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Abstract

We develop a methodology for writing interactive and object-based programs (in the sense

of Wegner) in dependently typed functional programming languages. The methodology is

implemented in the ooAgda library. ooAgda provides a syntax similar to the one used in

object-oriented programming languages, thanks to Agda’s copattern matching facility. The

library allows for the development of graphical user interfaces (GUIs), including the use of

action listeners.

Our notion of interactive programs is based on the IO monad defined by Hancock and

Setzer, which is a coinductive data type. We use a sized coinductive type which allows us to

write corecursive programs in a modular way. Objects are server-side interactive programs

that respond to method calls by giving answers and changing their state. We introduce two

kinds of objects: simple objects and IO objects. Methods in simple objects are pure, while

method calls in IO objects allow for interactions before returning their result. Our approach

also allows us to extend interfaces and objects by additional methods.

We refine our approach to state-dependent interactive programs and objects through which

we can avoid exceptions. For example, with a state-dependent stack object, we can statically

disable the pop method for empty stacks. As an example, we develop the implementation of

recursive functions using a safe stack. Using a coinductive notion of object bisimilarity, we

verify basic correctness properties of stack objects and show the equivalence of different stack

implementations. Finally, we give a proof of concept that our interaction model allows to

write GUI programs in a natural way: we present a simple drawing program, and a program

which allows the users to move a small spaceship using a button.

Note: We recommend printing this paper in color.

1 Introduction

Functional programming is based on the idea of reduction of expressions. This is

a good notion for writing batch programs which take a fixed number of inputs
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to compute a fixed number of outputs. Interactive programs, however, do not fit

directly into this paradigm since they are programs which over time accept a possibly

infinite number of inputs and respond in sequence with a possibly infinite number

of outputs. There are several ways to overcome this. In functional programming, the

main method currently used is Moggi’s IO monad (Moggi, 1991). The IO monad

is a type (IO a) of computations depending on a return type a. Its elements are

interactive programs which possibly terminate with a result of type a. It is an

open-ended type: Programming languages such as Haskell provide various functions

constructing atomic elements of (IO a) for various types a, and the bindings >>=

:: IO a -> (a -> IO b) -> IO b and return :: a -> IO a are used to construct

programs from these atomic operations.

In a series of articles (Hancock & Setzer, 2000a; Hancock & Setzer, 2000b; Setzer

& Hancock, 2004; Hancock & Setzer, 2005), Hancock and the third author of this

article have developed a representation of interactive programs in dependent type

theory. This approach is based on the notion of a coalgebra. The idea is that a

(client-side) interactive program is represented by a possibly non-well-founded tree.

The nodes are labeled with commands being issued to the real world, and the

subtrees of a tree are labeled with responses from the real world to the respective

command. For instance, if a node is labeled with the command input a string, its

subtrees would be indexed over strings the user has entered; if the command is write

a character, the response would be an element of the singleton type Unit, so there is

only one subtree.

Execution of an interactive program thus is no longer the simple reduction of

an expression. Instead, it is performed as follows: one computes a label from the

root of the tree. A corresponding program is executed in the real world. The

real world returns a corresponding response. Then, the subtree labeled with this

response is chosen, and one repeats the same procedure for the root of that subtree.

Additionally, there are special nodes called leaves, labeled by an element of the result

type of the interactive program. If we reach such a leaf, the program terminates

returning the label. The monadic operations bind and return can now be defined in

a straightforward way as operations on such trees.

If we define trees by inductive data types (Agda keyword data), we obtain

only well-founded trees, which means trees which have no infinitely deep branches.

Interactive programs correspond to non-well-founded trees because they may run

forever if never terminated. A non-well-founded tree can be represented in Agda by

a record which is coinductive.

The programs discussed above were client-side interactive programs: They send a

command to the real world and then receive a response and continue. In contrast,

graphical user interfaces (GUIs) are server-side programs; they wait for an event—

such as a click on a button—which means they wait for a command from the real

world, answer with a result and then wait for the next command. Similarly, objects

are ready to accept any call of a method. In response, they return a result, and

the object changes its state. Based on this idea, the third author has developed

(Setzer, 2006) the theory of defining object-based programs (in the sense of Wegner

(1987)) in dependent type theory. The interaction trees of server-side programs and

objects are functors of the form ΠΣ (meaning for all requests, return some response),
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rather than ΣΠ (send some request and react to any response) as for client-side

programs.

The goal of this article is to substantially extend this theory and develop a

methodology for actually implementing interactive and object-based programs in

Agda in a user-friendly way. This will include object-based GUIs. We have developed

the library ooAgda (Abel et al., 2016), which allows writing objects and interactive

programs in a way that is very close to how it would be done in an object-based

programming language. At this stage, inheritance and subtyping are not available in

ooAgda, so ooAgda is currently an object-based library. Using illustrative examples,

we will show how ooAgda can be used for writing interactive programs which make

use of objects. The simplest example will be a program which interacts with a cell

containing a string via its methods put and get. Then, we will look at how to extend

an object by adding more methods and extending its implementation. Furthermore,

we will look at state-dependent interactive programs and objects. This allows us to

write a safe stack, where popping is only allowed if the stack is non-empty; by safe

we mean we can avoid exceptions.1 We will introduce bisimulation as equality, and

show that the operations of put and get are inverse to each other w.r.t. bisimulation.

