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ABSTRACT 

Vitamins B6 (i.e., pyridoxin and its analogues) and B7 (i.e., biotin or vitamin H ) are essential 

molecules for many physiological processes. In addition to their well-known involvement in 

several enzymatic reactions, recent discoveries revealed their participation in other processes, 

e.g. in gene expression via epigenetic processes, including biotinylation of proteins in the 

case of biotin. Plants, fungi, archaea and most bacteria synthesize both vitamins, whereas 

animals and humans lack enzymes for their biosynthesis and depend on their exogenous 

supply. At least in case of biotin, human gastrointestinal microbiota can likely partly satisfy 

the need. Both vitamins are water soluble and require a transporter for efficient absorption 

after oral administration; they can be rapidly excreted, hence being considered largely non-

toxic. In addition to physiological and kinetic aspects of vitamins B6 and biotin, this review, 

which is based on a search in PubMed up to 2023, covers sources of these vitamins, the 

impact of food treatment on their content, causes and symptoms of deficiency and specific 

mutations related to their function. Currently available literature on the analytical 

determination of these vitamins in biological fluids, possible pharmacological uses, and 

symptoms of toxicity, although rare, are also included. 

Keywords: pyridoxine; biotin; physiological; essential; toxicity 

ABBREVIATIONS 

AI   adequate intake 

CoA   coenzyme A 

GABA   gamma-aminobutyric acid 

IL   interleukin 

MCC   methylcrotonyl-CoA carboxylase 

PLP   pyridoxal 5'-phosphate 

PLPBP   pyridoxal phosphate-binding protein 

PNPO   pyridoxine phosphate oxidase 

SMVT   sodium-dependent multivitamin transporter 

TNF-α   tumour necrosis factor α 

TNSALP  tissue non-specific alkaline phosphatase  
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INTRODUCTION 

  Vitamins of the B-complex represent water-soluble molecules with essential roles in 

humans. The present review is a follow-up to our previous manuscript, in which we 

summarized the biological properties of the vitamins B1, B2, B3 and B5 
(1)

. Herein, we center 

on vitamins B6 and B7 (biotin) to provide a comprehensive summary of sources, properties, 

physiological functions, disorders that result from their deficiency and scientific information, 

which has been often overlooked since their discovery. We sought to cover all significant 

studies on the topic, including current trends and potential directions for future research. Such 

review has been previously missing in the available literature.  

METHODS 

  PubMed was used as the bibliography database and eligible publications were 

selected from 1938 to 2023. The following keywords were added to the query box: (Vitamin 

B6 AND properties) and (Vitamin B6 AND sources) and (Vitamin B6 AND pharmacokinetics), 

(Vitamin B6 AND physiological function), (Vitamin B6 AND pharmacological uses), (Vitamin 

B6 AND toxicity). Instead of vitamin B6 similar combination were used with pyridoxine, 

vitamin B7, and biotin. The eligibility criteria were: peer-reviewed journal articles or book 

chapters published in the English language. There were no exclusion criteria for the search.  

VITAMIN B6 

AN INTRODUCTION TO VITAMIN B6  

Vitamin B6, geneally but imprecisely known as pyridoxine, is a general term for 

water-soluble pyridine derivatives with the same physiological role. This vitamin comprises 

six related compounds – vitamers (Figure 1A), i.e. mentioned pyridoxine (or pyridoxole, an 

alcohol), pyridoxal (an aldehyde), pyridoxamine (an amine) and their 5'-phosphate esters, such 

as pyridoxal 5'-phosphate (PLP), pyridoxamine 5'-phosphate and pyridoxine 5'-phosphate. 

PLP is the biologically active form of vitamin B6 because it is a cofactor of most vitamin B6-

dependent enzymes in the organism 
(2, 3)

.  

Pyridoxine was discovered in 1934 by Hungarian physician Paul György and colleagues, and 

it was isolated in pure form shortly thereafter. Humans must acquire it from diet. Moreover, 
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PLP can be recycled from food and degraded vitamin B6 in the salvage pathway when the 

vitamin undergoes interconversion inside the cells and yields different forms, including active 

PLP (Figure 1B) 
(4, 5)

. Pyridoxine, pyridoxal and pyridoxamine are converted to their 

phosphorylated forms by the pyridoxine/pyridoxamine/pyridoxal kinase, while phosphatases 

hydrolyze phosphorylated vitamin B6 vitamers. Pyridoxine 5'-phosphate and pyridoxamine 

5'-phosphate are further oxidized to the active form, PLP by the enzyme pyridoxine 

(pyridoxamine) phosphate oxidase. 

SOURCES OF VITAMIN B6 

Natural sources of vitamin B6 

Plants, fungi, archaea and most bacteria synthesize pyridoxine, whereas animals and humans 

lack enzymes for its biosynthetic pathway and rely solely on the exogenous supply of the 

vitamin 
(3, 6-27)

. Vitamin B6 is widely distributed in foods of plant and animal origin. Whole 

grains, bananas, potatoes, pulses, nuts, beef, pork, poultry, organ meats, and fish are good 

sources for humans 
(28-50)

. Some herbs and spices (e.g., garlic, curry, and ginger)
(51)

, some 

gluten-free pseudocereals (e.g., amaranth)
(52)

, and royal jelly are also rich in vitamin B6 
(37, 53)

. 

In animal-derived foods, vitamin B6 is usually present in phosphorylated forms (mainly of 

pyridoxal and pyridoxamine) and, to a lesser extent, in the free one 
(23, 37, 54-56)

. There is 

limited information on the bioavailability of vitamin B6 from animal products in humans. The 

bioavailability is estimated to be generally high and, in many cases, almost complete. 

However, thermal processing reduces it by 25-30%; and the reaction between pyridoxal and 

pyridoxal phosphate with the ɛ-amino group of protein-bound lysine may be responsible for 

the decreased bioavailability 
(57-61)

. In plant-derived foods, the vitamin usually occurs as both 

free pyridoxine and in a glycosylated form, particularly as pyridoxine-β-D-glucoside, whose 

proportion can range depending on the plant species, from 5% to 75% of the total vitamin 

content 
(23, 28, 54, 57, 62-68)

. The glucoside is only partly cleaved enzymatically by hydrolases in 

the small intestine, and its bioavailability is about 50% and about 75% lower than that of free 

pyridoxine in humans and rats, respectively, i.e., apparently the capability of utilizing 

glycosylated form is species specific. The contribution of pyridoxine-β-D-glucoside to the 

total vitamin B6 intake in the average human diet is around 15%, hence the different types of 

vegetarian diet does not pose a risk for vitamin B6 deficiency. This fact is also supported by 

findings from a population-based survey comparing the vitamin B6 status among vegetarians, 
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pescatarians, flexitarians, and meat-eaters. However, individuals with a marginal intake of 

total vitamin B6 would be more prone to reduced nutritional status due to this incomplete 

bioavailability 
(28, 29, 46, 54, 57, 58, 62, 64, 69-83)

. The absolute bioavailability of vitamin B6 from a 

mixed diet is estimated to be about 75% 
(29, 44, 84-86)

. 

Vitamin B6 is synthesized in significant quantities by the microbiota of the human large 

intestine as well and this could represent a secondary exogenous source of the vitamin. 

Indeed, the existence of a specific carrier-mediated mechanism for pyridoxine uptake in 

human colonocytes was demonstrated. On the other hand, it is likely that a large portion of 

the vitamin produced by microbiota is taken up by non-synthesizing microbes. The extent of 

the contribution of microbially produced vitamin B6 to the overall body levels is unclear; 

there are no human studies to provide evidence for it 
(22, 28, 29, 37, 87-93)

. Amounts of vitamin B6 

in some selected foodstuffs are shown in Table 1. 

Antivitamins B6 

The diet can also contain antivitamins B6 that either compete for reactive sites of 

vitamin B6-requiring enzymes or directly inactivate the vitamin 
(37, 94)

. The best-known 

antivitamin B6 is probably ginkgotoxin (4'-O-methylpyridoxine), which occurs in different 

tissues of the tree Ginkgo biloba, with the highest concentrations being present in seeds. 

Ingestion of ginkgotoxin can lead to abdominal pain, epileptiform convulsions, and loss of 

consciousness due to the mentioned interference with vitamin B6. As seeds are a food source 

in Southeast Asia, including China, Japan, and Korea, and extracts from leaves are used in 

pharmaceutical products worldwide, they represent a potential health risk 
(3, 95-112)

. Indeed, 

ginkgotoxin and its derivatives found in the African trees of the genus Albizia (e.g., A. 

tanganyicensis, A. versicolor, A. julibrissin, and A. lucida) are the cause of poisoning of 

livestock (cattle and sheep); one of the most important agricultural problems in South Africa 

(3, 101, 113)
. Flaxseed contains the vitamin B6 antagonists, 1-amino-D-proline, and its precursor, 

the dipeptide linatine. Their possible deleterious effects through the consumption of flaxseed 

deserve attention in individuals with moderate vitamin B6 status 
(94, 114-118)

. Gyromitrin (N-

methyl-N-formylhydrazone) from a toxic mushroom Gyromitra esculenta (genus Gyromitra 

is also known as false morrel) is converted to (mono)methylhydrazine after ingestion, which 

is able to inhibit pyridoxal kinase and hence depletes vitamin B6. Intoxication usually occurs 

about 10 hours after the ingestion of fresh or dried mushrooms. It gives rise to poisoning 
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symptoms such as confusion and seizures. Interestingly, during cooking, methylhydrazine 

volatilizes, and poisoning occurs also after inhalation of these vapours 
(118-122)

. Similarly, 

agaritine containing a hydrazinic moiety in its structure is a toxic principle of various 

Agaricus species, e.g., edible button mushroom Agaricus bisporus 
(118, 121, 123)

. The content of 

both toxins in fungi may be decreased by processing, such as boiling in water, drying, and 

freezing 
(121, 124, 125)

. Other natural vitamin B6 antagonists, which are of little significance to 

human nutrition, are toxic non-proteinogenic amino acids occurring in some leguminous 

plants: mimosine in Mimosa and Leucaena species, and canavanine and canaline in 

Canavalia species 
(118, 126-132)

. 

Effects of food processing on vitamin B6 content 

 Food processing is the transformation of agricultural products into foods for human 

consumption. Primary processing is the conversion of the inedible raw products into food 

ingredients. Secondary processing involves the conversion of food ingredients into edible 

foods. Tertiary processed foods are commercially prepared foods. Products from primary 

processes make up the major part of the human diet as they are either consumed raw or used 

as ingredients in secondary and tertiary processes 
(133)

. Food processing may alter the vitamin 

B6 content 
(134, 135)

. A rough overview of major data on vitamin B6 losses in some food groups 

due to processing is in the Table S1 in Supplementary data. More data on specific foods, 

information on conditions, and comments are in the text below. 

Milling and refining of cereals 

 The primary processing of cereals (milling and refining) that separates the bran and 

germ, which are rich in micronutrients, from starchy endosperm causes considerable losses of 

vitamin B6 
(136-141)

. Milling reduces the value of the vitamin B6 content in maize by 65–75% 

(137, 142-146)
. The vitamin B6 content decreases by 66–89% in white wheat flour, compared to 

wholegrain one 
(45, 136-138, 142-144, 147)

. The content of vitamin B6 is likewise 64% and 79.5% 

lower in refined than in wholegrain rye and sorghum flour, resp. 
(144)

. Vitamin B6 losses in 

non-parboiled and parboiled white rice are 42–86% and 12–26%, resp., compared to brown 

rice. The decline in vitamin B6 in parboiled rice is lower, in contrast to the non-parboiled one, 

because a part of the vitamin diffuses from the vitamin-rich outer bran layer into the 

endosperm during the parboiling process that takes place before milling 
(68, 137, 142, 143, 148-152)

. 
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The secondary processing of cereals, such as breadmaking, rice cooking, and nixtamalization 

of maize, brings on additional vitamin B6 losses. They are discussed below (Processing of 

plant-based foods). 

Properties of vitamin B6 and mechanisms of vitamin losses during food processing 

Vitamin B6 losses during processing and storage of food can occur in several ways. 

Being soluble in water, leaching is one of the principal causes. Vitamin B6 in foods is stable 

under acidic conditions but unstable in neutral and alkaline environments, particularly when 

exposed to heat or light. The acidic aqueous solutions of vitamin B6 may be heated without 

decomposition as vitamin B6 is destroyed by ultraviolet radiation in neutral or alkaline 

solutions but not in acidic solutions. Vitamin B6 is normally stable to oxygen. Of the several 

vitamers, pyridoxine is far more stable than pyridoxal and pyridoxamine. Therefore, the 

processing losses of vitamin B6 tend to be highly variable, with plant-derived foods 

(containing mostly pyridoxine) losing little of the vitamin and animal products (containing 

mostly pyridoxal and pyridoxamine) associated with higher losses 
(37, 59, 87, 132, 134, 135, 147, 153-

166)
. 

