all these suitable pairs (Π, ΠK) in Table 2. Indeed, note
that any flag manifold M = G/K with two isotropy summands is such that b2(M) = 1.
Thus, with the notation of Section 3.2, it is sufficient to take R+(αi, n) = 0 where n ≥ 3,
that is, n ∈ {1, 2} and q = cp = 2.

4.2. A note on the dimensions of the irreducible submodules. For the flag
manifolds M = G/K corresponding to a simple Lie group G of type B`, C` or D`,
the simplest method to compute the dimensions of the irreducible submodules is
a straightforward computation of the isotropy representation χ, using the relation
AdG |K = AdK ⊕ χ (see [WZ1]).

E 4.1. We consider the flag manifold M = Sp(`)/U(p) × Sp(` − p). Results
are obtained similarly for the flag manifolds SO(2` + 1)/U(p) × SO(2(` − p) + 1) and
SO(2`)/U(p) × SO(2(` − p)). Let µp : U(p)→ Aut(Cp) and ν` : Sp(`)→ Aut(C2`) be
the standard representations of the Lie groups U(p) and Sp(`). It is known (see [WZ1])
that AdU(p) ⊗ C = µp ⊗C µ̄p and AdSp(`) ⊗ C = S2ν`, where S2 is the second symmetric
power of C2`. Then

AdSp(`) ⊗ C|U(p)×Sp(`−p) = S2(ν`|U(p)×Sp(`−p))

= S2(µp ⊕ µ̄p ⊕ ν`−p)

= S2 µp ⊕ S2µ̄p ⊕ S2ν`−p ⊕ (µp ⊗ µ̄p)

⊕ (µp ⊗ ν`−p) ⊕ ( µ̄p ⊗ ν`−p).

The term S2ν`−p corresponds to the complexified adjoint representation of Sp(` − p)
and the term µp ⊗ µ̄p corresponds to the complexified adjoint representation of
U(p). It follows that the complexified isotropy representation of M is given by
(µp ⊗ ν`−p) ⊕ ( µ̄p ⊗ ν`−p) ⊕ S2 µp ⊕ S2µ̄p. This is the direct sum of four complex
ad(kC)-invariant nonequivalent submodules of dimensions 2p(` − p), 2p(` − p),

(
p+1

2

)
and

(
p+1

2

)
respectively. The representations µ̄p ⊗ ν`−p and µp ⊗ ν`−p are conjugate to

each other, as are S2µ̄p and S2 µp. Thus m decomposes into a direct sum of two real
irreducible submodules m1 and m2 of dimensions 4p(` − p) and p(p + 1).

In order to compute the dimensions ofm1 andm2 for the exceptional flag manifolds,
we apply Weyl’s dimension formula for irreducible representations (see [GOV, Hel]).
For such a procedure one can use also the computer program on page 104 of the LiE
manual (see http://www-math.univ-poitiers.fr/~maavl/LiE/).

Let g be a complex semisimple Lie algebra with Cartan subalgebra h, and let
g = h ⊕

∑
α∈R gα be the corresponding root space decomposition. Let Π = {α1, . . . , α`}

be a system of simple roots for R and let R+ be the set of positive roots. Consider
the fundamental weights Λ1, . . . , Λ`, that is, the linear forms defined by the equation
2(Λi, α j)/(α j, α j) = δi j whenever i, j = 1, . . . , `. It is well known that {Λi} is a
basis of h∗, dual to the basis {hαi = 2αi/(αi, αi)} of h. Note that if A = (ai j) =

(2(αi, α j)/(αi, αi)) is the Cartan matrix of g (with respect to Π), then the relation
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T 2. Painted Dynkin diagrams of flag manifolds M = G/K for which m is reducible.

G (Π, ΠK) K
dimm1
dimm2

B`
c1 c2 . . .

(2 ≤ p ≤ `)

sp . . . c` − 1
> c` U(p) × SO(2(` − p) + 1)

4p(` − p) + 2p
p(p − 1)

C`
c1 c2 . . .

(1 ≤ p ≤ ` − 1)

sp . . . c` − 1
< c` U(p) × Sp(` − p)

4p(` − p)
p(p + 1)

D`
c1 c2 . . .

(2 ≤ p ≤ ` − 2)

sp . . . c�
H

cc` − 1

`

U(p) × SO(2(` − p))
4p(` − p)
p(p − 1)

E6 c s cc c c SU(5) × SU(2) × U(1)
40
10

c c cs c c SU(6) × U(1)
40
2

E7 c c cc c s c SO(10) × SU(2) × U(1)
64
20

s c cc c c c SO(12) × U(1)
64
2

c c cs c c c SU(7) × U(1)
70
14

E8 c c cc c c c s E7 × U(1)
112

2

s c cc c c c c SO(14) × U(1)
128
28

F4
c c > c s SO(7) × U(1)

16
14s c > c c Sp(3) × U(1)
28
2

G2
s > c U(2)

8
2
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between the simple roots and the fundamental weights is given by αi =
∑`

j=1 a jiΛ j

(see [GOV]).