We also show the equivalence of different stack implementations.

So far, in dependent-type theory, not many interactive programs have been written.

We prove that it is possible to write graphical interfaces by presenting two examples.

The first one is a simple drawing program. The second example will be a GUI

having one button. In this example, we will make use of an object, which has action

listeners as methods, which in turn will be added to a button event and a repaint

event. Note that the focus here is not on developing advanced user interfaces, but

to demonstrate that one can use objects and action listeners to develop GUIs in

dependently typed programming.

The content of this article is as follows: In Section 2, we give a brief introduction

into Agda. In Section 3, we recapitulate the theory of coalgebras and their

representation in Agda. Then, we review (Section 4) the theory of interactive

programs in Agda. In Section 5, we introduce objects in Agda and write a small

interactive program which makes use of an object representing a cell.

Guarded recursion (Coquand, 1994) allows only recursive calls of the following

three forms: direct recursive calls to the function being defined, an expression which

was defined before the function was defined, or constructors applied to the previous

two possibilities. In particular, we cannot use functions to combine elements of

the coalgebra to form new elements of it. This restricts modularity of programs

since one cannot use an auxiliary function in a corecursive call. Instead, one needs

to define a new function simultaneously with the function to be defined which

computes the result of applying the auxiliary function to its arguments. The function

1 In their simplest form, exceptions can be represented by using the Maybe type. This corresponds to
its standard use: If we have an unsafe stack, we would need to, in case we pop from an empty stack,
return a result, although we do not have an element of the type of stack elements given. One can solve
this by using as result type for pop the Maybe type, and returning in case one pops from the empty
stack the element nothing, which represents an exception. When using the result of the pop operation,
one needs to deal with the case that the result could be such an exception, i.e., nothing, which amounts
to a form of exception handling.
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is defined exactly like the auxiliary function, repeating essentially its definition. This

makes programming tedious. In Section 6, we discuss how sized types allow for

corecursive programs to be written more naturally. With sized types, such auxiliary

functions are allowed in corecursive definitions provided they are size-preserving.

In Section 7, we give an example of how to extend an object by adding a new

method. In Sections 8.1 and 8.2, we introduce state-dependent objects and show how

a stack can be implemented which statically prevents pop-operations when empty.

In 8.2.1, we develop a small example of how to implement recursive functions using

a safe stack. In Section 8.3, we demonstrate how to define bisimilarity as equality on

objects. This equality is used to prove that the push and pop operations are inverse

of each other. In Section 8.4, we look at how to define state-dependent interactive

programs which will be used later to define a more complex GUI. In the last two

sections, we will give examples of how to define GUIs in Agda; in Section 9, we

introduce a simple drawing program; in Section 10, we introduce a GUI in which

we assign an action listener to a button. There are three versions of this interface.

In the most complex one, action listeners are defined as in ordinary object-oriented

programming: by creating an object which contains all the required action listeners

as methods and associating them with the button and the repaint event.

We finish with a review of related work (Section 11), which includes a comparison

of our approach with Brady’s work in Idris, and a conclusion with an outlook on

future steps (Section 12).

Every line of Agda code provided in this paper has been type-checked by Agda

and rendered by the Agda LATEX-backend. However, we mostly omit administrative

parts of the code such as modules and namespace handling; thus, the code as printed

in this article will not be accepted by Agda as is. Relative to the correctness of Agda

itself, our code is type-safe. However, we see the need for a more solid theoretical

foundation for Agda’s sized types (Section 6). The complete code, including advanced

examples, can be found in Abel et al. (2016). These examples compile to executable

binaries using Agda 2.5 and GHC 7.8.

2 Introduction to Agda

Agda (Agda Wiki, 2016; Stump, 2016) is a theorem prover based on intensional

Martin-Löf type theory (Martin-Löf, 1984). Code can be compiled using the

MAlonzo compiler (Agda Wiki, 2011), which is a Monadic form of the Alonzo

compiler (Benke, 2007); therefore, Agda can also be seen as a dependently typed

programming language. It is closely related to the theorem prover Coq (2015).

Furthermore, Agda is a total language, which is guaranteed by its termination and

coverage checker without which Agda would be inconsistent. The current version of

Agda is Agda 2, which was originally designed and implemented by Ulf Norell in

his PhD thesis (2007).

In Agda, there are infinitely many levels of types: The lowest one is called Set.

The next type level is called Set1, which has the same closure properties as Set but

also contains Set as an element. The next type level is called Set2, etc. Furthermore,

we can quantify over type levels, and obtain types (Set σ) depending on levels σ.
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The main type constructors in Agda are dependent function types, inductive

types, and coinductive types. In addition, there exist record types, which are

used for defining coinductive types by their observations or elimination rules.

Furthermore, there exists a highly generalised version of inductive–recursive and

inductive–inductive definitions.