Processing of animal-based foods 

Boiling, stewing, roasting, and frying reduce the vitamin B6 content by 55%, 33–58%, 

30%, and 40–45%, resp., in pork, by 60–77%, 55–57%, 40%, and 55–58%, resp., in beef, and 

by 40–58%, 40–47%, 50% and 45–56%, resp., in chicken, depending on cooking temperature 

and time 
(161, 167-171)

. In whole meat dishes, including cooking liquid, gravy, juice, or soup, 

about 15–20% more vitamin B6 remains owing to retention of the vitamin leached into the 

water phase 
(168, 170, 172-174)

. Fried breaded meats contain 5–35% more vitamin B6 than those 

without breading, which may assist in trapping the liquid and, therefore, decreasing the loss 

of water-soluble vitamins 
(170, 175)

. About 9% of vitamin B6 was lost from pork and beef when 

the drip exuding from the frozen meat during thawing was discarded 
(176, 177)

. The cooking 

loss of vitamin B6 in fish meat (gilthead seabream, anchovy, and Atlantic bonito) was 55–

85% and 60–89% when grilled and baked, resp., due to thermal degradation and leakage of 

the vitamin in the lost water 
(178)

. Heat-induced reduction of vitamin B6 in milk is usually 5–

20%, 5–10%, 5–20%, 10–50%, and 40% for boiled, pasteurised, ultra-high temperature 

treated, sterilised, and condensed milk, resp., compared to raw milk 
(134, 170, 179-184)

. Hard 
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cooked, poached, scrambled, baked, and fried eggs lose during cooking 20–23%, 15%, 10%, 

10%, and 10% of the vitamin B6, resp. 
(170, 185, 186)

.  

Processing of plant-based foods 

Boiling, steaming, and frying lead usually to vitamin B6 loss of 30–35%, 15%, and 

10%, resp., in vegetables alone and to that of about 10%, taking total dish into account 
(168, 

170)
. In chickpeas, microwave cooking, autoclaving, and boiling caused a decline of 19%, 

34%, and 42% in the vitamin B6 content, resp. 
(187)

. The amount of vitamin B6 in potatoes is 

reduced by 30–57%, 21%, and 10% during boiling, baking, and deep frying, resp. 
(161, 169, 188)

. 

The way of cooking rice influences the content of vitamin B6. In different rice varieties, the 

boiling cooking method (cooking rice with extra water and then eliminating the water) led to 

vitamin losses of 3-74%, compared with the traditional cooking method (cooking with a 

constant amount of water without removing the water) 
(189)

. During breadmaking, the vitamin 

B6 content decreased on average by 33% and 62% in whole and white wheat bread, resp., in 

comparison to the whole and white wheat flour 
(190, 191)

. Similar results were obtained during 

rye sourdough bread production 
(192)

. Toasting wheat bread induced an increase in vitamin B6 

by 75% due to its release from glycosidic bound forms 
(191)

. Effects of extrusion techniques 

on vitamin B6 retention in cereal grains showed a reduction by 0–23% and by 65% in maize 

grits and oat whole grains, respectively 
(193)

. Drying of tarhana, a traditional Turkish 

fermented cereal food, resulted in vitamin B6 losses of 3%, 16%, and 23% at temperatures of 

50°C, 60°C, and 70°C, resp. 
(194)

. A decrease in vitamin B6 content in nuts varied from 2–

7.5% in almonds up to 4–34% in pistachio nuts after roasting 
(195, 196)

. Alkali-processing of 

corn grains to masa (nixtamalization) resulted in a loss of 23% vitamin B6 
(145)

. The highly 

variable content of vitamin B6 in beer is affected by several factors, including raw materials 

and the brewing process 
(197-199)

. Germination is an effective way to improve the nutrition 

value of edible seeds: increases of 54%, 78%, and 26% in the vitamin B6 content occurred in 

germinated lentils
(200)

, rough rice
(201)

, and faba beans
(202)

, resp. On the other hand, the vitamin 

B6 levels decreased by 11%, 13%, and 50% in germinated wheat
(203)

, brown rice
(201)

, and 

sorghum
(204)

, resp., after germination. 
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Food preservation and storage 

Canning, a food conservation method, brought on vitamin B6 reduction of 46%, 34%, 31%, 

and 18% in mushrooms, whole peeled tomatoes, white asparagus, and lentils, compared to 

the respective unprocessed products 
(205)

. Ionizing irradiation, a method used for food 

preservation, has a low effect on vitamin B6; losses ranging from zero in wheat to about 15% 

in fish were observed 
(206, 207)

. 

The amount of vitamin B6 in button mushrooms significantly declined by 23% and 

45% after 6 and 12 months, resp., during frozen storage at - 20°C 
(208)

. The content of vitamin 

B6 decreased gradually in aseptically packaged ultra-high temperature treated milk during 

storage at room temperature, resulting in a 96% loss after 20 weeks 
(183)

. No remarkable 

changes and a 20% decline in the vitamin B6 content happened in vacuum-packaged broccoli 

au gratin and salmon, resp., stored at room temperature either on the Earth or exposed to 

spaceflight for 880 days; the vitamin from flight samples did not degrade faster than that 

from ground controls 
(209)

. The investigation of the influence of storage conditions on vitamin 

B6 retention in the freeze-dried tuna mornay meal (containing tuna, vegetables, and pasta) 

fortified with that vitamin showed a mean decrease of 14% in the vitamin following storage 

at temperatures of 1°C, 30°C, and 40°C for up to 24 months 
(210)

. The vitamin B6 losses in 

meals in two hospital foodservice systems, the cook/hot-hold one, where food is held hot 

from the time of cooking to service, and the cook/chill one, where the cooked food is chilled, 

stored, and reheated, have also been summarized and compared 
(211)

. 

Industrial production of vitamin B6 

Pyridoxine hydrochloride, which is mainly used in pharmaceutical preparations, 

dietary supplements, and as an additive in food and feed, is manufactured by chemical 

synthesis 
(29, 37, 60, 84, 87, 158, 212-219)

. All present-day industrial vitamin B6 syntheses use the 

Diels-Alder reaction of a diene (4,5-substituted oxazoles) and a dienophile (alkyldioxepins) 

as a key step 
(158, 220-225)

. An alternative to the current chemical processes might be 

environmentally sustainable bioprocesses based on the microbial vitamin B6 fermentation, 

which is of great interest to the biotechnological industry. Several attempts have been made 

to construct overproducing strains by genetic engineering of microorganisms like 

Sinorhizobium meliloti, E. coli, and Bacillus subtilis. Unfortunately, production levels are too 
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low for being cost effective. Therefore, major metabolic engineering efforts are still required 

for developing fermentation processes that could outcompete the chemical synthesis of 

vitamin B6. The main bottlenecks are insufficient activities of some enzymes in the 

biosynthetic pathway and accumulation of toxic intermediate metabolites 
(226-237)

. 

Food fortification and biofortification with vitamin B6 

Food fortification is defined as the practice of deliberately adding an essential 

micronutrient to the food that is commonly consumed by the general population with the 

intention of improving the nutritional quality of the food supply and providing a public health 

benefit with minimal risk to health 
(238-240)

. Foods fortified with vitamin B6, similarly to 

dietary supplements, constitute an additional dietary source of the vitamin 
(60, 150, 241-246)

. 

Overall, vitamin B6 deficiency is rare in the general healthy population 
(8, 29, 44, 150, 243, 246-250)

. 

It may be a concern in high-income as well as low-income countries in certain groups 
(142)

, 

such as older adults 
(245, 251-254)

 people of low socio-economic status, and those experiencing 

food insecurity 
(142, 241, 244, 245, 250)

. As for 2022, some countries, mostly but not solely located 

in Africa, have mandatory fortification of wheat flour (most often), maize flour, and/or rice 

with vitamin B6 (Nicaragua, Panama, Cuba, Peru, Jordan, Palestine, Nigeria, Chad, Ethiopia, 

Kenya, Uganda, Rwanda, Burundi, Tanzania, Mozambique, Zimbabwe, and South Africa) 

(255-257)
. There is a voluntary fortification with vitamin B6 in many other countries, such as the 

United States of America, the Dominican Republic, Eswatini, India, Bangladesh, Myanmar, 

the United Kingdom, and countries of the European Union; the vitamin is added to various 

foods, such as atta, maida, rice, breakfast cereals, beverages, and cereal-based foods for 

infants and young children 
(28, 60, 142, 150, 217, 255, 256, 258-265)

. 

Biofortification is a process of increasing the density of micronutrients (vitamins and 

minerals) in a crop and comprises (sensu stricto, i.e., omitting agronomic practices) 

conventional plant breeding and genetic engineering approaches. It differs from fortification 

because it aims to make plant foods naturally more nutritive rather than adding nutrients to 

the foods during the food processing. Biofortification is an ideal strategy to improve nutrition 

for rural and poor communities that rely on subsistence farming for nutrition or may not have 

access to diverse diets, supplements, and fortified foods. Biofortification complements 

existing interventions and may help by increasing the daily adequacy of micronutrient intakes 

among the most vulnerable micronutrient deficient people 
(142, 239, 266-268)

. Vitamin B6 is de 

novo synthesized by plants, and therefore, biofortification could be a promising route to 
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enhance food quality by increasing the vitamin levels in plants in the future 
(8, 269-271)

. 

Analysis of the natural diversity of vitamin B6 content in wheat, rice, and potato germplasm 

has shown limited variation, so breeding strategies do not seem to be adequate to increase the 

vitamin content in those crops
(68, 142, 272, 273)

, in contrast to maize, where remarkable wide 

ranges in vitamin B6 levels among various genotypes was recently reported 
(274)

. Most efforts 

to date have used genetic engineering approaches. Biosynthesis of vitamin B6 is primarily 

controlled by two enzymes making vitamin B6 biofortification an attractive target for plant 

geneticists. Overexpression of genes encoding one or both enzymes leads to the enhanced 

accumulation of vitamin B6 in transgenic plants, compared to the untransformed ones: 0.86-

1.25-fold in tobacco plant, 1.45-4-fold in Arabidopsis seeds, 0.16-34.96-fold in wheat seeds, 

1.6-3.9-fold in rice seeds, 3-16-fold in cassava roots, and 1.07-1.5-fold in potato tubers. 

Interestingly, enhancing vitamin B6 levels in plants may also positively affect their tolerance 

to environmental stress 
(27, 142, 268-270, 275-280)

. All the biofortification attempts revealed the 

feasibility of raising the vitamin B6 amounts in plants. So far, the vitamin B6 contents in 

transgenic plants are low and highly variable. Regardless, more research for understanding 

the regulatory mechanisms that control genes involved in the biosynthesis and metabolism of 

vitamin B6 in plants is needed 
(225, 269)

. 

PHARMACOKINETICS OF VITAMIN B6 

The total content of vitamin B6 in the adult human body is about 170 mg 
(281)

. 

Vitamers B6 are absorbed in the upper small intestine (jejunum) from diet and/or oral 

supplements. In addition to the dietary source of the vitamin, humans might also receive 

vitamin B6 from the bacterial microbiota in the large intestine as mentioned above 
(88, 282, 283)

. 

All vitamin B6 analogues i.e. pyridoxine, pyridoxamine, and pyridoxal are present in the diet. 

Phosphorylated forms undergo dephosphorylation by the means of phosphatases prior 

absorption into epithelial cells and prior release into the portal system. Phosphorylated forms 

are poorly diffusible and, in fact, they are trapped in the cells and a dephosphorylation step is 

necessary for their efflux. The bioavailability of vitamin B6 from supplements is about 95%, 

whereas the bioavailability of pyridoxin, pyridoxal and pyridoxamine is similar. The presence 

of fiber in plant sources reduces bioavailability by 5-10%, while the presence of pyridoxine 

glucoside reduces bioavailability by 75-80%. On average, the bioavailability of vitamin B6 

from a mixed diet can be estimated to be about 75%. In fact, absorption in the intestine is 

mediated both via passive diffusion (i.e. large amount is readily absorbable without cell 
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saturation) and a carrier mediated mechanism (i.e. saturable mechanism). In humans, there is 

carrier-mediated transport of B6 vitamers via the vitamin B1 (thiamine) transporters THTR1 

and THTR2, which belong to the SLC19A2 and SLC19A3 families 
(284)

. The maximum 

concentration (Cmax) of pyridoxine is usually achieved within 5.5 hours 
(285, 286)

. In the liver, 

all forms of dephosphorylated vitamin B6 are rephosphorylated and finally converted to 

pyridoxal 5'-phosphate in the hepatocytes. Several enzymes, such as ATP-dependent 

pyridoxine/pyridoxamine/pyridoxal kinase, phosphatases and flavin 

mononucleotide-dependent pyridoxine phosphate oxidase (PNPO) are involved in these 

reactions. PNPO converts pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate 

(PMP) into pyridoxal 5'-phosphate (PLP) (Figure 1B).  

