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Abstract. We study questions concerning the ergodic theory, von Neumann algebras,
geometry, and topology of actions of lattices in Sp (1, n).

1. Introduction
In this paper we study actions of lattice subgroups of the Lie groups Sp (1, n). There
are four main results. The first two are of an ergodic theoretic nature, concerning
the measurable orbit equivalence of actions of such groups, as well as the von
Neumann algebra associated with the action by the Murray-von Neumann group-
measure space construction. The last two results are of a geometric nature, concerning
the actions of such lattices preserving a geometric structure on a manifold. An
interesting feature of the proof of these is the new role played by von Neumann
algebras in helping (along with geometric and ergodic theoretic arguments) to
establish purely geometric results. We now describe the results in more detail.

Let F (respectively F') be a discrete group acting essentially freely, properly
ergodically, and with finite invariant measure on a (standard) measure space (S, /*)
(respectively (S',fi')). We recall that these actions are called orbit equivalent if
there is a measurable bijection (modulo null sets) 6: S^>S' that is measure-class
preserving and such that for (almost) all seS, 0(sT) = 0(s)F'. The groups F and F
are called weakly equivalent, and we write F = F', if such orbit equivalent 5 and S'
exist. If F, F' are both amenable then F = F' by [1,5]. Suppose now that G, G' are
connected non-compact simple Lie groups with finite center, and F <= G, F <= G' are
lattices. Then the main result of [12] (see also [14]) implies that if R-rank (G) &2,
then F = F' implies G and G' are locally isomorphic. A basic open problem in this
direction is to clarify the extent to which this result holds if both G and G' are of
R-rank 1. From [13], we deduce that if F = F', G has Kazhdan's property if and
only if G' does as well. Our first main theorem is to extend the result quoted above
for R-rank (G)> 2 to the case Sp (1, n).
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THEOREM l.l(a). Let FcSp(l,n), F'cSp(l,m) be lattices (n, m>l). Assume
F = F'. Then n — m.

(b) More generally, let I, J be finite subsets of {n e Z | n > 2}. For i e / (respectively

jeJ) let F ,<=Sp(l , i) (respectively Tj<=^Sp (I, j)) be a lattice. Let D and D' be discrete

groups each of which is a (finite) product of lattices in groups of the form SO (1, k)

or SU (I, p). If

then Y[ie, (2i — l) = Y[Jej (2/ —1) (where we take an empty product to equal 1.)
It would of course be interesting to determine if we must have / = / in (b). We

remark that although n , e / F, is a lattice in a semisimple group of R-rank>2 if the
cardinality of I is at least 2, the results of [12,14] are not directly applicable since
these lattices will not be irreducible.

The technique of proof of Theorem 1.1 is related to (and was inspired by) the
work of Cowling and Haagerup [4] showing that the von Neumann algebras of
lattices in Sp(l,/i) vary as n varies. Making precise the ideas of Haagerup [8],
Cowling and Haagerup define for any discrete group F, a number A(F) which
depends only on VW(F), the von Neumann algebra generated by the regular
representation of F, and which is 2 n - l for a lattice in Sp(l, n). In the present
paper we construct a number C (S, F), where S is a measure space on which F acts
in a measure class preserving way, so that C (S, F) = A(F) if F acts essentially freely,
ergodically and with finite invariant measure. We then show that for such actions,
C (S, F) is an invariant of orbit equivalence, and this will yield Theorem 1.1 (using,
of course, the computations of A(F) for various lattices, which appear in [3,4,8]).
The number C (S, F) is constructed using the group measure space von Neumann
algebra, but it is not clear whether or not this depends only on this von Neumann
algebra. (I.e., a priori it depends on a Cartan subalgebra as well.)

Our second main result concerns precisely this point, i.e. to clarify in which
circumstances one can expect non-isomorphism of the group measure space von
Neumann algebras given non-orbit equivalent actions. It is known that this does
not hold in complete generality [2], but it is widely expected that some such
phenomenon exists for actions of lattices in (possibly higher rank) semisimple
groups. If F acts on a measure space S, we let VN (S, F) be the group measure space
von Neumann algebra. (We recall the definition in § 2.)

THEOREM 1.2. Let FcSp( l , « ) , F'cSp(l, m) be lattices (n,m>2). Let T^X,
V'-* X' be embeddings where X and X' are (separable) pro-finite groups. Let F act
on X (and F' and X') by translations. If VN (X, F) = VN (X\ T'), then n = m.

We remark that any such lattice is residually finite and hence admits a pro-finite
embedding. Thus, Theorem 1.2 provides a natural infinite set of mutually non-
isomorphic II, group measure space factors. It would of course be of considerable
interest to determine if the conclusion of Theorem 1.2 remains valid in a more
general context, e.g. for lattices in higher rank groups. Another natural question is
the sensitivity of VN (X, F) to changing the pro-finite embedding for a fixed F. For

https://doi.org/10.1017/S0143385700004946 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004946


Actions of lattices in Sp (1, n) 223

example, if p is a prime and F -»Xp is an embedding in a pro-p group, does
VN (Xp, F) vary as p changes?