P 4.2 (See [GOV]). Let ρλ : g→ End(V) be the finite-dimensional
representation of g on the complex vector space V with highest weight λ. Then

dimC ρλ =
∏
α∈R+

(
1 +

(λ, α)
(δ, α)

)
,

where the weight δ is given by δ = (1/2)
∑
α∈R+ α =

∑`
i=1 Λi.

Now let M = G/K be a generalized flag manifold such that m =m1 ⊕m2,
determined by a pair (Π, ΠK). Since m1 and m2 are Ad(K)-submodules, Weyl’s
formula takes the form

dimC mi =
∏
α∈R+

K

(
1 +

(λi, α)
(δK , α)

)
,

where λi is the highest weight of the submodulemi when i = 1, 2, and R+
K = R+ ∩ 〈ΠK〉

is the positive root system of the semisimple part of the isotropy subgroup K
and

δK =
1
2

∑
β∈R+

K

β.

E 4.3. We consider the exceptional flag manifold G/K = G2/U(2). The other
cases are similar. For the root system of G2, we use the notation of [AlA]. We fix a
system of simple roots Π = {α1, α2} = {e2 − e3, −e2}, and let

R+ = {α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}.

Then (α1, α1) = 2 and (α2, α2) = 2/3. The highest root α̃ is given by α̃ = 2α1 + 3α2.
The Cartan matrix A = (ai j) of G2 with respect to Π is given by

A =

(
2 −1
−3 2

)
.

The painted Dynkin diagram
α1s > cα2

determines the generalized flag manifold G2/U(2), where U(2) is represented by
the short root α2. Thus R+

K = {α2}. The highest weights of the irreducible Ad(K)-
submodules m1 and m2 are given by λ1 = α1 + 3α2 and λ2 = α̃ respectively. By using
the transpose of the Cartan matrix, we obtain α1 = 2Λ1 − 3Λ2 and α2 = −Λ1 + 3Λ2,
where Λ1, Λ2 are the fundamental weights of G2. Thus λ1 = −Λ1 + 3Λ2 and λ2 = Λ1.
Now we can use Weyl’s formula, and deduce that dimC m1 = (1 + (3/1)) = 4 and
dimC m2 = 1, therefore dimR m1 = 8 and dimR m2 = 2.
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5. Homogeneous Einstein metrics

5.1. The variational method. Let M = G/K be a generalized flag manifold with two
isotropy summands. Set d1 = dimm1 and d2 = dimm2. We will apply the variational
method for a G-invariant metric g = 〈·, ·〉 on M to prove Theorem 1.1.

P  T 1.1. First, we will use Proposition 2.1 to compute the scalar
curvature of (M = G/K, g = 〈·, ·〉). According to (2.2), the G-invariant metric g = 〈·, ·〉
has the form

〈·, ·〉 = x1(−B)|m1 + x2(−B)|m2 , (5.1)

where (x1, x2) ∈ R2
+. Thus the space MG

1 is a two-dimensional flat Riemannian
manifold.

Since G is simple, fi = 1 when i = 1, 2. In order to apply Proposition 2.1, we
need to find the triples [i jk], where i, j, k ∈ {1, 2}. Since [i jk] is symmetric in its
entries, [111] = [222] = 0. From (3.2), we obtain [m1,m2] ⊆m1, [m1,m1] ⊆m2 ⊕ k

and [m2,m2] ⊆ k. Thus [221] = [212] = [122] = 0 and the only nonzero triples are t =

[112] = [211] = [121]. By formula (2.3), we easily conclude that the scalar curvature
of (M = G/K, g = 〈·, ·〉) is given by

S (g) =
1
2

(d1

x1
+

d2

x2

)
−

1
4

(
t
x2

x2
1

+ 2t
1
x2

)
. (5.2)

Let V(g) = xd1
1 xd2

2 be the volume of the metric (5.1). In order to determine the
G-invariant Einstein metrics of G/K subject to the constraint V(g) = 1, we need to
study the critical points of the restricted scalar curvature S |MG

1
. According to the

Lagrange multiplier method, a metric g = (x1, x2) ∈MG
1 is a critical point of S |MG

1

if and only if it satisfies the equation ∇S (g) = c∇V(g), where ∇ denotes the gradient
field and c is the Einstein constant. Set S̃ = S − c(xd1

1 xd2
2 − 1). The volume condition

is given by ∂S̃ /∂c = 0. Thus a G-invariant Einstein metric of volume one is a solution
of the system

∂S̃
∂x1

= 0,

∂S̃
∂x2

= 0.