Inductive data types are dependent versions of algebraic data types as they occur

in functional programming. They are given as sets A together with constructors

which are strictly positive in A. For instance, the even and odd numbers are given

by the simultaneous — as denoted by the keyword mutual — indexed inductive

data types:

mutual

data Even : N → Set where

0p : Even 0

sucp : {n : N} → Odd n → Even (suc n)

data Odd : N → Set where

sucp : {n : N} → Even n → Odd (suc n)

The expression (n : N) → A denotes a dependent function type, which is similar to

a function type, but A can depend on n. The expression {n : N} → A is an implicit

version of the previous construct. Implicit arguments can be omitted, provided they

can be inferred by the type checker. We can make an implicit argument explicit

by writing, e.g., (sucp {n} p). If there are several explicit or implicit dependent

arguments in a type, one can omit “→”, as illustrated in the following example:

(a : A)(b : B) → C instead of (a : A) → (b : B) → C . The elements of (Even n) and

(Odd n) are those that result from applying the respective constructors. Therefore,

we can define functions by case distinction on these constructors using pattern

matching, e.g.,

mutual

+e : ∀ {n m} → Even n → Even m → Even (n + m)

0p +e p = p

sucp p +e q = sucp (p +o q)

+o : ∀ {n m} → Odd n → Even m → Odd (n + m)

sucp p +o q = sucp (p +e q)

Here, ∀a → B is an abbreviation for (a : A) → B, where A can be inferred by

Agda. ∀{a} → B is the same but for an implicit argument, while ∀{n m} → B

abbreviates ∀{n} → ∀{m} → B. Agda supports mixfix operators, where “ ” denotes

the position of the arguments. For instance, (0p +e p) stands for ( +e 0p p). The

combination of mixfix symbols together with the availability of Unicode symbols

makes it possible to define Agda code which is very close to standard mathematical

notation.
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Nested patterns are allowed in pattern matching. The coverage checker verifies

completeness and the termination checker ensures that the recursive calls follow a

schema of extended primitive recursion.

An important indexed data type is propositional equality x ≡ y (for x, y : A)

which has as constructor a proof of reflexivity:2

data ≡ {a} {A : Set a} (x : A) : A → Set a where

refl : x ≡ x

This definition says that propositional equality is the least reflexive relation (modulo

the built-in definitional equality of Agda).

3 Coalgebras in Agda

The approach to interactive programs that we employ in this article is based on

(weakly) terminal coalgebras. In this section, we recapitulate coalgebras and their

definition in Agda, first by example, then in the general case.

3.1 Coalgebra by example: Colists

Coalgebras are a versatile mathematical tool; for instance, they can model various

classes of transition systems. Here, we consider output automatons, which consist of a

(not necessarily) finite state set S and a transition function t : S → (1+A×S). Given

a state s : S, the transition t s can either lead us to termination (type alternative

1) or emit some output a : A and lead us into a successor state s′ : S (type

alternative A × S). Defining the functor F S = 1 + A × S, we say the pair (S, t) is

an F -coalgebra. We may sometimes refer to this coalgebra by simply S or t, when

the other component is clear from the context of discourse.

Let us call this functor ListF, for reasons that are apparent to the reader or will

become so in a short while, and define it in Agda as a disjoint sum type ListF with

two constructors nil and cons:

data ListF A S : Set where

nil : ListF A S

cons : (a : A) (s : S) → ListF A S

It should be clear that (ListFAS) is a faithful implementation of 1 + A × S, with

nil corresponding to the left injection of the empty tuple, and (cons a s) to the right

injection of the pair (a, s).

2 By propositional equality we mean the standard equality type as introduced by Martin-Löf. Definitional
equality is—as in Martin-Löf’s original definition—based on definiens equals definiendum (see, e.g.,
Nordström et al. (2001, Section 3.5). Due to nested pattern matching, we allow definitions that
give more definitional equalities than one would have when reducing the terms to the corresponding
recursion combinators. But these definitions are covered by the meaning explanations; therefore, our
notion of definitional equality is still in the spirit of Martin-Löf. See for instance the discussion of
Martin-Löf (1984, p. 31).
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A ListF-coalgebra is now a pair (S, t) of a type S and a function t : S → ListF A S

for a fixed type A, and a transition will take us either to nil, meaning the automaton

terminates, or cons a s′, meaning the automaton outputs a and enters the new

state s′.

A ListF-coalgebra morphism from automaton t : S → ListF A S to automaton

t′ : S′ → ListF A S′ is a state map f : S → S′ with two conditions:

1. Terminal states of t are mapped to terminal states of t′, meaning that t′ (f s) =

nil whenever t s = nil.

2. Non-terminal states of t are mapped to corresponding non-terminal states

of t′ with the same output, meaning that t′ (f s1) = cons a (f s2) whenever

t s1 = cons a s2.

These two conditions can be summarized as t′ (f s) = mapF f (t s) for all s : S, using

the functoriality witness mapF of ListF A:

mapF : ∀{A S S′} ( f : S → S′) → (ListF A S → ListF A S′)
mapF f nil = nil

mapF f (cons a s) = cons a ( f s)

Or, for the category-theory enthusiast, we can display this condition in the form of

a commutative diagram:

S
t ��

f

��

ListF A S

mapF f

��
S′ t′ �� ListF A S′

If we run an output automaton t, starting in state s, to completion, we obtain a

possibly terminating sequence, aka colist, of outputs a0, a1, . . . . We call this colist

unfold t s : Colist A. In Agda, the type of colists over A is defined as a recursive

record type:

record Colist A : Set where

force : ListF A (Colist A)

An element l : Colist A is a lazily computed record with a single field force l :

ListF A (Colist A); one could also view it as an object with a single method force.

Invocation of this method via (force l) will yield either nil or (cons a l′) for an

output a : A and a new colist l′.