Pyridoxal phosphate further binds to albumin in the liver, and it is released into the 

circulation, where it forms approximately 60 % of total circulating B6 with lesser amounts of 

all three dephosphorylated forms. After dissociation from albumin and dephosphorylation by 

alkaline phosphatase, free pyridoxal is taken up by erythrocytes and then trapped inside cells 

in the form of PLP 
(287-292)

. 

Plasma PLP is the most common parameter for determination of vitamin B6 status. Its 

usual concentration is more than 30 nM in adults 
(5)

. PLP is utilized as a cofactor of many 

enzymes related to a row of metabolic pathways 
(293, 294)

 as will be discussed below. 

Circulatory PLP passes into breast milk, crosses also physiological barriers such as placental 

and blood-brain barriers. The same mechanism as in other organs is described for the brain 

entry and storage, i.e. initial dephosphorylation in the blood-brain barrier by the means of 

tissue non-specific alkaline phosphatase (TNSALP) followed by uptake and entrapping of the 

vitamin in neurons after phosphorylation to PLP 
(295)

.  

The major inactive metabolite of PLP is 4-pyridoxic acid. It is formed in the liver and 

excreted in the urine (Figure 2). Urinary excretion of this metabolite greater than 3 mmol/day 

can be used as a marker of adequate short-term vitamin B6 status. Its half-life appears to be 

15–20 days 
(296)

. 

Although there is not a large storage of vitamin B6 in tissues, probably due to the fact that 

human organism requires only small amounts of vitamin B6 from food sources since the 

biologically active form PLP can be formed not only by interconversion from different B6 

vitamers, but also using the cofactor from degraded enzymes in the salvage pathway. 
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PHYSIOLOGICAL FUNCTION OF VITAMIN B6 

The active form of vitamin B6, PLP, acts as a coenzyme in more than 140 different enzymatic 

reactions necessary for vital cellular processes 
(8)

. This function is enabled by the highly 

reactive aldehyde group of PLP, that forms Schiff bases with ε amino group of lysine residue 

at the active centre of PLP dependent enzyme. On the other hand, binding to lysine residues 

on some hormonal receptors is responsible for transcriptional modulation. Moreover, the 

aldehyde group can react with other amino acids in proteins, especially with cysteine or 

histidine 
(297)

. 

PLP is involved in various pathways, such as: 

 Some steps during the metabolism of amino acids, e.g. transamination, 

decarboxylation, and racemization processes. Metabolic transformation of sulphur-

containing amino acids, e.g. the conversion of methionine to cysteine through the key 

intermediate homocysteine or S-adenosylmethionine. Elevated levels of circulating 

homocysteine in the blood are associated with an increased risk of cardiovascular 

diseases, and S-adenosylmethionine is a methyl donor for many methylation 

reactions, e.g. methylation of proteins, DNA and RNA and others 
(298-301)

. In addition, 

cysteine synthesized by this transsulfuration pathway is an important contributor to 

glutathione synthesis, which plays a role in oxidative stress and the antioxidant 

defense system. 

 Some processes during carbohydrate metabolism, e.g. degradation of stored 

carbohydrates such as glycogenolysis, when PLP is a cofactor for glycogen 

phosphorylase. PLP also plays a role in the reactions that generate glucose from 

amino acids in the process known as gluconeogenesis 
(302-304)

. 

 Lipid metabolism, especially biosynthesis of sphingolipids, which are important for 

myelin formation, and their breakdown 
(305)

. 

 Biosynthesis of many neurotransmitters, particularly the formation of serotonin from 

tryptophan and the synthesis of epinephrine (adrenaline), norepinephrine 

(noradrenaline), dopamine (3,4-dihydroxyphenethylamine) from phenylalanine and 

tyrosine. PLP also controls the formation and regulation of the inhibitory transmitter 

γ-aminobutyric acid (GABA) in the brain and the neuromodulator serine 
(84, 306-309)

. 

 Catabolism of tryptophan and its conversion to niacin, that requires enzyme 

kynureninase, also necessitates vitamin B6 
(310-313)

. 
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 Biosynthesis of tetrapyrroles (e.g. heme). PLP is needed for the enzymatic reaction 

using succinyl-CoA and glycine to generate δ-aminolevulinic acid, an intermediate 

precursor in tetrapyrrole biosynthesis 
(314, 315)

. 

 Immune and inflammatory pathways, especially regulation of cytokine production, 

particularly interferons and interleukin 6 
(316, 317)

. 

Besides the role of PLP as a cofactor in biochemical reactions, vitamin B6 also plays other 

important roles in non-enzymatic functions, e.g.,  

 PLP inhibits enhancement in gene expression by steroid and thyroid hormones, and 

vitamins A and D by binding to lysine residues in the hormone-receptor complexes 

(318, 319)
. 

 Antioxidative activity by scavenging reactive oxygen species and chelating of redox-

active metal ions 
(320-322)

. 

VITAMIN B6 DEFICIENCY AND RELATED DISORDERS 

Severe vitamin B6 deficiency resulting from inadequate intake (especially from dietary 

deficit) is rare in the healthy general population. Hypovitaminosis is usually found in 

association with other B vitamin deficiencies, such as those of folic acid (vitamin B9) and 

vitamin B12. As aforementioned, it should be emphasized that dietary vitamin B6 deficiency 

can occur in elderly people (aged 65 years and over) 
(323)

. Secondary vitamin B6 deficiency is 

mostly a result of genetic disorders or drug interactions 
(324, 325)

. 

Due to involvement of vitamin B6 in many metabolic pathways, lack of sufficient 

amount of vitamin B6 vitamers causes various biochemical changes and may lead to 

significant health problems. In particular, PLP is essential in the synthesis and metabolism of 

amino acids and neurotransmitters. Loss of function of PLP-dependent enzyme glutamate 

decarboxylase leads especially to decreased levels of the inhibitory neurotransmitter GABA.  

Vitamin B6 deficiency in humans is associated with seborrheic dermatitis and cheilosis 

(including cracks at the corners of the mouth), glossitis with ulceration, anaemia, sensory 

polyneuropathy, depression, decreased immune function and increased risk of cardiovascular 

diseases. In children, characteristic symptoms of deficiency are abnormalities in hearing and 

seizures.
(84)

 Seizures are the results of an imbalance between excitatory (glutamate) and 

inhibitory (GABA) neurotransmitters 
(326-328)

. 
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In the population, there are certain groups of people at increased risk of vitamin B6 

inadequacy. People with impaired absorption especially due to malabsorption syndromes 

(usually associated with Crohn´s disease and ulcerative colitis) and after bariatric surgery 

have low vitamin B6 levels. Patients with renal disease, predominantly with chronic renal 

insufficiency undergoing dialysis, and liver disease tend to have low plasma PLP 

concentrations. Also, alcoholics need vitamin B6 supplementation because alcohol is 

metabolized to acetaldehyde, which decreases PLP formation in cells and competes with PLP 

for protein binding. Additional groups at risk of vitamin inadequacy despite adequate dietary 

intakes are not solely elderly persons but also those with autoimmune disorders (e.g. 

rheumatoid arthritis), who are obese and in pregnancy or who are taking oral contraceptives 

(329-332)
. Analytical methods for the detection of vitamin B6 are summarized in Table 2. More 

details are shown in Supplementary Data Table S2, which evaluates individual specific 

methodologies with the relevant citation from which the information was obtained 

Pyridoxine-dependent epilepsy 

Pyridoxine-dependent epilepsy (pyridoxine-dependent seizures, vitamin B6-responsive 

epilepsy) is a rare inherited metabolic disease characterized by recurrent seizures with their 

onset usually in prenatal, neonatal, and postnatal period or in childhood. Seizures are caused 

primarily by low levels of GABA due to PLP deficiency, nevertheless, other abnormalities 

are involved, e.g. low levels of adenosine and methionine cycle defects. This type of epilepsy 

responds to high intravenous doses of vitamin B6, either as pyridoxine or as its active form 

PLP, but are resistant to conventional antiepileptic drugs 
(333)

. Decreased PLP availability in 

this disease is caused by mutations in some genes involved in vitamin B6 metabolism, e.g.,:  

 Mutation in ALDH7A1, a gene encoding antiquitin, the enzyme with α-aminoaddipic 

semialdehyde dehydrogenase activity, involved in lysine degradation. Antiquitin 

deficiency leads to the accumulation of the toxic lysine  

intermediates α-aminoadipic semialdehyde and 1-piperideine-6-carboxylic acid, 

inactivating PLP by chemical complexation 
(334-336)

. 

 Mutation in ALDH4A1 gene occurring in metabolic disease hyperprolinaemia II 

causes the formation of pyrroline-5-carboxylate, a compound structurally similar to 

1-piperideine-6-carboxylic acid, that leads to the inactivation of PLP as well 
(337, 338)

. 

 Mutations in PNPO gene influencing PLP recycling and synthesis 
(339-341)

. 
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 Mutations in the pyridoxal phosphate-binding protein (PLPBP) gene (formerly called 

proline synthetase co-transcribed homolog). PLPBP protects PLP from damage by 

intracellular phosphatases 
(342-345)

. 

 Mutations in the ALPL gene encoding tissue non-specific alkaline phosphatase 

(TNSALP) in metabolic disorder hypophosphatasia 
(346)

. 

 Mutations in the PIGV, PIGO and PGAP2 genes responsible for the development of 

hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). These 

genes play a crucial role in the production of glycosylphosphatidylinositol anchor, 

that binds TNSALP to the cell membrane. Mutations result in the production of 

unfunctional glycosylphosphatidylinositol anchor and subsequent release of TNSALP 

in the blood (= hyperphosphatasia) 
(347)

. 

These metabolic diseases associated with defects in vitamin B6 are summarized in Table 3. 

CLINICALLY USED DRUGS AS ANTIVITAMINS B6  

In addition to natural antivitamins B6, there are also certain clinically used drugs having the 

same effect. Drugs such as theophylline (a bronchodilator used in the treatment of respiratory 

diseases, e.g. asthma) and caffeine (psychostimulant) directly inhibit pyridoxal kinase, 

enzymes involved in activation of PLP. In the case of caffeine, such effects are probable 

solely in intoxication. The result is a PLP deficiency with accompanying reduction in PLP-

dependent enzymes activities and known consequences including neurotoxic reactions, e.g. 

peripheral neuropathy, restlessness, agitation, tremor and seizures 
(348-350)

. It should be 

mentioned that standardized extract from Ginkgo biloba are easily available and used in the 

therapy of a number of conditions, such as peripheral circulatory disturbances, dizziness, 

tinnitus, etc. 
(98, 351, 352)

. Hydrazine derivatives includes, beyond aforementioned gyromitrin, 

also antituberculosis drug isoniazid (isonicotinic acid hydrazide). Administration of this drug, 

in particular in overdose, results not only in the inhibition of pyridoxal kinase by the isoniazid 

metabolite (hydrazone), but also the inactivation of PLP occurs by other isoniazid metabolites 

(hydrazines and hydrazides), that form e.g. isonicotinilhydrazide, a compound that is easily 

excreted in the urine 
(353)

. Another antituberculosis drug cycloserine reacts with PLP forming 

covalent complexes that might inhibit pyridoxal kinase 
(354)

. Another group of drugs, 

including penicillamine and levodopa, form complexes with PLP, but they do not inhibit 

pyridoxal kinase 
(355, 356)

. Additionally, antiepileptic drugs (phenytoin, valproic acid, 
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carbamazepine) increase metabolism of vitamin B6 vitamers, resulting in low PLP plasma 

levels 
(357)

. 

DIETARY RECOMMENDATION AND PHARMACOLOGICAL USE OF VITAMIN B6 

Vitamin B6 is available in both multivitamin preparations with other B vitamins but also as a 

single vitamin preparation. Oral tablets or solutions for parenteral (intravenous, 

intramuscular) administration are the most common forms; they usually contain pyridoxine 

hydrochloride or sometimes PLP. 

In adults, the current recommended dietary allowances range between 1.3–2.0 mg/day. 