By (5.2), this is equivalent to

−
d1

2x2
1

+
tx2

2x3
1

− cd1xd1−1
1 xd2

2 = 0

t − d2

2x2
2

−
t

4x2
1

− cd2xd1
1 xd2−1

2 = 0.

 (5.3)

System (5.3) reduces to the polynomial equation

2td1x2
1 − 2d1d2x2

1 − td1x2
2 + 2d1d2x1x2 − 2td2x2

2 = 0. (5.4)
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Next, we need to find the nonzero number t = [112]. From Proposition 3.2, the space
G/K admits a unique Kähler–Einstein metric given by x1 = 1 and x2 = 2. Substituting
these values into (5.4), we obtain the equation 2td1 − 2d1d2 − 4td1 + 4d1d2 − 8td2 = 0,
from which we conclude that

t =
d1d2

d1 + 4d2
.

We substitute this number into equation (5.4) and normalize by setting x1 = 1. Then
we obtain the equation

d1d2(x2 − 2)(d1x2 + 2d2(x2 − 2)) = 0,

whose solutions are

x2 = 2 and x2 =
4d2

d1 + 2d2
.

The first solution determines a Kähler–Einstein metric, and the second solution
determines a non-Kähler G-invariant Einstein metric on G/K. �

E 5.1. Consider the flag manifold Sp(`)/U(p) × Sp(` − p) where p = 1 and
` ≥ 2. Then we obtain the generalized flag manifold M = Sp(`)/U(1) × Sp(` − 1),
which is the complex projective space CP2`−1. The painted Dynkin diagram iss c . . . c< c.

We see that d1 = dimm1 = 4(` − 1) and d2 = dimm2 = 2. Any Sp(`)-invariant
metric 〈·, ·〉 on CP2`−1 is determined by two positive parameters, x1 and x2, and has the
form (5.1). According to Theorem 1.1 the non-Kähler Sp(`)-invariant Einstein metric
on CP2`−1 is given by

〈·, ·〉 = 1(−B)|m1 +
2
`

(−B)
∣∣∣∣∣
m2

.

The same result was also obtained by Ziller [Zil], using the method of Riemannian
submersions.

5.2. The characterization of the constrained critical points. We will use a well-
known criterion (second-order partial derivatives) for minima, maxima, or saddle
points of smooth functions to show that both Einstein metrics obtained in Theorem 1.1
are local minima of S |MG

1
. We use the bordered Hessian H of S (g) restricted to the

space MG
1 of G-invariant metrics with volume one. This is the 3 × 3 real symmetric

matrix

H =



0 −
∂V
∂x1

−
∂V
∂x2

−
∂V
∂x1

∂2S̃

∂x2
1

∂2S̃
∂x1∂x2

−
∂V
∂x2

∂2S̃
∂x1∂x2

∂2S̃

∂x2
2


,
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where S̃ = S − c(xd1
1 xd2

2 − 1). Let det H(g) be the determinant of the value H(g) of H
at a critical point g ∈MG

1 . If |H(g)| > 0 then g is a local maximum of S |MG
1
, while if

|H(g)| < 0 then g is a local minimum of S |MG
1
, and if |H(g)| = 0 then g is a saddle point

(see [MaT]).

P  T 1.2. Since V = xd1
1 xd2

2 , we easily obtain

−
∂V
∂x1

= −d1xd1−1
1 xd2

2 and −
∂V
∂x2

= −d2xd1
1 xd2−1

2 .

From Equations (5.3), we also obtain

∂2S̃

∂x2
1

=
d1

x3
1

−
3tx2

2x4
1

− cd1(d1 − 1)xd1−2
1 xd2

2 ,

∂2S̃

∂x2
2

=
d2 − t

x3
2

− cd2(d2 − 1)xd1
1 xd2−2

2 ,

∂2S̃
∂x1∂x2

=
t

2x3
1

− cd1d2xd1−1
1 xd2−1

2 ,

where t = d1d2/(d1 + 4d2). We first examine the critical point g = (1, 2), that is, the
Kähler–Einstein metric of M. A computation shows that

|H(g)| = −(d1 + d2)d1d222d2−2
( d2

d1 + 4d2
+ c2d2

)
.

Since the Einstein constant c and the dimensions d1, d2 are positive real numbers, it
follows that |H(g)| < 0, thus the Kähler–Einstein metric is a local minimum of S |MG

1
.

For the critical point g = (1, 4d2/(d1 + 2d2)),

|H(g)| = −d1

( 4d2

d1 + 2d2

)2d2−2

×

(d3
1d2 + 5d2

1d2
2 + 6d1d3

2 + 2d4
2

(d1 + 2d2)(d1 + 4d2)
+ cd2

( 4d2

d1 + 2d2

)d2

(d1 + d2)
)
,

so |H(g)| < 0, and the G-invariant Einstein metric is also a local minimum of S |MG
1
. �
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