In this sense, the pair (ColistA, force) can be seen as a ListF-coalgebra; any

colist l is the state of an output automaton with force as the transition function.

Colist A is even the weakly terminal or weakly final coalgebra, as every coalgebra

(S, t) can be mapped into it via morphism (unfold t), so there exists a function,

unfold t : S → Colist A, which makes the diagram commute. If we take bisimulation
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on Colist as equality, then Colist is actually terminal or final. This means that

(unfold t) is the only function which makes this diagram commute:

S
t ��

unfold t

��

ListF A S

mapF (unfold t)

��
Colist A

force
�� ListF A (Colist A)

The (weak) finality witness unfold can be implemented in Agda as follows. Herein,

read the “with t s . . . ” followed by pattern matching as an additional case distinction

over (t s) : ListF A S. The three dots “...” indicate that the pattern from the

previous line is repeated, and “|” starts a pattern related to the term of the with

construct:

unfold : ∀{A S} (t : S → ListF A S) → (S → Colist A)

force (unfold t s) with t s

... | nil = nil

... | cons a s′ = cons a (unfold t s′)

This definition is an instance of a function defined by copattern matching (Abel et al.,

2013). By itself, (unfold t s) does not reduce. Only when we subject it to projection

force, it reduces as given by the right hand side of the definition; in this case, to a

case distinction over (t s).

Agda’s termination checker accepts the recursively defined unfold: Since each

recursive call removes one use of force, the reduction cannot continue forever. In

fact, this definition follows the rules of guarded recursion (Coquand, 1994). Guarded

recursion means in this setting that we can define a function recursively as long on

the left-hand side we apply at least one observation (here force) to the function

applied to its arguments (of course we need to cover all copatterns). On the right-

hand side of the recursive definition, one can have either an element of the coalgebra

defined before, a recursive call of the function to be defined, or constructors applied

to such a recursive call. An example, which demonstrates that we cannot allow

arbitrary functions to be applied to the recursive call, would be the black hole

recursive definition f : A → Colist A, force (f a) = force (f a).

The above definition of unfold is equivalent to the generic force (unfold t s) =

mapF (unfold t) (t s) obtained from the commutative diagram. However, the latter

falls out of the scheme of guarded recursion and termination is less obvious. We

will further discuss this issue in Section 3.2.

As an application of unfold, we generate the Collatz sequence. It starts with some

number n. If n = 1, the sequence terminates. Otherwise, if n is even, it continues

with n/2, and if n is odd, then it continues with 3n+ 1.3 In the following code, “ ”

3 It is conjectured that (except for n = 0, which creates an infinite sequence of 0’s), the resulting sequence
is always finite. But as of today, this conjecture has resisted all proof attempts.
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is the Agda notation for an unused argument. The application (n divMod m) returns

(result q r s), with quotient q = n div m, remainder r = n mod m, and a proof s of

n ≡ q ∗m+ r. Note also that pattern matching is executed in sequence: The pattern

(collatzStep n) is only reached if n �= 1:

collatzStep : N → ListF N N

collatzStep 1 = nil

collatzStep n with n divMod 2

... | result q zero = cons n q

... | = cons n (1 + 3 * n)

collatzSequence : N → Colist N

collatzSequence = unfold collatzStep

The collatzSequence is obtained as the output of an automaton with transition

function collatzStep, which directly implements the rules given before.

3.2 Coalgebras in general

We work in the category of types A : Set and functions f : A → B. Assume a functor

F, whose functoriality is witnessed by mapF, in Agda written as

F : Set → Set

mapF : ∀{A B} ( f : A → B) → (F A → F B)

Of course, mapF has to fulfill the functor laws to qualify as a functoriality witness,

namely mapF id = id and mapF (f ◦ g) = mapF f ◦ mapF g.

An F-coalgebra consists of a pair (S, t) of a type S of states and a transition

function t from a state s : S to t s : FS which typically may be some input or output

with a (collection of) successor state(s):

S : Set

t : S → F S

The (weakly) terminal F-coalgebra νF or the coinductive type obtained as the greatest

fixed point of F is represented using a coinductive record type in Agda:

record νF : Set where

force : F νF

Here, Agda requires F to be strictly positive. Projection force : νF → F νF is the

eliminator of the coalgebra νF. It defines the observations one can make on νF. Weak

terminality is witnessed by the function unfoldF t : S → νF for any coalgebra (S, t)
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which makes the following diagram commute:

S
t ��

unfoldF t

��

F S

mapF (unfoldF t)

��
νF

force
�� F νF

Commutation means that the equation of morphisms

force ◦ unfoldF t = mapF (unfoldF t) ◦ t (1)

holds. In Agda, we can implement unfoldF by taking the pointwise version of

Equation (1) as the definition of unfoldF4:

{-# TERMINATING #-}
unfoldF : ∀{S} (t : S → F S) → (S → νF)

force (unfoldF t s) = mapF (unfoldF t) (t s)

Taking the above equation as a rewrite rule preserves strong normalization

of rewriting in Agda, as unfoldF is only reduced under projection force and

thus not its recursive occurrence on the right hand side of this definition.