Our third main result concerns connection preserving actions on manifolds. We
first recall the main result of [17] (see also [16]) for actions of lattices in higher
rank groups. Suppose H is a connected simple Lie group with finite center and that
R-rank(H)>2. Let F<=// be a lattice. Suppose Mm is a compact manifold and
that M is endowed with both a connection and a G-structure, where G <= SL (m, R)
is an algebraic group. If F acts on M so as to preserve the connection and the
G-structure, then the main result of [17] implies that either A-*$ (i.e. H embeds
in G locally), or F preserves a smooth Riemannian metric on M. For example,
SL (n, Z) acts on Rn/Z" preserving the standard connection and a volume form (i.e.
a SL(n, Restructure). It follows from the theorem quoted above that any volume
preserving connection preserving action of SL («, Z) ( « s 3 ) o n a compact manifold
M with dim M<n must preserve a Riemannian metric. From the fact that every
homomorphism of SL (n, Z) (n > 3) into a compact Lie group has finite image, we
deduce that every such action is finite (i.e. factors through a finite quotient.) In this
paper, we establish a result of the same nature for lattices F c Sp (1, n). Using the
fact that F has Kazhdan's property (T), it follows from the results of [18] that if F
preserves a G-structure on a compact manifold Mm, G c SL (m, R) algebraic, and
a connection on M, where G is locally isomorphic to a group of the form SO (l,p)
or SU (1, p), then F preserves a smooth Riemannian metric on M. Here we prove:

THEOREM 1.3. Let F c Sp (1, n) be a lattice. Suppose F acts on a compact manifold
Mpreserving a connection and an Sp (1, m)-structure for any linear representation of
Sp (1, m). If Y acts properly on the frame bundle of M, then n < m.

THEOREM 1.4. Let F<= Sp (1, n) be a lattice. Suppose F acts on a compact Riemannian
manifold preserving the Levi- Civita connection and a Sp (1, m) -structure for any linear
representation of Sp (1, m). Let Iso (M) be the isometry group of M.
(i) If Fn Iso (M) is finite, then n < m.

(ii) If m = 2 and the structural representation of Sp (1, m) is irreducible, then either:
(a) n = 2; or
(b) F preserves a smooth Riemannian metric on M.

To illustrate, we remark that under the standard embedding Sp(l, «)<=
GL(4(n + l),R) the subgroup Sp(l,n) is the set of real points of an algebraic
Q-group, and hence the group of integer points F = Sp (1, n)z is a lattice. This group
acts naturally on the torus M = uMn+l)/ZMn+1), preserving a Riemannian connection
and a Sp (1, n)-structure, and Fn Iso (M) is finite.Theorem 1.4 implies that there
is no such action on a smaller dimensional manifold.

The proof of Theorems 1.3, 1.4 is in two parts. We consider the action of F on
the frame bundle P(M) of M. If the action is proper, then we use von Neumann
algebra techniques to show n < m. If the action is not proper, then we use arguments
of geometry and the notion of algebraic hull of an action (reflecting the relationship
between algebraic structures and the ergodic theory of the action) to deduce the
existence of a smooth invariant metric.
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The technical tools used to prove Theorems 1.3 and 1.4 when the F-action on
P(M) is proper also establish our last result, which extends the work of [19].

THEOREM 1.5. Suppose the discrete group F acts properly on the universal covering
space M of a compact manifold M, that this action commutes with the action of the
fundamental group TT^M) and that the projected action of F on M admits a finite
invariant measure. Then ACTT^CM))^ A(F). In particular, i /F is a lattice in Sp (1, n),
then TT,(M) cannot be embedded as a discrete subgroup of Sp (1, m) (with m<n) or
in SO (1, m) or in SU (1, m) (with m > 1).

Using a result of M. Gromov [7], the following Corollary is immediate.

COROLLARY 1.6. Suppose that Sp (1, n) acts (non-trivially and) real analytically on
a compact manifold M and preserves a connection and a finite measure. Then
A(7r,(M))> 2/7-1 .

2. Approximations of the identity on von Neumann aigebras
Let M be a von Neumann algebra. We recall that an operator T: M -* M is called
completely bounded if T®Id is a bounded map on the spatial tensor product
algebra M ® N for any von Neumann algebra N, and the completely bounded norm
is given by || 7 | |C B = || T®Id|| for N = B(H), H a separable Hilbert space. (See [3]
for details and discussion.) We also recall that M is the dual space of a Banach
space, and hence M has a weak-*-topology. As in [3,4,8], we have the following
invariant of M. Consider nets {T)}1(E/ where T,: M-* M is a weak-*-continuous
operator, dim 7)(M)<oo, and for all x e M , 7pc-»x in weak-*. Let A(M) be the
innmum of those numbers C for which there exists such a net with || Tt \\ CB < C for
all i. Otherwise, set A(M) = oo.