During pregnancy, lactation and elderly, the requirement is increased 
(286)

. Recommendations 

for pyridoxine intake according to age and gender are listed in Table 4. 

As a supplement, vitamin B6 is used especially in cases of its deficiency, which may be due 

to insufficient intake or increased need, as specified above. As a medication, pyridoxine or 

PLP are given prophylactically or therapeutically to patients with pyridoxine-dependent 

epilepsy. In newborns with hereditary syndrome, it is necessary to administer this vitamin in 

the first week of life to prevent mental retardation or anaemia, and lifelong therapy is 

necessary. In the literature, however, there is a lack of congruence regarding dose 

recommendations. The optimal dosage should ensure control of epileptic seizures, and, at the 

same time, the absence of side effects in a particular patient. In fact, adequate dosage of 

pyridoxine requires an individualized regimen according to the desired goal of therapy and 

tolerance of adverse effects. 

Higher doses of pyridoxine are initially administered, e.g. in newborns 200 mg/day 

orally, and are usually gradually reduced to a tolerated level as part of maintenance therapy, 

e.g. 50-100 mg/day, after one week. Oral therapy with the active metabolite PLP is also 

successful in some types of seizures, e.g. due to the mutations in PNPO. Vitamin B6 might 

improve certain congenital PLP-enzymopathies such as cystathioninuria, homocystinuria 

with accompanying vitamin B6 deficiency 
(286, 333, 339, 358)

. 

Pyridoxine is also used as an antidote, in cases of overdose with antivitamins B6, such 

as isoniazid, cycloserine, penicillamine and in cases of poisonings with Gyromitra mushroom 

and Ginkgo biloba seeds. It is also recommended in ethylene glycol poisoning, because, as a 

cofactor, it is able to improve the conversion of glyoxylic acid, a toxic metabolite, into 

glycine 
(359)

. Vitamin B6 is sometimes given prophylactically in drug-induced deficiencies 

(e.g. due to isoniazid) to prevent the development of peripheral neuritis 
(360)

. 
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 In addition, this vitamin can be prescribed for the treatment of a number of other 

health conditions associated with vitamin B6 deficiency including sideroblastic anaemia 
(315)

. 

Supplementation reduces the risk of cardiovascular diseases as vitamin B6 seems to have 

cardiovascular protective effects via mechanisms related to homocysteine, tryptophan-

kynurenine pathways and increased levels of carnosine or anserine, which have antioxidant 

and anti-inflammatory properties 
(361)

. Furthermore, pyridoxine is used empirically, e.g. in 

nausea and vomiting during pregnancy, premenstrual syndrome, carpal tunnel syndrome, and 

rheumatic arthritis 
(362-364)

. 

Recent studies indicate that vitamin B6 exerts also anti-inflammatory and anti-

apoptotic effects and may have a beneficial effect on preventing diseases linked to 

inflammation (e.g. rheumatoid arthritis, acute pancreatitis, cardiovascular diseases, psoriasis) 

or could be an effective therapeutic agent in this field. Although the connection between 

vitamin B6 and inflammation is evident, the specific mechanisms involved often remains 

unclear. Identification of potential therapeutic targets, signaling pathways, inflammatory 

markers provides a valuable foundation for further research in this area 
(365-369)

.  

TOXICITY OF VITAMIN B6 

Because vitamin B6 is a water-soluble compound not substantially stored in the body, 

redundant amounts are quickly excreted in the urine. Hence, its low potential toxicity is 

anticipated. Indeed, it is not possible to get toxic levels of vitamin B6 through diet from food 

sources. Taking supplements of vitamin B6 in appropriate doses (see Table 4) is considered to 

be relatively safe. Mild adverse effects include nausea, headache, fatigue and drowsiness; 

dermatological lesions can be observed 
(370)

. However, toxicity can occur after long-term 

administration of supplements with high vitamin B6 content. Therefore, a daily tolerable 

upper intake level for safe dosage was introduced by the European Food Safety Authority 

(371)
. The tolerable upper intake level of vitamin B6 for adults is 12 mg/day (including 

pregnant and lactating women) and in children 1-3 years old: 3.2 mg/day, 4-6 years old: 4.5 

mg/day, 7-10 years old: 6.1 mg/day, 11-14 years old: 8.6 mg/day and 15-17 years old: 10.7 

mg/day. 

Long-term supplementation with doses above the tolerable upper intake level may result 

primarily in peripheral neuropathy with neurological symptoms including pain in extremities, 

muscle weakness, ataxia, and paraesthesia. Symptoms of toxicity are reversible after 

withdrawal, but some signs may still persist for 3-6 weeks. Paradoxically, these neurological 
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symptoms of polyneuropathy after supplementation of high doses are similar to those of 

vitamin B6 deficiency. High levels of pyridoxine (inactive form) are thought to inhibit 

pyridoxine-phosphate dependent enzymes by competing with the biologically active form of 

vitamin B6, i.e. PLP. Vitamer, that is responsible for neurotoxicity is pyridoxine, because it 

competitively inhibits GABA neurotransmission, which may lead to neurodegeneration 
(372-

375)
. 

BIOTIN–VITAMIN B7 

AN INTRODUCTION TO BIOTIN 

Biotin, also known as vitamin B7 or vitamin H, is water-soluble and an essential 

micronutrient for all organisms. The first observations related to biotin occurred in 1916 

when English biochemist W. G. Bateman identified a condition characterized by 

neuromuscular symptoms, severe dermatitis, and hair loss in rats fed a diet in which the only 

source of protein was raw egg white 
(376)

. Cooking of egg or administering yeast or liver to 

rats was able to revert this syndrome. Later, in 1936, Kӧgl and Tӧnnis isolated a factor 

present in egg yolk that was essential for yeast growth, and they named it biotin. Subsequent 

findings revealed that biotin was responsible for the protection against egg white toxicity, and 

this toxicity was attributed to avidin, a glycoprotein found in raw egg white that binds to 

biotin with very high affinity and prevents its absorption 
(376, 377)

.  

 Humans obtain biotin from both food and via bacterial synthesis in the large intestine. 

Biotin is a cofactor for five carboxylases involved in metabolic processes 
(378)

. Other 

functions include biotinylation of histones, gene regulation and cell signalling 
(379)

.  

CHEMICAL STRUCTURE AND ADEQUATE INTAKE LEVEL 

In 1942, Vigneaud and his colleagues identified the chemical structure of biotin (Figure 1C). 

Biotin can exist in eight stereoisomers, but D-biotin is the solely biologically active 

stereoisomer. At physiological pH, biotin exists mainly in its anionic de-protonated form 

because its pKa is 4.5 
(380, 381)

. 

In the 30s of the 20
th

 century, experiments on biotin biosynthesis started with studies about 

the nutritional requirements of microorganisms 
(382)

. Eisenberg et al. explored the pathway of 

biotin biosynthesis in Escherichia coli 
(383, 384)

. In fact, certain microorganisms like 

mentioned Escherichia coli but also Staphylococcus aureus synthesize biotin. In these 
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microorganisms, biotin is synthesized by enzymes encoded in the bio operon, whose 

transcription is regulated by the biotin retention protein A. This protein acts as both a biotin-

dependent transcriptional repressor that regulates biotin biosynthesis and an enzyme that 

catalyses the attachment of biotin to biotin-dependent enzymes 
(385)

. 

Interestingly, there are differences among bacterial species. For instance, Staphylococcus 

aureus responds to environmental biotin and grows when a media is supplemented with 

biotin, while Mycobacterium tuberculosis obtains biotin only through its synthesis de novo 

(386)
. In contrast, animal cells are not capable of synthesizing biotin by their own enzymes. 

Hence, biotin must be absorbed from the diet. 

When analysing biotin content in different foodstuffs, it is necessary to consider that values 

vary according to the origin of foods and the methodology used to determine biotin. 

HPLC/avidin-binding assay has a higher specificity than a microbiological assay. The latter 

method tends to overestimate biotin content 
(387)

. 

In the 80s, doses of 35 μg/day for infants and 150–300 μg/day for adults were 

considered safe. Despite decades of investigation, there is still no consensus about the ideal 

daily intake of biotin 
(388)

. Nonetheless, the World Health Organization (WHO) established 

adequate intake (AI) levels for humans dependent on life stage and gender (Table 5) 
(389)

. AI 

for adults ranges between 30 and 40 μg/day. In the case of breastfeeding women, an 

additional 5 μg is required to compensate for the needs of this stage 
(389, 390)

. European Food 

Safety Authority (EFSA) recommends higher values, namely 40 μg/day for adults and 

pregnant women and 45 μg/day for breastfeeding women. In the case of children (1- to 17-

year-olds), AIs also increase with age, ranging from 20 to 35 μg/day (Table 5) 
(390)

. 

Human bacterial microflora in the large intestine is also an important source of biotin 

for humans. However, its quantitative contribution remains unknown 
(380)

. Interestingly, 

around 30% of the gut microbes cannot synthesize biotin even if it is essential for them 
(391)

. 

Regardless, the microbiota in the human large intestine synthesizes significant amounts of 

biotin because biotin faecal excretion has been observed to exceed its dietary intake. 

Identification of a specific carrier-mediated mechanism for biotin uptake in human-derived 

colonic epithelial cells in vitro has been reported. It could locally contribute to the nutritional 

needs of the colonocytes, but it does not seem to contribute principally to the total quantity of 

absorbed biotin. This is supported by some observations, e.g., urinary excretion varies with 

biotin dietary intake whereas faecal excretion is independent of it. On the other hand, it has 

recently been reported that bariatric surgery is associated with an increased abundance of 
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bacterial biotin producers in the gut and improved systemic biotin status in humans. Thus, it 

is still controversial and unclear if and to what extent biotin produced by gut microorganisms 

can contribute to meet human needs for this vitamin. Moreover, the contribution of microbial 

biotin synthesis in the gut has never been quantified. It is considered that biotin requirements 

must be met mainly by diet 
(22, 80, 88, 90-93, 283, 392-406)

. 

 

SOURCES OF BIOTIN 

Natural sources of biotin 

Biotin biosynthesis occurs in bacteria, archaea, plants, and fungi. Animals and humans, as 

well as many protozoa, cannot synthesize the vitamin and depend on its exogenous supply 
(14, 

22, 26, 93, 385, 407-457)
. In the human diet, biotin is present in many foods in variable amounts. 

Major dietary sources include eggs, or precisely egg yolk, milk and dairy products, nuts (e.g., 

almonds, peanuts, and walnuts), legumes (soybeans and lentils), mushrooms, some 

vegetables (e.g., cauliflower, cabbage, broccoli, spinach, and sweet potatoes), cereals, meat, 

and some fruit (e.g., avocados, raspberries, and bananas). Yeast and offal (liver and kidney), 

in addition to egg yolk, are very rich in biotin (Figure S1) 
(30, 40, 83, 152, 188, 387, 393-395, 397, 399, 447, 

458-472)
. It has also been observed that the biotin nutritional status of both lactoovovegetarians 

and vegans is not impaired compared to people consuming a mixed diet 
(473)

.  

Biotin in foods is found as free biotin and as biocytin (biotinyl-lysine) bound in 

proteins. After proteolysis, biotin is released from biocytin by biotinidase, located in 

pancreatic juice and intestinal mucosa. The proportion of free and bound vitamin forms varies 

among foods. For example, the majority of biotin in meats, yeast, and cereals appears to be 

protein-bound; in milk, however, the vitamin occurs nearly exclusively in the free form. At 

present, there are no reliable data on the average bioavailability of biotin from a usual mixed 

diet. Experiments using pharmacologic doses of free biotin revealed a bioavailability of 

biotin approaching 100%. Also, human kinetic study showed that intravenous administration 

and oral administration may have the same urinary recoveries. There is, however, a lack of 

data on the degree of biotin absorption from the protein-bound form 
(80, 392-397, 399, 464, 474, 475)

. 

Data on the biotin content in foods is limited and is not ordinarily published in different food 

composition databases (e.g., in the USDA National Nutrient Database for Standard 
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Reference). Both natural variation and analytical aspects may account for the sometimes 

reported high variability of biotin contents 
(387, 393, 395, 396, 398, 466, 470, 476)

. Biotin amounts in 

some selected foodstuffs are summed up in Table 6. 