However, Agda’s termination checker (Abel & Altenkirch, 2002; Altenkirch &

Danielsson, 2012) does not see that at this point, so we override its verdict

by screaming TERMINATING! To the defense of Agda’s termination checker we

have to say that a specific implementation of mapF for B = νF of the form

mapF f x = force (f something) would lead to the non-terminating reduction

rule force (unfoldF t s) −→ force (unfoldF t something). However, such an

implementation of mapF is ruled out by its polymorphic type. Indeed, unfoldF

passes a type-based termination check using sized types (Abel & Pientka, 2013),

which we present in Section 6.

4 Interactive programs in Agda

4.1 Interaction interfaces

Interaction of a program with, e.g., an operating system (OS), can be conceived as

a sequence of commands (elements of Command), given by the program to the OS,

4 Digression: In System F with products and (impredicative) existential types, the weakly terminal
coalgebra νF is definable (Matthes, 2002) requiring only the monotonicity witness mapF:

νF = ∃S. (S → FS) × S
unfoldF t = λs. (t, s)
force = λ(t, s). mapF (unfoldF t) (t s)

In contrast to Agda, Matthes’ monotone coinductive types do not need strict positivity of F but only
the monotonicity witness mapF. Whether this carries over to Agda’s predicative type theory needs to
be explored. We do not rely on monotone coinductive types, but instead use sized coinductive types to
justify the generic unfoldF.
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for each of which the OS sends back a response (elements of Response). The type

(R c) of the response is dependent on the command (c : Command) that was given;

thus, in Agda, we model Response as a type family of kind Command → Set. The

set Command and the indexed set Response form an interface for the interaction

(Hancock & Setzer, 2000a). In Agda, this is modeled as a record of sets, and its type

IOInterface itself inhabits the next type level Set1 above Set. Note that IOInterface

: Set would require Set : Set, but the latter is inconsistent by Girard’s paradox

(Girard, 1972; Hurkens, 1995):

record IOInterface : Set1 where

Command : Set

Response : (c : Command) → Set

As an example, we define an interface ConsoleInterface of simple console

programs. It has only two commands:

data ConsoleCommand : Set where

getLine : ConsoleCommand

putStrLn : String → ConsoleCommand

The first command, getLine, has no arguments; putStrLn is invoked with one

argument of type String:

ConsoleResponse : ConsoleCommand → Set

ConsoleResponse getLine = Maybe String

ConsoleResponse (putStrLn s) = Unit

Upon command getLine, the OS responds with a Maybe String, meaning nothing if

the end of input has been reached, and just s when String s could be read from the

console. Command (putStrLn s) is always answered with the trivial response Unit,

which could be interpreted as success. Together, command and response types form

a simple interaction interface:

ConsoleInterface : IOInterface

Command ConsoleInterface = ConsoleCommand

Response ConsoleInterface = ConsoleResponse

4.2 Interaction trees

From now on, we assume an arbitrary IOInterface

I = record { Command = C; Response = R }

Let (IO I A) be the type of programs which interact with the interface I and which,

in case of termination, return an element of type A. The operations of (IO I A) are
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given below. Note that do follows the notation of earlier papers (Hancock & Setzer,

2000a) and is different from Haskell’s do notation:

do : ∀{A} (c : C) ( f : R c → IO I A) → IO I A

return : ∀{A} (a : A) → IO I A

>>= : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B

The first operation, used in the form do c λr → fr, allows us to issue a command c,

and continue with f r after receiving the response r : Rc. Note Agda’s precedence

for λ: We do not have to parenthesize a trailing lambda-abstraction, i.e., do not

need to write do c (λr → fr).

The other two operations are desirable so that (IO I) is a monad, i.e., interactive

programs can return a result or bind the result a : A of an interactive computation

m and continue as another interactive program (k a) via (m >>= λa → k a).

One can also show that (IO I) fulfils the standard monad laws up to bisimulation.

In principle, an interactive program can issue infinitely many commands. Consider

for instance, the program cat which echoes any input through the standard

output:

cat : IO ConsoleInterface Unit

cat = do getLine λ{ nothing → return unit ; (just line) →
do (putStrLn line) λ →
cat }

In this code snippet, the pattern matching λ expression

λ{nothing → return unit; (just line) → · · · }

denotes a function which makes a case distinction on whether the argument is

nothing or (just line).

The cat program issues the command getLine and terminates when it receives

as response nothing, because the end of input has been reached. When it receives

(just line), it issues the command (putStrLn line) and starts over. Potentially, it runs

infinitely long. Correspondingly, the IO-tree needs to unfold infinitely deep. Thus,

we model IO as a coinductive type (Setzer, 2006):

record IO I A : Set where

constructor delay

force : IO′ I A

data IO′ I A : Set where

do′ : (c : Command I) ( f : Response I c → IO I A) → IO′ I A

return′ : (a : A) → IO′ I A
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The declaration constructor delay is a just convenience that defines a lazy

constructor for IO, behaving like the following function:

delay′ : ∀{I A} → IO′ I A → IO I A

force (delay′ x) = x

In particular, we cannot match on coinductive constructors (in the same way as we

cannot match on defined functions).