If F is a discrete group, we let VN (F) be the von Neumann algebra generated
by the regular representation of F. Thus, if we let n: F-»U (L2(F)) be the regular
representation, then VN (F) is the closure in the weak operator topology of operators
of the form £ r e r ayir(y) where ayeC and ay = 0 except on a finite set of F. If
T: VN (F)H> VN (F), and F<= F is a finite set, we say that T is supported on F if
T(VN (F)) c { £ r e F ayir(y)}. (In particular, dim T(VN (F)) < oo.) From [8] we have:

LEMMA 2.1. [8]. IfT is a discrete group, then A(VN (F)) is the infimum (if it exists)
of those numbers C for which there is a net of weak-*-continuous T): VN (F) -* VN (F)
such that (a) each T] is supported on a finite set (possibly depending on /); (b) for all
x e V N ( F ) , TiX^xin weak-*; and (c) ||7],||CB =£ Cfor all i.

We shall also need the dual description of A(VN (F)) given in [4,8]. Let G be
a locally compact group. Let B(G) be the space of matrix coefficients of unitary
representations of G. I.e. a function / o n G is in B(G) if and only if / is of the
form f(g) = (-n-(g)v, w) where 77 is a unitary representation of G. Then B(G) is a
Banach algebra with the norm
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We let A(G)<= B(G) be the subalgebra of matrix coefficients of the regular rep-
resentation of G. Then A(G) is the closed ideal generated by BC(G) = B{G)n CC(G).
Furthermore, we have a natural identification A(G)* = VN (G), the von Neumann
algebra generated by the regular representation. Now let

M(G) = {meC(G)|mA(G)cA(G)},

and

M0(G) = {me M(G) | the adjoint operator on VN (G) is completely bounded}.

It is known that m e M0(G) if and only if there are bounded continuous functions
P, Q: G->H where H is a Hilbert space, such that m(y"1A) = (P(A), Q(y)) for
y, A € G. Furthermore, if we let ||m||CB be the completely bounded norm of the
adjoint operator on VN (G), then

where P, Q satisfy the above equation. With this norm, M0(G) is a Banach space,
and we have A(G) <= B(G)<= M0(G) <= M(G). We also remark that if F is discrete,

LEMMA 2.2. [4,8]. For any locally compact G, let A(G) be the infimum of those
numbers C for which there is a net nj e AC(G) such that /j,j -» 1 uniformly on compact
sets and ||/i,||Mo(G)s C. Then
(i) IfT^Gisa lattice, A(F) = A(G).
(ii) / / T is discrete, then A(F) = A(VN (F)).
(iii) A(G) is the infimum of those numbers C for which there is a net <f>j e A(G) such

that <f>j-* 1 uniformly on compact sets and ||0/||MO(O— C.

We summarize some of the basic results of [3,4J.

THEOREM 2.3. [3,4].
(a) / / T<= SO (1, n) or F<= SU (1, n) is a lattice, n>2, then A(VN {T)) = 1.
(b) / / Tc Sp (1, n) is a lattice, n > 2, then A(VN (O) = In -1.
(c) A(VN(r, x r2))=A(VN (r,))A(VN (r2)).

Now suppose that (S, /t) is a (standard) measure space and that the discrete
group F acts in a measure class preserving way on S. For yeF, let ir(y)e
U(L2(SxT)) be given by

(•*{y)f){s,g)=f{sy,gy)r{s,y)l/2

where r(s, y) = (d(y^)ld^i){s). For a € LX(S), we have the multiplication operator
(which we still denote by a) on L2(SxD, i.e. (a-f)(s, y) = a(s)f(s,y). We let
VN(S, F) be the von Neumann algebra generated by {ae Lf°(S)}v{Tr(y)\y eF}.
This is the group measure space von Neumann algebra. It is the closure in the weak
operator topology of operators of the form {Y.yer ^""(y)} where ay e L°°(S) and
ay(s) = 0 for all s except for y in a finite subset of F. Obviously, if S = {pt}, then
VN(S, F) = VN(F). On the other hand, for essentially free actions, VN(S,F)
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depends only on the equivalence relation defined by the F-action on 5, or in other
words, depends on the action up to orbit equivalence. (See [6] for discussion.) We
shall need one explicit feature of this isomorphism, and hence we recall this with
a little detail. Let F act on (S, n), F' act on (S", fi'), and suppose 6: S^S' is an
orbit equivalence. We suppose both actions are essentially free, and (for simplicity)
finite measure preserving. Define a: SxF-»F'by 6(s)a(s, y) = 0{sy). Then the map
0: SxF-»S'xF ' given by 6(s, y) = (0(s), a(s, y)) is a measure preserving bijection.
Let U: L2(S'xF')-»L2(SxF) be the associated unitary operator. I.e., for fce
L\S' x F'), Uh = h°§. Then one easily checks that U~l VN (S, F) U = VN (S', F').
Namely, it is clear that for aeLx(S), U~laU = a°0~\ Furthermore, for yeF,
y'eT', let Ay<y = {s'€ S'|a(0~'s, ?) = / } . Then one verifies that

Now let & be the set of finite subsets of F. Suppose 5 -» Fs is a measurable map
S-* &, (i.e. {(s, y) | y e Fs} is measurable). We call {FJ a field of finite subsets of F
(on S).

DEFINITION 2.4. If T: VN (S, F)-» VN (S, F) is an operator, and {FJ is a field of
finite subsets of F, we say that T is supported on {Fs} if T(VN (S, F)) is contained
in the closure (in the weak operator topology) of operators of the form
lysr ay(s)ir(y) where ayeV°(S) and ay(s) = 0 if yi Fs.