A natural antagonist of biotin – avidin 

The most prominent natural antagonist of biotin is above-mentioned avidin, a 

glycoprotein in raw egg white with a high affinity for biotin. Avidin binds biotin in a tight 

non-covalent complex preventing its absorption in the small intestine and thereby making it 

unavailable. The binding of biotin to avidin is the strongest known non-covalent bond in 

nature. The complex can neither be broken (i.e., to release biotin) because it is resistant to 

digestive proteases and is undissociated over a wide range of pH nor absorbed (i.e., as the 

intact complex molecule) in the intestine. Nutritionally, the binding phenomenon has 

however a little impact since heating to at least 100 °C during cooking denatures avidin, 

destroying the avidin-biotin complex and releasing the vitamin for absorption, as well as 

preventing additional complex formation. The consumption of raw or undercooked whole 

eggs is probably of little consequence for nutrition, as the biotin-binding capacity of avidin in 

the egg white is roughly comparable to the biotin content of the egg yolk. Similarly, raw egg 

white, if added to foods without further cooking or ingested with cooked food, provides 

avidin that binds the low amounts of biotin in food. Experimentally, it has been shown in 

humans that a diet containing 30 g of raw egg white per 100 g dry weight diet induces biotin 

deficiency 
(80, 393, 394, 396, 397, 405, 477, 478)

. 

Effects of food processing on biotin content 

Processing may influence the content of biotin in foods 
(134, 135, 163)

. However, in contrast to 

other B vitamins, there is little available data on how food processing affects biotin content. 

An rough overview of data on biotin losses in some food groups due to processing is given in 

the Table S3 in Supplementary data. More data on specific foods, information on conditions, 

and comments are in the text below. 

Milling and refining of cereals 

Milling and refining cereal grains bring on a substantial decline in biotin due to 

removing grain parts rich in micronutrients.
(144)

 Biotin amounts in refined wheat, rye, barley, 

https://doi.org/10.1017/S0954422425100097 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422425100097


Accepted manuscript 

and sorghum flours decrease, depending on the degree of milling, by 7–77%, 8–69%, 5–78%, 

and 7–72% in comparison to whole grain flours, resp. 
(144)

. Likewise, the content of biotin in 

various maize milled products is reduced by 20–81% as compared to whole kernels 
(144, 146, 

479)
. Biotin losses in non-parboiled and parboiled white rice are 47–86% and 49%, resp., 

compared to brown rice 
(148, 149, 152, 480)

. 

Properties of biotin and mechanisms of vitamin losses during food processing 

Biotin is soluble in water and generally regarded as having good stability, being fairly 

stable to air (oxygen), light, and heat. It can, however, be gradually decomposed by 

ultraviolet radiation. Biotin is relatively stable in weak acid or alkaline solutions (pH 4 to 9), 

whereas it can be broken down in strong acid or alkaline solutions by heating 
(134, 135, 147, 154, 

157, 163, 165, 394, 396, 481)
. Losses of biotin during processing of foods are more related to leaching, 

although some thermal degradation may also occur 
(135, 481)

. In contrast to other water-soluble 

vitamins, biotin is not so prone to leaching because it exists in foods at least partly in a 

protein-bound form, not enabling most likely leaching into cooking liquids 
(163, 396, 482)

.  

Processing of animal-based foods 

Biotin losses in pork, beef, chicken, and fish were estimated to be 20–30% during 

boiling, steaming, and braising, 15 % during frying, and only 10% during all cooking 

methods, if the vitamin content in soup, gravy, and drippings is taken into consideration (i.e., 

total dish) 
(170, 481)

. Boiling, poaching, and frying of eggs lowered biotin content by 14%, 22% 

(higher losses owing to leaching into water), and 7%, resp.
(185)

. Boiling, pasteurization, ultra-

heat treatment, and evaporation of milk do not substantially reduce biotin levels; losses are 

usually negligible, about 0–10% 
(163, 170, 481, 483)

. 

Processing of plant-based foods 

Estimated decreases in biotin content in vegetables are 30%, 15%, and 10% resp., due 

to boiling, steaming, and frying, and 10% if the cooking water is not discarded 
(170)

. 

Therefore, steaming, compared to boiling, is associated with lower biotin loss. For example, 

boiling and steaming lessened biotin amounts in broccoli by 14.5% and 7.5%, resp. 
(188)

. In 

legumes, mean biotin losses of 5% after cooking for 20 minutes and 5–12% after pre-soaking 

and cooking for 20–150 minutes occurred. Duration of pre-soaking (for 1 or 16 hours) did not 
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affect biotin retention while cooking time did 
(484)

. Biotin amounts in hazelnuts and walnuts 

decreased by 10% and 32%, resp., during baking 
(485)

. Biotin losses of 10–25% during 

extrusion processing were reported 
(165)

. 

Food preservation and storage 

The contents of biotin were 40–77% lower in canned vegetables, such as carrots, tomato, 

spinach, corn, and green peas, compared to raw ones 
(152)

. Ionizing radiation, which is used 

for food preservation, causes little or no loss of biotin; irradiation of wheat to 2 kGy gave a 

loss of 10% after 3 months storage 
(206)

. 

Biotin in vacuum-packaged broccoli au gratin and almonds was stable during storage 

at room temperature either on the Earth or exposed to spaceflight for 880 days 
(209)

. No 

change in the content of biotin in spray-dried milk powder happened during storage for 8 

weeks at 60°C. At 70°C, the biotin level remained constant for the first 2 weeks of storage 

and then declined by 25% in the next 6 weeks. Biotin content in milk powder was unchanged 

after storage for 15 weeks in an oxygen or nitrogen atmosphere 
(486)

. No biotin loss occurred 

in foods stored at -20°C or -80°C for 4 weeks 
(487)

. 

Industrial production of biotin 

Industrial production of biotin is currently based on chemical synthesis because its 

isolation from natural sources is not, due to very low concentrations, economically feasible. 

The majority of produced biotin is used in feed (about 90% of annual production 
(447, 488)

; as a 

feed additive to prevent vitamin deficiency for animal health, welfare, and performance 
(447, 

458, 488-511)
), pharmaceutical, food (for dietary supplements and food fortification) 

(447, 488, 508, 

512-518)
, and cosmetic industries 

(488, 519-521)
. Only a minor portion is used for analytical 

purposes in the context of the biotin-avidin/streptavidin technology 
(488, 507, 522-529)

.  

The molecule of biotin possesses three asymmetric centres giving rise to eight possible 

stereoisomers. Only one, D-(+)-biotin, has biological activity of the vitamin. Biotin 

manufacturing makes use of costly stereoselective multistep chemical synthesis, which was 

first achieved in the late 1940s and since then has still been improved. Alternative syntheses 

have also been investigated and developed 
(220, 221, 393, 447, 488, 507, 530-534)

. The production of 

biotin by fermentation has attracted for a long time considerable interest from researchers due 

to economic and environmental sustainability concerns of the chemical process. Random 
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mutagenesis and selection, as well as genetic engineering, have been used to remove 

metabolic obstacles and bottlenecks for obtaining biotin high producing microbial strains. 

However, to be cost-effective, it is assumed that any commercial bioprocess requires 

microbial strains that produce significantly more than 1 g biotin per liter in 12-24 hours of 

fermentation and use a cheap substrate. Overproducing strains of some bacteria have been 

developed, e.g., Serratia marcescens, Bacillus subtilis, Escherichia coli, Pseudomonas 

mutabilis, Bacillus sphaericus, Agrobacterium/Rhizobium HK94, and Sphingomonas sp., the 

three first species being the best producers. Although the biotin yields achieved have already 

been close to the required level in some cases, none of the strains has really produced enough 

biotin to allow profitable production yet 
(225-227, 412, 427, 447, 508, 535-553)

. In 2022, a Danish 

biotech company, Biosyntia, announced the intention to commercialize the first biotin 

produced by sustainable fermentation using genetically modified microorganisms. Biosyntia 

will, jointly with a German company, Wacker Group, develop a large-scale industrial 

bioprocess based on its proprietary technology 
(554)

. The upcoming years will show whether 

the fermentative process is sufficiently efficient to be economically competitive with the 

currently used chemical one for biotin manufacturing. 

Food fortification and biofortification with biotin 

Regarding food fortification with biotin, the need is low because dietary biotin deficiency is 

rare 
(395, 447, 458, 460)

. Biotin may be added to foods voluntarily by food manufacturers, e.g., to 

processed cereal-based foods for infants and young children, milk powders, rice powders, and 

breakfast cereals 
(214, 258, 259, 395, 508, 518, 555)

. The biotin content of infant and follow-on 

formulae, and of processed ceral-based foods and baby foods for infants and children is 

regulated 
(214, 259)

. As for the biofortification of crops with biotin, no attempt has been 

reported. 

 

PHARMACOKINETICS OF BIOTIN 

Absorption 

Biotin is present in its free and protein-bound forms in foodstuffs. After being ingested, 

protein-bound forms of biotin are cleaved by gastrointestinal proteases and peptidases, giving 

origin to biocytin and biotin-oligopeptides 
(556, 557)

. After that, biocytin and biotin-
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oligopeptides are hydrolysed by the enzyme biotinidase to release free biotin in the intestinal 

lumen. This enzyme is present in pancreatic juice, secretions of intestinal glands, bacterial 

microflora and the brush-border membranes 
(558)

. The last hydrolytic step is considered to be 

crucial and influences the bioavailability of biotin (Figure 3) 
(556, 558)

. 

Free biotin is then absorbed in the small intestine via a Na
+
-dependent, carrier-mediated 

mechanism. The responsible transporter is expressed in the apical membrane of enterocytes 

(403, 559, 560)
. This uptake mechanism seems to be the rate-limiting step of the biotin absorption, 

and the inwardly directed Na
+
 gradient provides the energy for the transport 

(561)
. The 

transporter is called sodium-dependent multivitamin transporter (SMVT) since it is also 

involved in the uptake of pantothenic acid (vitamin B5) and lipoic acid 
(403, 562)

. In addition to 

the apical membrane of intestinal cells, SMVT is also expressed in the liver, blood-brain 

barrier, heart, placenta and kidney 
(563-567)

. The apparent Michaelis-Menten (Km) constant of 

the transporter in rat jejunum was reported to be 3.7 μM 
(379)

. The SMVT has 12 

transmembrane domains, and it is encoded by the SLC5A6 gene located on chromosome 2p23 

(557, 568)
.  

 The transport from the enterocyte to the blood through the basolateral membrane is 

also carrier-mediated and Na
+
-independent process whose identity is not yet known.  

The absorption rate of the dietary biotin differs between portions of the intestine, being 

higher in the proximal (jejunum) compared to the distal part (ileum) of the small intestine 

(560)
. In contrast, biotin produced by bacteria can be absorbed in the large intestine.  

Humans are regulating biotin absorption in an adaptative mechanism according to the cell 

type. In intestinal epithelial cells, biotin deficiency is recognized by a deficiency-responsive 

region within the SMVT promoter. Cis-regulatory elements that bound the gut-enriched 

Kruppel-like factor (GKLF) were identified in this region. Briefly, in a biotin deficiency 

state, an increase in the promotor activity occurs by a transcriptional regulatory mechanism 

via GKLF, with induction in mRNA and protein levels of SMVT and subsequent up-

regulation in biotin uptake.
(569)

 On the contrary, in human liver cancer HepG2 cells, a biotin 

deficiency state causes a decrease in SMVT protein and mRNA levels, resulting in impaired 

biotin uptake 
(570)

. 

It must also be mentioned that there are reports that biotin uptake in the intestine is not only 

mediated by SMVT. Bowman et al. reported intestinal biotin uptake to be mediated by both 

saturable and non-saturable components, with the saturable Na
+
-dependent process occurring 

at lower concentrations 
(559, 571)

. Similarly, studies in canine kidney cells revealed biotin 
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uptake to be a two-component process. The major role played a saturable carrier-mediated 

process and a minor non-saturable component, which was evident at higher concentrations 

(567)
. 

Distribution and metabolism  

In plasma, biotin is primarily present in its free form (80%) and the remaining is bound to 

albumin, α-globulin, and β-globulin. Also, biotinidase can function as a biotin-carrier in 

plasma 
(572-574)

. 

Intracellularly, biotin is localized mostly in the cytoplasm and mitochondria, where it exerts 

its role as a coenzyme for carboxylases. A small amount is also found in microsomes and 

nucleus 
(575, 576)

. The liver contains the highest amount of biotin, and it is considered the 

major organ regarding biotin metabolism. Biotin uptake by human hepatocytes occurs again 

through SMVT 
(577)

.  

 Catabolism of biotin in mammals occurs via two pathways: a) β-oxidation of valeric 

acid side chain, which gives origin to bisnorbiotin, tetranorbiotin, and intermediates (α,β-

dehydro-, β-hydroxy, and β-keto-intermediates) and b) oxidation of sulphur which produces 

biotin sulfoxide (Figure S2) 
(578)

. Oxidation of sulphur moiety occurs probably in the 

endoplasmic reticulum and results in the formation of biotin-L-sulfoxide, biotin-D-sulfoxide, 

and biotin sulfone. NADP participates on this process 
(575)

. Lastly, several compounds such as 

bisnorbiotin sulfone are produced as a result of β-oxidation and sulphur oxidation 
(578, 579)

. 