With a little force, we define do and return in IO from do′ and return′ in IO’ by

copattern matching:

do : ∀{A} (c : C) ( f : R c → IO I A) → IO I A

force (do c f ) = do′ c f

return : ∀{A} (a : A) → IO I A

force (return a) = return′ a

The monadic bind operation is definable by corecursion, making IO I a monad for

each interface I, in the form of Kleisli triple (IO I, return, >>= ):

>>= : ∀{A B} (m : IO I A) (k : A → IO I B) → IO I B

force (m >>= k) with force m

... | do′ c f = do′ c λ x → f x >>= k

... | return′ a = force (k a)

The recursive call to (f x >>= k) is justified, as one use of force has been consumed

in comparison to the left hand side (force (m >>= k)), and there are only applications

of the constructor do′ to the right hand side. Therefore, the right hand side requires

more applications of force before we need to make a recursive call.

However, the cat program is not strongly normalizing in its present form, since

we can unfold its definition recursively arbitrary many times. We need to redefine it

using copattern matching, so that at least one application of force is required before

having the recursive call. Furthermore, to get it through the termination checker, we

need to replace do by do′, so that the termination checkers sees that the recursive

call is guarded by constructors:

cat : IO ConsoleInterface Unit

force cat =

do′ getLine λ{ nothing → return unit ; (just line) → delay (

do′ (putStrLn line) λ →
cat )}

In the latter version, the recursive call to cat in the function body cannot be further

rewritten, as only (force cat) reduces. Compare this to the previous version where

cat alone already expands, leading to divergence under full reduction.
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4.3 Running interactive programs

To run an IO-computation, which unfolds into a potentially infinite command-

response tree, we translate it into a NativeIO monad, which executes the

commands. From the perspective of Agda, the NativeIO monad is only

axiomatically given by nativeReturn and native>>=. If, further, we have a function

tr : (c : C) → NativeIO (Rc) which translates the commands c of a specific interface

C into NativeIO-computations of the appropriate response type Rc, we can apply

translateIO recursively:

{-# NON TERMINATING #-}
translateIO : ∀ {A} (tr : (c : C) → NativeIO (R c)) → IO I A → NativeIO A

translateIO tr m = force m � λ
{ (do′ c f ) → (tr c) native>>= λ r → translateIO tr ( f r)

; (return′ a) → nativeReturn a

}

This function is properly NON TERMINATING, as the translated IO-tree might be

infinite. However, this will lead to an infinitely running NativeIO-program, which is

the intention. In the above, we used the right-triangle operator � , representing a

flipped function application, as well as anonymous pattern matching in λ-expressions,

where the cases are separated by “;”:

� : ∀{A B : Set} → A → (A → B) → B

a � f = f a

An example program (using an obvious function translateIOConsole translating

console commands into native ones) is as follows:

main : NativeIO Unit

main = translateIOConsole cat

Note that (translateIOConsole cat) is an element of NativeIOUnit and therefore

already an executable program. One can think of translateIOConsole as a compiler

or an interpreter. To some extent we get something which is in between. If the

function tr is concretely given, the Haskell compiler can inline it and optimize the

resulting instance of translateIO. Therefore, what we get is more than interpretation.

However, translateIO does not optimize the given IO-program; therefore, we get less

than compilation.

Programs in Agda are translated into Haskell programs using the MAlonzo

compiler (Benke, 2007; Agda Wiki, 2011), which are then compiled into executable

code. Data types and functions for processing native IO in Agda, including the type

NativeIO itself, are represented in Agda as postulated types and functions. We use

the COMPILED directive of Agda in order to associate corresponding Haskell types

and functions with the postulated ones. Especially, NativeIO is associated with the
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Haskell type IO. MAlonzo will then translate those postulated types and functions

into the corresponding Haskell ones. Operations on NativeIO are therefore translated

into corresponding Haskell operations on IO.

One can consider translateIO as part of the compilation process. Therefore,

programs in Agda can be developed without using NON TERMINATING programs.

The use of NON TERMINATING appears only as an intermediate step during the

compilation process.

5 Objects in Agda

As explained in the introduction, the idea of objects in dependent type theory (Setzer,

2006) is that they are server-side interactive programs: An object waits for method

calls, then in response to them, returns an answer and changes its state. Changing

the state is represented by returning an object with the modified state. Therefore, the

interface of an object is given by a set of methods (parametrized over the method

arguments) and a set of responses for each method.5 In Agda, this is written as

record Interface : Set1 where

Method : Set

Result : (m : Method) → Set

Note that Interface and IOInterface are the same except for the names of the

eliminators (or observations). A (simple) object for interface I is a coalgebra that

has one eliminator objectMethod. For each method of I , objectMethod returns an

element of the response type and the new object after the method invocation:

record Object (I : Interface) : Set where

objectMethod : (m : Method I) → Result I m × Object I

An IO object is like a simple object, but the method returns IO applied to the result

type of a simple object. In other words, the method returns an IO program for a

given IO interface Iio, which, if terminating, returns a result of the same type as the

corresponding simple object:

record IOObject (Iio : IOInterface) (I : Interface) : Set where

method : (m : Method I) → IO Iio (Result I m × IOObject Iio I)

A class with interface I and instance variables of type A1, . . . ,An corresponds to a

function defined coinductively as follows:

f : A1 → · · · → An → Object I

objectMethod (f a1 · · · an) (m b1 · · · bm) = (result , f a′1 · · · a′n)

5 This data structure is also known as the type of containers (Abbott et al., 2003).
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f is the default constructor for this class which creates an object with the instance

variables set to its arguments. The object (f a1 · · · an) constructed using f is given by

determining the result result of the method call upon invoking its methods, and by

determining the updated object. The values a′1 · · · a′n are the content of the instance

variables after invoking the method, and the updated object is given by applying

the default constructor f to these values.