DEFINITION 2.5. Let C (S, F) be the infimum (if it exists) of those numbers C for
which there exists a net of weak-* continuous operators Tt: VN (S, F)-» VN (5, F)
such that

(i) for each i, there is a field subsets {F's} such that Tt is supported on {F's};
(ii) for all x e VN (5, F), Ttx-» x in weak-*;

(»i) II7]i|| CB^C for all i.
If no such C exists we set C (S, F) = oo.

We remark that although C (S, F) is defined in terms of VN (S, F), it is not a
priori dependent only on VN (S, F). The dependence of the definition on fields of
finite subsets makes C (S, F) a priori dependent on the choice of Cartan subalgebra
[6] L°°(S)c:VN(S,r) as well. For example, by [8] we have A(SL(2,R)ixlR2) = oo,
and hence (by [8] again) A(SL(2, Z ) K Z 2 ) = OO. The von Neumann algebra of this
discrete group is isomorphic (via the Fourier transform in the Z2 variable) to the
von Neumann algebra VN (T2, SL(2, Z)), where SL(2, Z) has the natural action
by automorphisms of T2. Thus, A(VN (T2, SL (2, Z)) = oo, while C (T2, SL (2, Z)) =
1. However, we do have:

LEMMA 2.6. If the actions ofTonS and F' and S' are essentially free, finite measure
preserving, and orbit equivalent, then C (S, F) = C (S', F').

Proof. Let U: L2(S'xF')^ L2(SxF) be the unitary operator defined above, and
W: VN(S,r)-*VN(S',F') the isomorphism W(A)=U'1AU. If T:VN(S,F)^
VN (S, F) is supported on a field of finite subsets {Fs}seS, then one easily verifies
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from the definitions that WTW'1: VN (S', F') -> VN (S', D is supported on { F ^ } ^ .
where

F;={y '€r |y '=a(0" 1 (x ' ) , y) for some y e F J .
From this, the lemma follows by a routine argument.

Given a net as in Definition 2.5, it is convenient to have a net with somewhat
sharper properties.

LEMMA 2.7. Let C (S, F) be the infimum of those numbers C for which there is a net
of weak-* continuous operators Tt: VN (S, T)-* VN (S, F) such that (i), (ii), (iii) of
2.5 hold with the additional assumption that in (i),/or each i, {F's} is a constant field,
i.e. for some F16 9, F\ = F' for all s. Then C (S, F) = C (S, F).

Proof. Clearly C (S, F) > C (5, F). To see the converse, suppose {7]},e/ has support
on {Fi}, || T,IICfl < C and 7]x-»x in weak-* for all x e VN (S, F). For any F e f , let
SUF = {s € S | F" c F}. Let TtF(x) = ̂ F • (T,(x)). Since L°°(S) cz VN (5, F), we clearly
have TiF: VN (S, F) -* VN (5, F), and TiF is supported on the constant field s-* F.
For any aeVN(S, F), the map x^ax is completely bounded with completely
bounded norm equal to ||a||. Hence ||7]F||< C. Finally, as F S1 F, \s: F -* Id in weak-*,
so TiFx-> x in weak-* as well for any xe VN (5, F). This shows C (S, F)< C, which
suffices. •

3. Proof of Theorem 1.1
In light of Lemma 2.6 and Theorem 2.3, it suffices to prove:

THEOREM 3.1. Suppose a {countable) discrete group F acts in a measure class preserving
way on the {standard) measure space (S, fi). Then
(a) C(S,F)<A(VN(F)).
(b) If the measure is finite and invariant, then C (S, F) = A(VN (F)).

We let M be the set of operators in VN(S, F) of the form £T ayir{y) where
ay e L°°{S) and ay{s) = 0 for all s except for y in a finite subset of F.

LEMMA 3.2. For any ^eM0(F), define T<,:M^M by T+Q ayir{y)) =
Hy <t>{y)oyir{y). Then Tj, extends uniquely to a weak-* continuous map
7;:VN(s,r)^vN(s,r) with ||rju<||<£||Mo(r).
Proof. Let m = I ir{y)ay e M. Let /„,/„ e L\S x F) with I ||/n||2||/n||2 < oo.

n

Then

.,/.> = I I I 4>{y){ir{y)aJn){s, y,)fn{s, 7l) dyx ds

= Z I I <My)K/n)(sy, y,y)r(s, y)mfM y.) dr, ds.
n y JsxT

As in the discussion preceding Lemma 2.2, let p, q: F-» /2(Z+) such that
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)/„,/„>

Jsxr
), q(y\))(ayfn)(sy, ;,y)1/2)/nUy.)<*yi<fr

= 111
n y k

Pk(yi
JSxr

y)cjk(yi)(ayfn)(sy, yxy)r{s, y)1/2fn(s, y,) dy, ds

n y k
= 1 1 1 [ (aypkfn)(sy, y,y)r(s,

= 11 [ (]
n k J Sxr \ •

Notice that

\(m(pjn), qjn)\^
n fc n k

D(s, y,) d7l ds

: I I | ['L(ir(y)aypkfn)(s,yl)(qkfn)(s, y,) rfy,

1/2

since

= [ llp(
J sxr

1/2

and since we have the corresponding inequality for (£fc H^/t/nlli)'72- (Thus, all the
above formulae converge absolutely, and we may change the order of summation
and integration.) It follows that if for any m e VN (5, F), we define T^{m) by

then T^, so defined, is the unique weak-* continuous extension from M to VN (S, F),
and we have