Tetranorbiotin can be further degraded by microorganisms 
(580)

. 

Excretion 

Biotin and its metabolites undergo urinary and biliary excretion, with the former being the 

main excretion route. Studies in humans, rats, or pigs reported that 43-75% of the 

parenterally administered biotin dose is excreted into urine 
(474, 580)

. Urinary excretion of 

biotin and its catabolites is approximately 100 nmol per day. Biotin accounts for 

approximately one half, the metabolites bisnorbiotin, biotin-D/L-sulfoxide, bisnorbiotin 

methyl ketone, biotin sulfone and tetranorbiotin-L-sulfoxide form the second half of the 

excreted amount 
(579)

. Both renal and intestinal epithelial cells are involved in the regulation 

of biotin homeostasis. Urinary elimination of biotin is regulated via reabsorption of filtered 
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biotin in the renal glomeruli and this process is again mediated by SMVT in the proximal 

tubular epithelial cells 
(581, 582)

. 

PHYSIOLOGICAL FUNCTIONS OF BIOTIN 

In humans, biotin plays a role as a coenzyme for carboxylases, influences chromatin structure 

and participates in gene regulation (Figure 4). Moreover, relatively recent studies have 

hypothesized additional roles in immunomodulation, inflammation and even cancer 

development.  

Biotin-dependent carboxylases 

Biotin undergoes several biological reactions that constitute the so-called biotin cycle 

(Figure 5A). Biotin cycle is important to maintain biotin levels inside the cell. After being 

absorbed in enterocytes, biotin holocarboxylase synthetase (HLCS) attaches biotin covalently 

to one of five biotin-dependent apocarboxylases.  

 

This reaction is called biotinylation and it occurs according to the following two-

steps:  

1. ATP + biotin + HLCS → biotinyl–5'–AMP–HLCS + pyrophosphate 

2. biotinyl–5'–AMP–HLCS + apocarboxylase → holocarboxylase + AMP + HLCS 

The bond is formed between valeric acid side chain of biotin and a specific lysine 

residue in each carboxylase.
(583)

 In vitro studies confirmed that the process of biotinylation of 

carboxylases is dependent on biotin concentrations 
(584, 585)

. When needed, holocarboxylases 

are proteolysed to biocytin (i.e., biotin-lysine), which in turn releases free biotin by the action 

of the biotinidase. This process allows biotin to be recycled and maintain its homeostasis 
(378, 

586)
. 

 Human cells have five biotin-dependent carboxylases with several roles and located in 

different cell compartments (Table 7 and Figure 5B) 
(475, 583)

. The role of biotin is to transfer a 

carboxyl group from a donor to an acceptor biomolecule 
(587-589)

. 

Biotinylation of histones  

In contrast to the well-known participation of biotin in carboxylation, its role in gene 

transcription is a relatively new topic. The tail domain of histones is pivotal for several 
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biological processes because modifications in this region influence chromatin, and hence 

processes such as gene regulation, chromosome condensation and DNA repair 
(590)

. 

Biotinylation of histones, i.e., covalent attachment of biotin to the tail domain of histones is 

well documented 
(591, 592)

. There is discussion about this process. Several hypotheses have 

arisen. According to Hymes et al, cleavage of biocytin (biotin-ε-lysine) by biotinidase leads 

to the formation of a biotinyl-thioester intermediate, and then the biotinyl moiety is 

transferred from the thioester to an ε-amino group of lysine of histones 
(593, 594)

. Other studies 

indicated that biotin holocarboxylase synthetase can also biotinylate histones; indeed, they 

report that holocarboxylase synthetase is more important than biotinidase 
(595, 596)

. 

Interestingly, some studies suggested that biotinidase may catalyse both biotinylation and 

debiotinylation of histones 
(597)

. 

 Investigation of the biological functions of histone biotinylation is still a wide-open 

field. Nevertheless, biotinylation of histones might be important in cellular response to DNA 

damage 
(598)

. Biotinylation of the lysine K12 in histone H4 plays roles in gene repression, 

DNA repair, heterochromatin structures, and repression of transposons, thereby promoting 

genomic stability. Also, knockdown of biotinidase or holocarboxylase synthetase decreases 

life span and heat resistance in Drosophila melanogaster, probably suggesting that a decrease 

in histone biotinylation causes abnormal gene expression patterns 
(595)

. 

Biotinylation of signalling molecules and transcription factors 

Biotin also participates in the regulation of gene expression through various cell 

signals and transcription factors, such as biotinyl-AMP, cGMP, nuclear factor-κB, Sp1 and 

Sp3, and receptor tyrosine kinases 
(599)

. Thousands of genes are affected by biotin, including 

genes involved in glucose homeostasis. One in vitro study showed that incubation during 48 

h with 10 nM biotin increases pancreatic glucokinase activity in rat pancreatic islets primary 

cultures, and 100 nM biotin duplicated the activity observed in control. Also, glucokinase 

mRNA levels increased by ~80% after incubation with 1 μM biotin during 24 h 
(600)

. 

Moreover, a study using rat hepatocytes demonstrated that the addition of biotin (1 µM) to 

the culture medium induces a 3-fold increase in the content of cGMP and a 4-fold increase in 

the glucokinase activity and its mRNA levels 
(601)

. Thus, both pancreatic and hepatic 

glucokinase are regulated by biotin in a positive manner 
(600, 601)

. 

 Regarding the underlying mechanisms involved in gene regulation, biotinyl-AMP, 

which is the intermediary product formed by the action of holocarboxylase synthetase, is 
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thought to be responsible for the gene regulatory functions of biotin. Biotinyl-AMP activates 

the soluble guanylate cyclase with a subsequent increase in intracellular concentration of 

cGMP and activation of protein kinase G 
(602, 603)

. This signal transduction pathway is 

involved in the regulation of genes involved in biotin homeostasis and function, including 

biotin-dependent carboxylases and holocarboxylase synthetase, SMVT, but also others (e.g. 

asialoglycoprotein receptor, oncogenes). Holocarboxylase synthetase mRNA levels in the 

liver, kidney, muscle, and brain of rats fed a biotin-deficient diet were significantly lower 

compared to the controls. On the other hand, pyruvate and propionyl CoA carboxylase 

mRNA levels were not altered, while the amounts of these enzymes were lower.
(604)

 Biotin 

was also identified as the factor required for the expression of asialoglycoprotein receptor in a 

human liver cancer cell line HepG2 
(605)

. Moreover, in vitro studies demonstrated that 

expression of oncogenes N-myc, c-myb, N-ras, and raf correlate positively with biotin 

concentrations. A pharmacological concentration of biotin (10 nM) increased the expression 

of N-myc to 120%, whereas a very low biotin concentration (25 pM) decreased it to 53% 

compared to the controls containing biotin at a physiological concentration (250 pM) 
(606)

. 

Moreover, some studies indicate that biotin-dependent genes are clustered in specific 

chromosomes 
(607)

. 

Biotin as anti-inflammatory and immunomodulator 

Recent studies also reported a link between biotin and immune and inflammatory functions. 

Mice not-absorbing biotin due to knockout in SMVT gene revealed chronic inflammation in 

the cecum 
(608)

. Biotin-deficient human monocyte-derived dendritic cells demonstrated a 

higher secretion of cytokines such as TNF-α (tumour necrosis factor α), IL-12p40, IL-23, and 

IL-1β 
(609)

. Biotinidase deficiency, an inborn disorder characterized by impaired biotin 

bioavailability and recycling, can be associated with weakened immunity manifested by 

recurrent infections and dermatitis 
(610)

. Indeed, biotin deficiencies are often associated with 

skin manifestations 
(611)

. The underlying pathophysiological mechanisms could be alterations 

in the role of biotin-dependent carboxylases, such as acetyl-CoA carboxylase 1 or propionyl-

CoA carboxylase, hence interfering with fatty acid metabolism and the cutaneous immune 

system. Moreover, immune and inflammatory functions of biotin cannot be explained solely 

by the involvement in carboxylation but also via its effects on transcriptional factors such as 

nuclear factor B and Sp1/3 
(599)

. Nuclear factor κB regulates genes involved in inflammation 
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and innate and adaptive immune response. Sp1 and Sp3 have been associated with the 

expression of the gene encoding cytokine IL-10 
(612)

. 

LABORATORY ASSESSMENT OF BIOTIN STATUS 

Methods for measurement of biotin are summarized in Table 2 (more details are shown in 

Supplementary Data Table S2). Indicators of biotin status could be helpful in the diagnosis of 

conditions associated with biotin deficiency. Stratton et al. identified lymphocyte propionyl-

CoA carboxylase (PCC) activity as an indicator of biotin deficiency in humans 
(613)

. 

However, due to analytical issues, PCC assay is not adequate to assess biotin status in large 

population studies. Another marker is the plasma level of 3-hydroxyisovaleryl carnitine. This 

might be an early and sensitive indicator of biotin deficiency in humans 
(614)

. Moreover, 

urinary 3-hydroxyisovaleryl carnitine might also be used 
(615)

. 

BIOTIN DEFICIENCY AND RELATED DISORDERS 

Frank biotin deficiency cases were reported in people who consume raw egg white for long 

periods, in cases of parenteral nutrition, and inborn errors of metabolism that cause biotin 

wasting 
(379, 616)

. 

Nutritional biotin deficiency and inherited disorders associated with gene mutations 

encoding holocarboxylase synthetase or biotinidase give origin to a pathological state called 

multiple carboxylase deficiency. The pathophysiological mechanisms include: 1) in the case 

of holocarboxylase synthetase deficiency, a decrease in the affinity of holocarboxylase 

synthetase for biotin with consequent impairment in the formation of holocarboxylases at 

physiological biotin levels and 2) in the case of biotinidase deficiency, alterations in biotin 

release from its protein conjugates and hence its recycling (Figure 5A). This is followed by 

its loss in urine as biocytin. The estimated incidence of biotinidase deficiency is ~ 1:60,000–

80,000 of new-borns, whereas holocarboxylase synthetase deficiency is estimated to be less 

than 1:200,000 of new-borns. Both are autosomal recessive disorders. Clinical manifestations 

of biotinidase deficiency include seizures, hypotonia, lack of coordinated movement and 

balance impairment, respiratory problems, hearing and vision loss, skin rashes, hair loss and 

retarded cognitive and physical development. Holocarboxylase synthetase deficiency 

symptoms include severe metabolic acidosis, lethargy, hypotonia, vomiting, seizures, 

hypothermia, and unconsciousness, and even coma and death. All these clinical 
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manifestations from both disorders respond well to early treatment through biotin 

supplementation 
(617)

. The dose needed for the treatment is not excessive, and the onset of the 

effect is relatively rapid. In a case report of 2 Chinese infants with late-onset 

holocarboxylases synthetase deficiency, 30 mg/day biotin treatment in the initial phase solved 

the metabolic disorders within 48 hours. Moreover, in the following period, biotin 

supplementation improved the patient clinical conditions 
(618)

.  

Biotin-thiamine-responsive basal ganglia disease is a rare autosomal recessive 

neurometabolic disorder. Formerly, it was called biotin-responsive basal ganglia disease and 

described as a subacute encephalopathy, with confusion, dysarthria, and dysphagia with 

occasional supranuclear facial nerve palsy or external ophthalmoplegia that can progress to 

severe quadriparesis and even death. Symptoms of biotin-thiamine-responsive basal ganglia 

disease disappear within a few days with biotin treatment (5-10 mg/kg/day), and relapse 

occurs within one month if biotin is discontinued 
(619)

. Recent studies have shown that 

regimens for curing this condition shall include both biotin and thiamine to treat and prevent 

acute crises and relapses 
(620)

.  

Recent clinical studies have focused on cases of marginal biotin deficiency. Their incidence 

is higher than was assumed in the past 
(615)

. Logically, the absence of symptoms commonly 

present in biotin deficiency is not a suitable marker for vitamin B7 marginal deficiency. 