A constructor for an IO object is defined in the same way as for simple objects,

except that on the right-hand side, we have an IO program that returns a value

upon termination.

An example is a simple cell of elements of type A. It has two methods: get and

(put a) depending on a : A. Method get is intended to return the content of the

cell, and has the return type A, and (put a) sets the cell content to a and returns an

element of the one element type Unit, which corresponds to void in Java, meaning

that no information is returned. The interface in Java is given in Figure 1.

Fig. 1. Cell interface in Java.

In Agda, the cell interface is coded as follows:

data CellMethod A : Set where

get : CellMethod A

put : A → CellMethod A

CellResult : ∀{A} → CellMethod A → Set

CellResult {A} get = A

CellResult (put ) = Unit

cellJ : (A : Set) → Interface

Method (cellJ A) = CellMethod A

Result (cellJ A) m = CellResult m

The cell class is of type IOObject, which has the previously defined ConsoleInterface

as an IOInterface and the interface of a cell, w.r.t. String, as object interface:

CellC : Set

CellC = IOObject ConsoleInterface (cellJ String)

A basic implementation of the cell interface in Java is displayed in Figure 2;

the methods log on standard output what is happening—for the sole purpose of

demonstrating the IO interface.
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Fig. 2. Simple cell implementation in Java.

In Agda, simple cell objects are constructed by simpleCell, which implements the

methods:

simpleCell : (s : String) → CellC

force (method (simpleCell s) get) =

do′ (putStrLn ("getting (" ++ s ++ ")")) λ →
delay (return′ (s , simpleCell s))

force (method (simpleCell s) (put x)) =

do′ (putStrLn ("putting (" ++ x ++ ")")) λ →
delay (return′ (unit , simpleCell x))

A test program using simpleCell is defined as follows in Agda. It is very similar

to the original Java program, presenting an almost line-to-line translation. The

main difference is that in Agda, we have no mutable state; hence, we rely on

continuation-passing style with explicit state threading:
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{-# TERMINATING #-}

program : IOConsole Unit

force program =

let c1 = simpleCell "Start" in

do′ getLine λ{ nothing → return unit; (just s) →
method c1 (put s) >>= λ{ ( , c2) →
method c2 get >>= λ{ (s′ , ) →
do (putStrLn s′) λ →
program }}}

main : NativeIO Unit

main = translateIOConsole program

The pragma {-# TERMINATING #-} declares program as terminating, overriding

the answer from the termination checker. The termination checker says no because

on the right hand side of the coinductive definition there is an occurrence of a

defined function >>= whereas guarded recursion allows only constructors.

In the next section, we will revisit this example using sized typing, and see that

with sized types it passes the termination check.

6 Sized coinductive types

In this section, we show how to use sized types to overcome major limitations of the

termination checker and enable the user to write modular IO programs.

Sized types have been used for type-based productivity checking of corecursive

programs (Hughes et al., 1996; Barthe et al., 2004; Abel & Pientka, 2013; Sacchini,

2013). Section 3 of Igried & Setzer (2016) contains a brief explanation of sized types

for coinductive types in Agda. For coinductive types like IO, we should rather speak

of depth than of size.6 The depth is how often one can safely apply force, and the

depth of a fully defined coinductive object is ∞. So, the depth determines how deep

we can expect an element by using force. During the (co)recursive definition of an

object, we want to speak of depths less than infinity, to verify that on the way to the

recursive calls, the depth has increased by at least one. This ensures that the depth

grows for each unfolding of recursion, becoming ∞ in the limit.

First, let us define a sized version of the generic weakly terminal coalgebra νF

from Section 3. We can then fulfill our promise and justify the generic coiteration

operation unfoldF from the monotonicity witness mapF:

6 The term Size is more suitable for inductive types which are inhabited by trees. There, the size tracked
in the type is an upper bound on the height of the tree, or how often one has to apply the constructors
in order to obtain that tree. In recursive calls, the height should go down, guaranteeing termination.
Note that for infinitely branching trees, the height might be transfinite, so semantically sizes correspond
to ordinals rather than to natural numbers. For the use with coinductive types, sizes up to ω, which
we call ∞ in our syntax, suffice.
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record νF (i : Size) : Set where

constructor delay

force : ∀(j : Size< i) → F (νF j)

The quantification over j : Size¡ i is reminiscent of the approximation of the

greatest fixpoint by deflationary iteration (Sprenger & Dam, 2003; Abel, 2012; Abel

& Pientka, 2013). The approximant νiF is defined by induction on ordinal i as

follows:

νiF =
⋂

j<i

F (νjF )

The fact that νiF is monotonically decreasing in i follows directly from the use

of intersection
⋂

j<i and is independent of the monotonicity of F . Agda still asks

for strict positivity of F , which anyway holds for the common coinductive types.

Furthermore, the monotonicity of F gives us the isomorphisms νi+1F = F (νiF )

and ν∞F = F (ν∞F ), mediated by force and delay.7

The coiterator unfoldF can likewise be defined by induction on i, again by

copattern matching:

unfoldF : ∀{S} (t : S → F S) → ∀ i → (S → νF i)

force (unfoldF t i s) j = mapF (unfoldF t j) (t s)

The type of force guarantees j < i; thus, the recursive call (unfoldF t j) is justified.