To see that 7^ is completely bounded, one replaces F by F = F x K in the above
argument where K = SU (2), acting trivially on 5. The function <f> on F extends
naturally to a function ^ on f (<£(y, k) = <f>(y)) and by [3], we have <j> € M0(f) and
II 4> II M0(f > = II # II MO(I> The above argument shows that T$ is a bounded map on si,
the von Neumann algebra on L2(5xTxX) generated by L°°(5), F acting on the
first two components as before, and K acting by right translations on K, with
|| 7* || < ||^ || M f̂,. Thus, w e h a v e ^ s V N ( 5 , F)®VN(X) with T+ corresponding to

. It follows that T^ is completely bounded with ||r^||CB< ||0||Mo(r)-
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Proof of Theorem 3.1
(a) If A(VN (D) = oo, there is nothing to prove. Otherwise, for C > A(VN (D),

choose a net $, of finitely supported functions with II^IIMOID—C an<3 <£,•-» 1
pointwise (Lemma 2.2). By Lemma 3.1, we have that 7 .̂ is completely bounded
with ||Tfr||CB — C. We clearly have T^m-» m for all me M, and hence for all
m e VN (5, F). Finally, since <£, is compactly supported, 7^ is supported on a field
of finite subsets on S, and hence C (S, F) < C, proving (a).

(b) We suppose there is a finite F-invariant measure on 5, that C (S, F) <oo, and
show A(VN(F))<C(5, F). Choose a net Tt of operators on VN (S, F) such that
II7"iIICB—C, Tfm->m in weak-* for all weVN(5, F), and each 7) is supported on
a constant field of finite subsets, say s -» F' e & (Lemma 2.7). Define / : VN (F) ->
VN(S,F) and P: VN (S,D-> VN (F) by / ( £ y 6 r cyP(y)) = £ > e r 7r(y)c7 (where P is
the regular representation of F and we view cy as either a complex number or a
constant function on S), and

= I (\ ay(s) dfi(s))p(y).

Then I and P are completely positive maps of completely bounded norm 1. 7 is
the canonical injection of VN (F) into VN (S, F) and P is the conditional expectation
from VN (5, F) to /(VN (F)), brought back to VN (F). The net PTJ of operators
on VN (F) satisfies || PTJ\\ CB =£ C and PTJx -> x in weak-* for all x e VN (F). Further-
more, for each i, PTJ is supported on F'<=F. It follows that A(VN (F))< C, and
hence A(VN (F)) < C (S, F) as asserted.

4. Proof of Theorem 1.2
By Theorem 2.3, it suffices to prove:

THEOREM 4.1. Let F^K be an embedding of a (countable) discrete group in a
(separable) pro-finite group K. Let F act on K via this embedding. Then A(VN (K, F)) =
A(VN (D).

Proof. We have a natural embedding VN (F) -» VN (K, F) and hence [4, Proposition
6.3] A(VN (F))< A(VN (K, F)). We now show the reverse inequality. By Theorem
3.1, and Lemma 2.7, for any e > 0 we can find a net Tt of operators on VN (K, F)
such that Tjm-*m in weak-* for all m, ||Tj||CB< A(VN (F)) + e, and each Tt has
support on a constant field of finite subsets of F. We can choose a sequence of
compact open subgroups Kncz K with J£n+1<= Kn and (~) Km ={e}. Let £„: L°°(X)-»
Lac(K)K" = V°(K/Kn) be the canonical conditional expectation given by averaging
over Kn cosets. We extend En to a map defined on operators on VN (K, F) which
are supported on a constant field of finite subsets of F by setting

= Ir7r(y)(Enay).

Then En extends to a conditional expectation VN (K, F)-» VN (K/Kn,F)^->
VN(K,F) [10]. Thus, En is completely positive and ||£n||CB = l. Since K/Kn is
finite, it is clear that EnT, has finite dimensional range for each n, i. Furthermore
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EnTm -* T,m for each i and each meVN (K, F) since U LX(K)K» is dense in L°°(K).
Finally, ||£n71||CB<j|7;||CB. Thus, A(VN (K, F))< A(VN (F)) + e, and this proves
the theorem. D

5. Proof of Theorems 1.3 and 1.4
Let P-* M be the frame bundle of M. Let A(M) <=• Diff (M) be the subgroup leaving
the F-invariant connection invariant. There is a y4(M)-invariant smooth Riemannian
metric on the manifold P [9], and we let Iso (P) be the isometry group of P with
respect to this metric. We thus have inclusions F-» A(M)-»Iso (P). Iso (P) and
A(M) are (not necessarily connected) Lie groups and A(M)c Iso (P) is closed.
The group Iso (P) acts properly on P, and F will act properly on P if and only if
F is closed in Iso (P). For the Levi-Civita connection on a compact Riemannian
M, this is the case if and only if Fn lso(M) is finite, as follows easily from a
classical theorem of Yano [9, p. 125]. To prove Theorems 1.3,1.4, it suffices to show:

LEMMA 5.1. Assume the hypotheses of Theorem 1.3.
(a) If F acts properly on P, then n^m.
(b) If F preserves the Levi-Civita connection, does not act properly, and m=2, then

F preserves a smooth Riemannian metric on M.