Biotin deficiency is teratogenic in several animal species. In mice, egg-induced biotin 

deficiency caused a higher incidence of cranial malformations and shortening of the long 

limb bones 
(621)

. It need not be emphasized that other vitamins of the B complex, like folic 

acid, have already been shown to be essential 
(622)

. Hence, the role and kinetic of biotin in 

pregnancy deserve attention. A cross-sectional study of normal human gestation reported an 

increased excretion of 3-hydroxyisovaleric acid in early and late pregnancy. However, there 

was a paradoxical increase in biotin excretion late in pregnancy, suggesting that biotin status 

in pregnancy was not reduced 
(623)

. On the other hand, a longitudinal study with women from 

early to late pregnancy evidenced that biotin status decreases during pregnancy. By late 

pregnancy, approximately half of the participants showed less than the lower limit of normal 

biotin excretion rates 
(624)

. 

PHARMACOLOGICAL USE OF BIOTIN 

Pharmacologic doses of biotin are used for treating patients with disorders of biotin 

metabolism as mentioned in the previous chapter. Holocarboxylase synthetase deficiency can 
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be treated with 10 mg biotin/day with children showing improvement in their condition, 

while biotinidase deficiency can be treated with a dose of 5–20 mg biotin daily 
(380)

. 

 Considering the potential neuroprotective role of biotin, its use in the treatment of 

neurological diseases could be beneficial. In an open-label study with 23 patients with 

primary and secondary progressive multiple sclerosis, treatment with high-dose biotin (100–

300 mg/day) from 2 to 36 months revealed an improvement in several symptoms. Overall, the 

clinical improvement was delayed by 2–8 months, and 300 mg biotin/day, a 10 000 times 

higher dose than the recommended daily intake, generated the best clinical response 
(625)

. 

Some mechanisms were suggested to be responsible: 1) activation of pyruvate carboxylase, 

propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase may lead to an increase in 

ATP production in neurons and 2) activation of acetyl-CoA carboxylases may lead to myelin 

repair.
(625)

 A double-blind, placebo-controlled study with 154 patients with primary or 

secondary progressive multiple sclerosis receiving 100 mg of biotin orally, thrice daily or 

placebo for 12 months corroborated the previous findings 
(626)

. In contrast, in an observational 

prospective study of 178 patients again with primary and secondary progressive multiple 

sclerosis, high-dose biotin did not show a clear improvement in disability and quality of life 

(627)
.  

Regarding dietary biotin supplements, they frequently appear as combinations of the B-

complex vitamins or multivitamin complexes. Its main indications are to fortify hair, nails 

and skin. Although several reports have evidenced clinical improvement after biotin 

supplementation in cases of biotin deficiency, research demonstrating its efficacy in hair and 

nail growth in healthy individuals is limited 
(628)

. 

Biotin is synthesized de novo in plants, fungi and microorganisms, and this property might be 

used from a therapeutic point of view. For instance, Mycobacterium tuberculosis needs to 

biosynthesize this vitamin for its pathogenicity during all stages of the life cycle. For this 

reason, inhibitors of biotin biosynthetic enzymes could be a potential target for the 

development of novel antibiotics against tuberculosis 
(629)

. 

TOXICITY OF BIOTIN 

Due to being water-soluble, excessive amounts of biotin are known to be easily 

excreted. Hence, it seems this vitamin is relatively nontoxic. Moreover, the maximum daily 

dose unlikely to cause adverse side effects in the general population, i.e., tolerable upper 

intake level, has not yet been established 
(630, 631)

.  

https://doi.org/10.1017/S0954422425100097 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422425100097


Accepted manuscript 

Regardless, there are some concerns about high-dose biotin. A case report of a 54-

year-old woman with progressive multiple sclerosis reported an aggravation of the neurologic 

state, accompanied by lipid storage in muscle, after five months of treatment with three times 

100 mg biotin per day. Symptoms disappeared in a few months after biotin withdrawal 
(632)

. 

In addition, animal experiments with mice fed with a biotin-supplemented diet (97.7 mg free 

biotin/kg) over 8 weeks revealed alterations in the testis 
(633)

. In addition, experiments with 

rats fed 5000 and 8000 mg biotin/kg diets for 28 days showed a decrease in testis weight 
(634)

. 

These results are in disagreement with in vitro fertilization studies in which biotin 

supplementation to sperm wash medium (2.44 mg/mL) improved fertilizing ability of mice 

spermatozoa 
(635)

. 

INTERFERENCES WITH TESTS 

Elevated blood levels of biotin cause interference in streptavidin-biotin hormone 

immunoassays 
(636-638)

. In competitive assays (e.g. triiodothyronine, thyroxine, steroid 

hormones, 25-hydroxyvitamin D), there are falsely increased hormones concentrations, 

whereas in sandwich assays (e.g. glycoprotein regulating hormones) falsely decreased 

hormones concentrations have been reported 
(639)

. The degree of interference is dependent on 

plasma biotin concentration, and it is significant at concentrations of 30 μg/L or more 
(637)

. 

False hyperthyroidism is the most frequently misdiagnosed endocrine disorder 
(514, 637, 640-642)

. 

Likewise, false high 25-hydroxyvitamin D serum levels were detected in patients receiving 

high dose of biotin (> 100 mg). Logically, several concerns arise, since this is a crucial 

laboratory test in multiple sclerosis patients receiving vitamin D supplementation 
(637, 643, 644)

. 

Biotin interference in cardiac troponin assays have also been reported 
(645, 646)

. Although, one 

analysis using a Roche assay led to the conclusion that this interference is rare, and its 

probability is even lower than other confounders such as blood sample hemolysis and simple 

biological variation of cardiac troponin 
(647)

. The International Federation for Clinical 

Chemistry Committee on Cardiac Biomarkers (IFCC-CB) reported a cardiac troponin assay 

interference table for hemolysis and biotin to guide healthcare professionals and clinicians 

whenever there is an inconsistency between cardiac biomarker results and the clinical 

situation 
(645)

.  

Biotin supplementation has also been linked to alterations in hepatitis B-virus (HBV), 

hepatitis C-virus (HCV), and human immunodeficiency virus (HIV)-related serological 

markers 
(648)

. A study in which 10 healthy volunteers vaccinated against hepatitis B were 
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administered a single oral dose of biotin (100 mg) revealed anti-HBs levels below the cutoff 

value for four of the ten participants. Moreover, around 80 to 90% of false positive results for 

anti-HBe and anti-HBc occurred. On the contrary, in HIV and HCV serology testing, biotin 

caused false negative results 
(648)

. 

CONCLUSIONS 

 The current review summarized the literature on two B-group vitamins B6 and B7 

(also known as H or biotin). Historically, the research interest in these two water-soluble 

vitamins commenced at the beginning of the 20
th

 century and allowed for the identification of 

numerous characteristics and essential roles in multiple physiological functions (e.g., 

neurological and metabolic processes). Novel discoveries, however, revealed their much 

larger physiological roles beyond their participation in multiple enzymatic reactions. Humans 

lack biosynthetic pathways of vitamins B6 and B7 and, therefore, must obtain them from 

exogenous sources (e.g., foods and supplements). These vitamins are also synthesized by the 

microbiota in the human large intestine and likely part of such produced vitamin, at least in 

the case of biotin, can be absorbed and used by humans. Cases of deficiency of vitamins B6 

and B7 are rare. However, inherited disorders associated with gene mutations require prompt 

and lifelong treatment with these vitamins, starting at early life stages (i.e., in newborns). 

Moreover, vitamin B6 lack can follow administration of several clinically used drugs (e.g. 

isoniazid) or poisoning with Gyromitra mushroom and Ginkgo biloba seeds. Beyond, cases 

of lack, both vitamins have been used or tested in several other conditions. For instance, 

pyridoxine has been used for prevention of vomiting in pregnancy while biotin, has been 

recently tested in controlled trials with patients with primary and secondary progressive 

multiple sclerosis. Last but not least, both vitamins are considered relatively non-toxic 

whether an adequate intake is followed. 

Recent research has brought novel discoveries linking both vitamin B6 and biotin with anti-

inflammatory effects in particular. However therapeutic use of both vitamins in various 

inflammatory disorders still needs much larger research. In the case of biotin, further 

investigation of its role in gene expression regulation through both transcription factors and 

epigenetic processes is necessary.  
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Figure 1. Chemical structures of vitamin B6, including its active forms, and vitamin B7. A) 

Structure of the vitamers of B6. B) Vitamin B6 salvage pathway. PK–

pyridoxine/pyridoxamine/pyridoxal kinase; PNPO–pyridoxine phosphate oxidase. C) 

Chemical structure of D(+)-biotin. Biotin molecule is composed of two rings: 

imidazolidinone ring (blue) and a tetrahydrothiophene group (red) attached to a valeric acid 

moiety as a side chain (yellow).  
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Figure 2. Pharmacokinetics of vitamin B6. The figure summarizes pharmacokinetic of 

vitamin B6 in the human body. PN – pyridoxine; PNP – pyridoxine 5'-phosphate; PL – 

pyridoxal; PLP – pyridoxal 5'-phosphate; PM – pyridoxamine; PMP – pyridoxamine 5'-

phosphate; TNSALP – tissue non-specific alkaline phosphatase; BB – blood-brain barrier. 
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Figure 3. Human intestinal absorption of dietary biotin. Firstly, protein-bound forms of 

biotin are cleaved by gastrointestinal proteases/peptidases (1); then, biocytin and 

biotin-oligopeptides are hydrolysed by biotinidase (2) to release free biotin (3). Biotin enters 

enterocytes at the apical membrane through a saturable and Na
+
-dependent carrier-mediated 

process (4) by sodium-dependent multivitamin transporter (SMVT). The identity of the 

basolateral transporter is not yet known (5, shown in blue). 
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Figure 4. Summary of physiological functions of vitamin B7 (a more detailed description is 

included in the corresponding sections of the article). 
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Figure 5. Physiological function of biotin. A) Schematic representation of the biotin cycle. 

Free biotin binds covalently to 5 apocarboxylases: propionyl-CoA carboxylase (PCC), 

methylcrotonyl-CoA carboxylase (MCC), pyruvate carboxylase (PC), acetyl-CoA 

carboxylases (ACC-1 and ACC-2), by the action of biotin holocarboxylase synthetase. This 

step requires ATP and gives origin to active holocarboxylases, which are important in amino 

acid catabolism, synthesis and oxidation of fatty acids and gluconeogenesis. When needed, 

holocarboxylases can be proteolysed to biocytin. Then, biotinidase allows the release of free 

biotin. Adapted from 
(378, 586)

. B) Simplified scheme of a human mitochondrion and biotin-

dependent carboxylases, their role and location (cytosol, outer membrane, and matrix). 

ACC-1 – acetyl-CoA carboxylase 1; ACC-2 – acetyl-CoA carboxylase 2; PCC –

 propionyl-CoA carboxylase; MCC – methylcrotonyl-CoA carboxylase; PC – pyruvate 

carboxylase; aa – amino acids (valine, isoleucine, methionine, threonine). Adapted from 
(649)

. 
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Table 1. Vitamin B6 content in selected foodstuffs. 

Food Vitamin B6 content (μg/100 g) References 

Oat 120–960 
(47, 650, 651)

 

Wheat 127–407 
(45, 47, 138, 139, 142, 190, 203, 272, 650-652)

 

Rice, brown 123–563 
(142, 143, 148, 149)

 

Rice, white 93–161 
(142, 143, 148, 149)

 

Maize 307–620 
(47, 142, 145, 650, 651)

 

Rye 202–290 
(47, 138, 650, 651)

 

Barley 231–1100 
(47, 138, 650, 651)

 

Millet 380 
(650)

 

Sorghum 170-590 
(653)

 

Soybean 267–550 
(80, 654, 655)

 

Lentil 540 
(476)

 

Peanut 260–350 
(654, 656, 657)

 

Macadamia nut 218–300 
(196, 658)

 

Pistachio nut 1032–1700 
(47, 196, 654, 658)

 

Hazelnut 378–600 
(47, 196, 658)

 

Walnut 443–540 
(47, 196, 654, 658)

 

Almond 100–188 
(80, 196, 654, 658-661)

 

Garlic 1240 
(476)

 

Potato 140–345 
(47, 142, 188)

 

Carrot 60–206 
(47, 80, 188)

 

Cabbage 65–140 
(47, 188)

 

Tomato 60–65 
(47, 188)

 

Broccoli 130–190 
(47, 188)

 

Cauliflower 140–170 
(47, 188)

 

Spinach 120–227 
(47, 188)

 

Orange 83–88 
(47, 80)

 

Avocado 290 
(662)

 

Strawberry 30 
(47, 188)

 

Apple 56–104 
(47, 80, 188)

 

Pear 14–40 
(47, 188)

 

White bread 16–80 
(80, 143, 190, 663, 664)

 

Brown bread 79–170 
(80, 143, 190, 663, 664)

 

Pork 370–540 
(31, 39, 142, 476, 665)
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Beef 264–579 
(31, 38, 39, 142, 476)

 

Chicken breast 330–811 
(476, 666, 667)

 

Liver, beef 840–1080 
(39, 476)

 

Liver, pork 690 
(39, 476)

 

Tuna 430 
(668)

 

Sardines 310 
(668)

 

Baker’s yeasts 430 
(476)

 

Oyster mushroom 100–110 
(476, 669)

 

Button mushroom 50–77 
(208, 476, 669)

 

  (continued) 

Food Vitamin B6 content (μg/100 g) References 

Milk 35–60 
(48, 142, 467, 670)

 

Youghurt 87–100 
(467, 670)

 

Cheese, cheddar 69 
(476)

 

Eggs 130–241 
(48, 142, 185)
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Table 2. Summary of analytical methods for the assessment of vitamins B6 and B7 in biological fluids. 