We first turn to the proof of assertion (b) of the lemma. We shall need the notion
of algebraic hull of a measurable cocycle. We refer the reader to [15] for a detailed
discussion of this notion in a geometric framework. Here, we recall some salient
features. If we choose a measurable trivialization of P (or equivalently, a measurable
section of P), then the F action on P = M x GL{n) can be expressed as y{m, g) =
(ym, a(y, m)g) where a: Fx M-* GL(n) satisfies the cocycle equation. Choosing a
different measurable section is equivalent to choosing a cocycle equivalent to a. If
there is a measure /x on M, quasi-invariant and ergodic for the F-action, then up
to conjugacy there is a unique algebraic subgroup HczGL(n) such that a is
equivalent to a cocycle taking all values in H, but not equivalent to a cocycle taking
all values in a proper algebraic subgroup of H. Then H is called the algebraic hull
of a(or of the action on the principal bundle P). (It depends on the measure fi.)
Our approach to proving assertion (b) is based on the following lemma.

LEMMA 5.2. Assume the hypotheses of 5.1. Suppose there is a finite F-invariant ergodic
measure on M such that every algebraic Kazhdan subgroup of the algebraic hull of
the action on P is compact. Then there is a smooth T-invariant Riemannian metric on
M.

Proof. Since F is a Kazhdan group and the algebraic hull is Kazhdan by [18], the
algebraic hull is compact. As in [16, Lemma 4.11], this implies that there is a finite
F-invariant measure on P. The argument of [16, Theorem 5.4] then implies the lemma.

We also need the following two facts.

LEMMA 5.3. Any proper algebraic Kazhdan subgroup of Sp (1,2) is compact.
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Proof. This holds for simple subgroups by examination, from which the result for
general algebraic subgroups follows easily.

LEMMA 5.4. Let Foc: F be a non-trivial torsion-free normal subgroup. Then Fo is not
abelian.

Proof. Let Fo be the Zariski closure of Fo in Sp (1, n). Then F normalizes (Fo)°, and
hence Sp (1, n) does as well by the Borel density theorem [14]. Since Fo is infinite,
we have Fo = Sp (1, «), and hence Fo is not abelian.

Proof of 5.1 (b) By passing to a group of finite index, we can assume F is torsion
free. Let T be the closure (usual Lie group topology) of F in A(M). The hypotheses
of (b) imply that F # F. Since the F-invariant connection on M is Riemannian, the
identity component A(M)° is compact [9, p. 125]. Let K = (F)°<= A{M)°. Let X , c X
be a connected semisimple normal subgroup such that K/ Kt is abelian. Clearly
K{ <= K is a characteristic subgroup. Let Fo = T n K and F, = F n Kt. Since F is
torsion free, either F) is trivial or infinite. If it is trivial, then Fo projects injectively
into K/ Ki, and hence Fo is abelian. However it is clearly normal in F which implies
by Lemma 5.4 that Fo is trivial. This in turn would imply that F<= A(M) is discrete,
contradicting the assumption F # F. Therefore, we may assume F, is infinite.

Since Fo
 c F is normal and K} <=• K is characteristic, it follows that F, <= F is normal.

We let Q = T, <= Ki. Then Q is normalized by F, and hence by K. In particular,
QcJC, is normal, and hence Q is semisimple (and non-trivial). For meM, let
Qm c Q be the stabilizer of m in Q, and let qm <= q be the corresponding inclusion
of Lie algebras. For each m e M, we have a natural identification of q/qm with the
tangent space at m of the Q-orbit of m in M, i.e. with a subspace Vm c TMm. Since
Q is compact and semisimple, we can fix an Aut (<?)-invariant positive definite inner
product on q. This induces in a canonical way an inner product on q/qm, and hence
on Vm. Furthermore, for any y e F (or more generally for any element of NA(M)(Q))
and any meM, dym: Vm-* Vym and the following diagram commutes:

where y acts on q via the automorphism A(y). Since the inner product on q is
Aut (q) invariant, it follows that we have a F-invariant assignment to each me M
of an inner product on Vm. (We remark that m-» Vm may not be of constant
dimension, so the assignment may not be globally smooth. However, since dim Q > 0
and Q acts faithfully by definition, we have dim Vm > 0 for m in a non-trivial open
set. Moreover, the assignment of inner product is clearly measurable.) It follows
that for each F-ergodic component fi of the F action on M (with respect to the
smooth measure class), the algebraic hull H will act orthogonally on a subspace V
with dim V = dim Vm for /u. a.e. m in this ergodic component. In particular, for a
set of ergodic components of positive measure, dim V > 0. We also have H c Sp (1,2)

https://doi.org/10.1017/S0143385700004946 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004946


232 M. Cowling and R. J. Zimmer

since the F-action preserves a Sp (1,2)-structure. Since the structural representation
of Sp (1,2) is irreducible, we deduce that H <= Sp (1,2) is proper.

An application of Lemmas 5.2, 5.3 then completes the proof of
Lemma 5.1(b). •

Proof of Lemma 5.1. (a) Let P'-* M denote the F-invariant G- structure on M, where
G = Sp (1, m). We first recall that since F acts properly on P', for any compact sets
K,K'<=P', {(y,p)eTxK'\ypeK) is precompact in FxK' [11]. We can choose a
bounded measurable section of the projection P' -» M, i.e. the image of the section
is precompact. It follows that the corresponding trivialization P' = M xG preserves
precompact sets. We let a: F x M -* G be the cocycle defined by the action on P'
via the above trivialization. We then have:

LEMMA 5.5. (a) For any compact set X <= G, there exists NeZ+ such that for all meM,

caTd({yer\a(y,m)eK})<N.

(b) For any y e F, {a(y, m) \ m e M} is precompact.

Another consequence of the fact that F acts properly is that P'/T is Hausdorff.
In particular, the action is smooth in the sense of ergodic theory [14], or tame in
the terminology of [15]. This latter condition is equivalent to the existence of a
fundamental set D c f for the F-action, i.e. a measurable set D such that {yD \ y e F}
are distinct and P is the disjoint union of these sets [14, Appendix A]. Lemma
5.1 (a) follows from Lemma 2.2, Theorem 2.3 and the following general result.

THEOREM 5.6. Let F be a (countable) discrete group acting on a measure space (X, p)
where fi is finite and F-invariant. Suppose G is a locally compact group and a: X x F -» G
is a (measurable) cocycle such that
(i) the corresponding action of F on XxG (given by (x, g)y = (xy, ga(x, y))) is

tame;

(ii) For each compact K<^G, there is an integer N such that for all xeX,

card{yer\a(x,y)eK}<N; and
(iii) for each yeF, {a(x, y)\xeX} is precompact. Then A(F)< A(G) (where these

are as in Lemma 2.2).

For the proof, we shall need the following lemma which ensures that we can
choose a fundamental set with a special property.

LEMMA 5.7. Assume the hypotheses of 5.6. Then there is a fundamental set D <= XxG
for the F-action such that if v is a finite measure on D in the class of the restriction
of the product measure on XxG to D, then the projection of v to a measure on X is
in the same measure class as fi. (We only require here that D be a fundamental set
modulo null sets, i.e. fundamental in the measure algebra.)

Proof. This is basically an exercise in measure theory. We sketch the arguments
when G is a continuous group, leaving details of verification and case of G discrete
to the reader. For a set A <= X x G, and x e X, we set A* = {g e G \ (x, g) e A}. Let
XA = {xeX\Haar (Ax)>0}. It suffices to show that we can find a fundamental set
D with XD conull in X. Fix any fundamental set A Since Uyer Ay = X x G, we
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must have U y e r (XA) • y = X. We can thus choose a sequence of measurable sets
X, c XA (not necessarily disjoint) and a sequence y, in T such that X is the disjoint
union X = U. -^.7. where X, = XA, y, = e. We fix these sequences together with an
ordering on them. Let n: XA^{oo}uZ+ be w(x) = card{i|xeXj}. For each j , we
can choose subsets (measurable) BkJ<^ An(n~l{j)xG), k<j (or fc<j for7 = 00),
such that for each xe «"'(./)> {Bxj}0 < /c<y) is a partition of A* into disjoint sets
of positive Haar measure. For each 1 and xe X,^, let k(i, x) = card {r< j'lxyr'eX,.}.
Thus, fc(i,x)<n(xyr1)- Define Dx = B$£),nUr;-) • y,. Then D = Ux6x£>x is the
required fundamental set. •

We now rephrase Lemma 5.7 in a convenient form. Since D is a fundamental
set, the map D x T -*• X x G, (£ y) -* f • y is a measure space bijection. Letting x(£ y),
g(£ y) denote the corresponding components, we have

, , f*(£ yj) = x{L r ) r and
(*) 1

U(^, rr) = g(£ y)«(^(^, y), y)-
Let D have the measure given by restriction of the product measure. Choose any
m e L\D) with m > 0 on D, such that for (almost) any xeX, jG mx dg=l where
mx(g) = m(x, g) if (x, g) 6 D, and mx(g) = 0 if (x, g) £ D. Such an m exists by virtue
of Lemma 5.7. We then have the relation:

(**) I f(x)dx= I f(xU,e))m(£)dt
JX J D

forany/eL°°(X).
We also need another well-known characterization of elements of M0(G).

LEMMA 5.8. [4]. IfG is a locally compact group, andue C(G), define Mue C(GxG)
by Mu(g, g) = uig^'g). Then u e M0(G) if and only ifpointwise multiplication by Mu
defines a bounded operator on the projective tensor product L2(G)®L2(G), and in
that case ||M||MO(G) is just the operator norm of multiplication by Mu on this tensor
product.