Technique 

 

Sensitivity (nmol/L) 

 

Analytes Matrix Advantages Disadvantages Ref. Publication year 

LC-MS 

0.1 – 127.51 x 10
3
 

 

 

 

B6, B6-PL, B6-

P5P, 

B6-PM, B7, 

B6-PA, 

B6,7,9 and its 

vitamers, 

metabolites and 

others 

 

* human milk 

* serum 

* whole blood 

* plasma 

* mice brain samples 

* tears 

* faeces 

Usually short analysis time, 

small sample volume (30 -

250 µL), using MRM in 

detection, simple methods 

for various matrices 

 

Some methods have complicated 

sample preparation (breast milk) 

and complicated gradient elution, 

some methods use SIM and are 

not fully validated. 

 

(671)-353 

 

2012-2024 

HPLC-FLD 0.3 – 20 

B6-P5P, B6-PL, 

B6-PA and others 

 

* whole blood 

* cerebrospinal fluid 

* serum 

Methods use small sample 

volume (100 -250 µL) and 

some of them simple 

derivatization procedure. 

Methods have no IS included, 

usually complicated sample 

preparation, long analysis time 

with post column derivatization. 

(672)-357 

 

 

 

 

2004-2020 

HPLC-PDA 

2D-LC-UV 

0.1 – 7.29 x 10
3
 

 

B6, 

B6-PL, B6-P5P, 

B6-PA and others 

* urine 

* plasma 

* animal plasma 

Methods use small sample 

volume (60 µL). 

Methods haven’t optimal 

recovery, there is long analysis 

time, poor sensitivity, 

derivatization, complicated 

sample preparation, and no IS. 

 

(673)-359 
2014-2023 

MLC-PDA 0.177 × 10
3
 B6 * plasma 

Method has simple sample 

preparation 
No IS is used. 

(674)
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       (continued) 

       

 

 

 

Sensors / nanodots 

/ 

CL / FLD / ECD 

5 – 9.06 x 10
3
 

B6, B6-PL, B7, 

and others 

* serum 

* urine 

* plasma 

* whole blood 

* artificial urine 

Usually simple sample 

preparation, small sample 

volume (10 µL) and small 

solvents consumption, low 

price, some methods use 

common screen-printed 

carbon electrode 

 

Standard addition method is not 

suitable in clinical analysis, 

necessity of electrode, 

nanocomposite or carbon 

nanosheet preparation, technique 

is research only - not 

commercially available, 

electrodes are prepared in 

laboratory, higher detection 

limits compared to modified 

electrodes, some methods use 

large sample volumes (10 mL) 

(675)-370 

 

2018-2023 

Microbiological 

test kits 
2.87 - 14.57 

B6-P5P 

B7 

* serum 
Small sample volume 

(50 µL) 

High price (working in duplicate 

recommended), usually long 

analysis time (24 h), ATBs in 

patients’ sample could influence 

results 

(676)-372 
 

HPLC-FLD kits 1.62 – 4.21 
B6-P5P, and 

others 

* plasma 

* whole blood 

* serum 

Small sample volume (100 –

 300 µL) 

 

No IS is used, long analysis time, 

different extraction procedures 

for each vitamin, different 

analysis conditions (temperature 

etc.), high price for small sample 

series 

(677)-374 

 

 

2021 

       (continued) 

LC-MS/MS kits 1.5 – 6.96 B6-PL, B6-P5P, * whole blood  High price for small sample 
(678)
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 and others Methods use IS, MRM, 

there is short analysis time, 

small sample volume 

(50 µL) combined with 

simple sample  

preparation 

 

series  

ELISA kits 0.13 - 51.16 × 10
−3

 B7 

* serum 

* plasma 

* urine 

Methods use small sample 

volume (50 - 250 µL). One 

kit is suitable for various 

matrices, high sensitivity 

Methods are for research only, 

cross reactivity with analogues, 

time consuming methods with 

high price for small sample 

series 

(679)-377 

 

 

 

2021 

B6 pyridoxine; B6-PL pyridoxal; B6-P5P pyridoxal-5-phosphate; B6-PM pyridoxamine; B6-PA pyridoxic acid; B7 biotin; B9 folic acid; B9-THF tetrahydrofolic acid; B12 cyanocobalamin; 

ATB Antibiotic; CL Chemiluminescence; ECD Electrochemical Detection; ELISA Enzyme-Linked ImmunoSorbent Assay; FLD Fluorescence Detection; HPLC High Performance Liquid Chromatography; IS Internal 

Standard; LC-MS Coupling of Liquid Chromatography and Mass Spectrometry; MLC Micellar Liquid Chromatography; MRM Multiple Reaction Monitoring; MS Mass Spectrometer; MS/MS Tandem Mass 

Spectrometry; PDA PhotoDiode Array Detection; SIM Selected Ion Monitoring; 2D-LC Two-dimensional Liquid Chromatography 
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Table 3. Inborn metabolic disorders related to pyridoxine dependent seizures. 

Disease (synonyms) Genetic defect Other symptoms except seizures 

Antiquitin deficiency 

(Pyridoxine-dependent 

seizures) 

ALDH7A1 

developmental delay, 

intellectual disability, 

abdominal distention 

Hyperprolinaemia II 

(Pyrroline Carboxylate 

Dehydrogenase 

Deficiency) 

ALDH4A1 

developmental delay, 

mental retardation 

PNPO deficiency 

(Pyridoxamine5´-

phosphate oxidase 

deficiency) 

PNPO 

developmental delay, 

sideroblastic anaemia, 

microcephaly, 

feeding difficulties 

PLPBP deficiency PLPBP 

developmental delay, 

intellectual disability, 

microcephaly, 

anaemia 

Hypophosphatasia ALPL 

impaired calcification of bones/teeth, 

anaemia, 

respiratory insufficiency 

Hyperphosphatasia 

(Mabry syndome) 

 

PIGV, PIGO, 

PGAP2 

mental retardation, 

intellectual disability, facial dysmorphism 

brachytelephalangy 

anal stenosis 
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Table 4. Recommendations for vitamin B6 intake by gender and age.
(286)

 

Individuals Condition, age Dose (mg/day) 

Men 

19-50 years 1.3 

> 51 years 1.7 

Women 

19-50 years 1.3 

> 51 years 1.5 

pregnancy 1.9 

lactation 2.0 

Children 

up to 6 months 0.1 

7-11 months 0.3 

1-3 years 0.5 

4-8 years 0.6 

9-13 years 1.0 

Adolescent male 14-18 years 1.3 

Adolescent female 14-18 years 1.2 
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Table 5. Adequate intake level of biotin by life stage according to WHO and EFSA. 

 WHO - AI levels 

(μg/day) 

 EFSA - AI levels 

(μg/day) 

Infants and children  Infants and 

children 

 

0–6 months 5 – – 

7–12 months 6 7–11 months 6 

1–3 years 8 1-3 years 20 

4–6 years 12 4–6 years 25 

7–9 years 20 7–10 years 25 

Adolescents  Adolescents  

10–18 years 25 11–14 years 35 

  15–17 years 35 

Adults, 19+ years  Adults, 18+ years  

Females*/Males 30 Females*/Males 40 

Lactating women 35 Lactating women 45 

*including pregnant women; data are from
(389, 390)

; AI levels – adequate intake level, EFSA –

 European Food Safety Authority; WHO – World Health Organization. 
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Table 6. Biotin content in selected foodstuffs. 

Food Biotin content (μg/100 g) References 

Oat 13–21.7 
(466, 680, 681)

 

Wheat 8.3–11.6 
(144, 680-682)

 

Rice, brown 4.2–12 
(144, 471, 680, 681)

 

Rice, white 1.1–3 
(471, 681)

 

Maize 6–8.3 
(144, 146, 680-682)

 

Rye 5–14.5 
(144, 680, 681)

 

Barley 10–20.5 
(144, 461, 681)

 

Millet 4.6–14.4 
(680, 683)

 

Sorghum 15.4–33.3 
(144, 461, 680, 682)

 

Soybean 21.9–60 
(397, 461, 466, 484, 655, 680)

 

Lentil 17.4–23.1 
(484, 680)

 

Peanut, roasted, salted 34–82 
(399, 461, 463, 466, 681)

 

Macadamia nut, roasted, salted 6–6.5 
(471, 680)

 

Pistachio nut, roasted, salted 16.4–32 
(463, 681)

 

Hazelnut 61.6–76 
(397, 471, 681)

 

Walnut 17.3–35.5 
(397, 461, 463, 681)

 

Almond 32.9–64 
(209, 463, 466, 471)

 

Garlic 1.5–2 
(463, 680, 681)

 

Potato 0.3–0.4 
(188, 680)

 

Carrot 0.3–2.8 
(188, 463, 466, 680)

 

Cabbage 0.8–2.2 
(463, 466, 680)

 

Tomato 0.7–3.6 
(188, 387, 463, 466, 680)

 

Broccoli 1.9–6.5 
(188, 463, 466)

 

Cauliflower 1.7–10 
(188, 463, 466, 680)

 

Spinach 2.9–4 
(463, 466, 680)

 

Orange 1–2 
(188, 681)

 

Avocado 1–4.3 
(387, 466, 471)

 

Strawberry 0.8–2.2 
(188, 387, 466, 680)

 

Apple 0.7–1.6 
(188, 466, 680, 681)

 

Pear 0.3 
(188, 680)

 

White bread 0.6–1.6 
(466, 471)

 

Brown bread 3 
(471)

 

Pork 1.5–5 
(39, 387, 466)
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Beef 1.2–3 
(39, 461, 466)

 

Chicken breast 2.4–3.2 
(466, 680)

 

Liver, beef 41.6–76.1 
(387, 466, 680)

 

Liver, pork 54.5–79.6 
(466, 680)

 

Tuna 1.2–2.8 
(466, 668, 680)

 

Sardines 7.2–18.3 
(466, 668, 680)

 

Baker’s yeasts 20.2–80 
(387, 461, 471)

 

Oyster mushroom 12 
(680)

 

Button mushroom 10.6–24.4 
(469, 680, 681)

 

Milk 1.4–4.3 
(179, 397, 461, 466, 670, 680, 681, 684, 685)

 

Yoghurt 0.9–4 
(466, 467, 471, 670, 680, 681, 684)

 

Cheese, cheddar 1.4–3.8 
(387, 462, 466, 471, 680, 681)

 

Eggs 19.5–25.4 
(185, 387, 397, 399, 461, 466, 680, 681)
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Table 7. Biotin-dependent carboxylases, their location in cells and roles. 

Biotin-dependent 

carboxylases 

Location Roles References 

Acetyl-CoA 

carboxylase 1 (ACC-1) 

Cytosol Carboxylation of acetyl-

CoA to malonyl-CoA. 

ACC-1 isoform is 

expressed in lipogenic 

tissues such as the liver and 

kidney. 

(686)
 

Acetyl-CoA 

carboxylase 2 (ACC-2) 

Outer 

mitochondrial 

membrane 

Carboxylation of acetyl-

CoA to malonyl-CoA. 

ACC-2 isoform is 

expressed in skeletal 

muscles and the heart, 

tissues where fatty acid 

oxidation is important. 

(686)
 

Methylcrotonyl-CoA 

carboxylase (MCC) 

Mitochondrial 

matrix 

Catabolism of leucine and 

carboxylation of 3-

methylcrotonyl-CoA to 3-

methylglutaconyl-CoA. 

(687)
 

Pyruvate carboxylase 

(PC) 

Mitochondrial 

matrix 

Catalysis of the 

transformation of pyruvate 

to oxaloacetate. 

(688)
 

Propionyl-CoA 

carboxylase (PCC) 

Mitochondrial 

matrix 

Catalysis of the conversion 

of propionyl-CoA to 

methylmalonyl-CoA. 

(689)
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