Proof of Theorem 5.6. Choose a net u, € AC{G) such that w, -* 1 uniformly on compact
sets and ||Mi||Mo(G)< C where C>A(G). We shall produce a family Vj£A(T) such
that P,-»1 pointwise and ||p,||Mo(r)< C. By Lemma 2.2, this suffices to prove the
theorem.

Given ueC(G), let u*: X x G x X x G-» C be given by u*(x, g, x, g) = w(g"'g)
and u: DxTx DxT^ C be given by

«(#, V, S, y) = " * « £ y), g(l y), x{$, y), g(f, y))

If MGM 0 (G) , then one sees easily that the pointwise multiplier on L2(XxG)®
L\X x G) given by

is bounded with norm equal to ||U||MO(G)- (This is essentially the argument of the
proof of Lemma 3.2.) Via the measure space isomorphism D x T-> X x G, we deduce
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that the pointwise multiplier on L 2 (Dxr)®L 2 (Dxr) given by

is also bounded with norm equal to ||u||Mo(G)-
To obtain a pointwise multiplier operator on L2(F)® L2(F), we first inject L2(F)®

L2(O into L2(D x F) ® L2(D x F), then multiply by u, then project back into L2(F)®
L2(H using a trace map. More precisely, define J: L2(F)®L2(F)-»L2(DxF)®
L\D x T) by the formula

Hi Vn®VnJ =I(m1/2®77n)®(w1/2®77n).

Since

we have | | / | | ^ 1 . Similarly, define P: L2(Dxr)®L2(Dxr)->L2(r)®L2(r) by

In J D
|
D

To see that this defines an operator with ||P|| < 1, it suffices to show that for any
$,<f>eL\Dxr), P(<£®<£)6L2(r)®L2(r), and that \\P($®4>)\\ s ||^||2| |4||2. Fix
an orthogonal basis {e,} for L2(D). Then we can write

j,ej)(y)=\ $(€,y)ij
JD

where

and

Z f \($j, ej
j Jr

We have a similar expression

Then

and

( \ l / 2 / \ 1/2

Thus, || P || < 1 as asserted. D

Consider now the map Pul, where we identify u with the pointwise multiplication
operator it defines. This is a bounded map on L2(F) ® L2(r) of norm at most
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||"||MO(G)- We now explicitly compute Pul. We have

Pui(rj®v)(y,y)=

= [ «(*"'(& v)g(l y))Hv®vM y,l y) <%
J D

= I u(a(x({,y),y-'y))m(t)fj(y)V(y)dt
JD

(by equation (*))

Q «(a(x(fe e)y, y-'f ))m(f)

( £ «(a(xy, y-'

(by equation (**))

(by F-invariance of dx)

= v(y~ly)r)(y)7)(y)

where

=

I.e. Pul is pointwise multiplication by Mv on L2(F)® L2(F). It follows from Lemma
5.8 that veMo(F) and IMIMOU^ II"IIMO(G)- Furthermore, if u is supported on a
compact set K<=- G,

| \v{y)\dy< | |«(a(jcy))|«fedysJV-||«|U
Jr Jxxr

where JV is as in (ii) of the hypotheses. Hence ve /'(F)c: A(T).
Now let M, be as in the first paragraph of the proof. Let vXy) = {x u,(a(x, y)) dx.

Then we have seen J / ,SA(F) and H^IIMOCD^ II".illMO(G)^ C. Finally, since M,->1

uniformly on compact sets, condition (iii) of the hypotheses implies vt -* 1 pointwise
on F. This completes the proof of Theorem 5.6.

6. Proof of Theorem 1.5 and Corollary 1.6
Suppose that F acts properly on the universal covering space M of a compact
manifold M, and commutes with the fundamental group •n-i(M), and further that
there is a finite F-invariant measure for the quotient action on M We choose a
Borel section cr: M -» M such that a(M) is precompact, and then, measure-theoreti-
cally, we identify M with M XIT}(M). There is a measurable cocycle a: MxF-»

such that the action of F on M can be identified with the action of F on
by the formula

= (my,ga(m,y)) VmeM, Vge7r,(M), VyeF.

https://doi.org/10.1017/S0143385700004946 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004946


236 M. Cowling and R. J. Zimmer

Since T acts properly on M, the T-action on M x nx(M) is 'tame' in the terminology
of [15] ('smooth' in [14]). Further, if K is a finite subset of TT^M), there is an
integer N such that

card {y e T: a(m, y)eK}<N VmeM.

Finally, if y e T, then {a(m, -y): m e M} is precompact. All these claims follow from
the reasoning used to prove Lemma 5.5 and in the discussion immediately following
that result. Theorem 5.6, with TTX(M) in place of G, now applies to prove Theorem
1.5.

Gromov [7] has shown if a semisimple group H with finite fundamental group
and no compact factors acts real analytically on a compact manifold M and preserves
a connection, then the natural action of H on M (which commutes with TT,(M))

is proper. We suppose H = Sp(l, n), and then H = H, i.e., H itself acts properly on
M. The restriction of this action to a lattice F in H is a fortiori proper, and Theorem
1.5 may be applied to show that A(TTI(M)) > A(F). Since A(O = A(H) = In - 1 (see
§ 2), Corollary 1.6 is proved.
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