It gives us a function of type S → νFj which we map over the application (t s) : F S

to obtain the right hand side of the required type (F (νFj)). Note how the type of

mapF ensures that a result having the required depth j is returned. In particular,

mapF cannot involve uses of force, which would necessarily tamper with the depth

annotation of νF.

In the sized version of IO, applying force to an IO-tree yields a function that

expects a size j < i and then yields an IO′-node, which can be either a do′ or a

return′. The latter is a leaf, and the former a node consisting of a command c and

a (Response c)-indexed collection f of subtrees of that depth:

record IO (Iio : IOInterface) (i : Size) (A : Set) : Set where

constructor delay

force : {j : Size< i} → IO′ Iio j A

data IO′ (Iio : IOInterface) (i : Size) (A : Set) : Set where

do′ : (c : Command Iio) ( f : Response Iio c → IO Iio i A) → IO′ Iio i A

return′ : (a : A) → IO′ Iio i A

7 force (delay t) = t holds definitionally in Agda; delay (force t) ∼= t holds up to bisimilarity.
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Again, this sized coinductive type is justified by deflationary iteration νiF =⋂
j<i F (νjF ). In this case, the ith approximant νiF of the greatest fixed point

of F would be (IO I i o i A) for some fixed I i o and A. The type transformation

F would be IO′ in dependence of (IO I i o i A). We can make the correspondence

obvious by using nested recursion instead of mutual recursion:

data F (X : Set) : Set where

do′ : (c : Command Iio) ( f : Response Iio c → X) → F X

return′ : (a : A) → F X

record νF (i : Size) : Set where

constructor delay

force : {j : Size< i} → F (νF j)

Sizes in types allow us to track the guardedness level of expressions independent

of their exact formulation. In particular, we can express the guardedness level of a

function applied to arguments in terms of the guardedness level of the arguments,

rather than having to assume that the function application is unguarded. With the

same implementations as for the unsized versions, we obtain the following sized

typings for do, return, and >>= .

do : ∀ {i A} (c : C) ( f : R c → IO Iio i A) → IO Iio i A

return : ∀ {i A} (a : A) → IO Iio i A

>>= : ∀ {i A B} (m : IO Iio i A) (k : A → IO Iio i B) → IO Iio i B

The typings of do and >>= express that these functions are guardedness-preserving,

meaning that the output is (at least) as guarded as the least guarded input. The

type of return simply expresses that we can assume any guardedness for (return a).

With subtyping, an equivalent type would be ∀{i A}(a : A) → IO I i o ∞ A, using the

covariance IO I i o ∞ A � IO I i o i A of the coinductive type IO in its size argument

i � ∞.

To understand why the above typing is valid for >>= , we cast another glance

at its implementation. We have made the sizes explicit to see what is going on;

however, they can be inserted by Agda automatically. Unfortunately, to supply

implicit arguments to an infix operator like >>= , we have to fall back to prefix

notation:

force ( >>= {i} m k) {j} with force m {j}
... | do′ c f = do′ c λ r → >>= {j} ( f r) k

... | return′ a = force (k a) {j}

The call >>= {i} m k constitutes an IO-tree of depth i which is defined by the

effect of its only elimination form force. Assuming we force it, obtaining a size j < i,

we are obliged to produce an IO′-node of size j. We do this by forcing the first given
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tree, m, of depth i, by virtue of our size j < i. 8 We proceed by case-distinction on

the resulting IO′-node. If it is (do′ c f ), we execute command c and, after binding

the response to r, continue with a recursive call (fr) >>= k at depth j, which is

strictly smaller than the depth we started with. Thus, the recursive call is justified.

If it is (return′ a), we continue with IO-tree (k a) of size i, which we have to force to

produce the desired IO′-node of size j.

For an IOObject, the notion of depth is how often we can apply one of its methods.

The result of applying a method to an IOObject of depth i is an unbounded IO-tree

(depth ∞). Its leaves contain the result of the method call and an IOObject of

depth j < i resembling the new state of this object after the method call (and the

IO-actions):

record IOObject (Iio : IOInterface) (I : Interface) (i : Size) : Set where

method : ∀{j : Size< i} (m : Method I)

→ IO Iio ∞ (Result I m × IOObject Iio I j)

Sized types already allow us to write the simpleCell constructor slightly more

elegantly, using the defined return instead of the combination of delay and return′.
Putting the recursive call to simpleCell under the function return is possible due

to the polymorphic typing of return : A → IO I i o ∞ A which we use with type

A = String × CellC j:

CellC : (i : Size) → Set

CellC = IOObject ConsoleInterface (cellJ String)

simpleCell : ∀{i} (s : String) → CellC i

force (method (simpleCell {i} s) {j} get) =

do′ (putStrLn ("getting (" ++ s ++ ")")) λ →
return (s , simpleCell {j} s)

force (method (simpleCell ) (put s)) =

do′ (putStrLn ("putting (" ++ s ++ ")")) λ →
return (unit , simpleCell s)

The program using simpleCell from Section 5 now passes the termination check

without modification to its definition. Only its type needs to be refined to exhibit

the depth i that will grow with each unfolding of the recursion:

8 At this point, it is important to note that, if we had no size j < i, we could not force it, or at least not
discriminate on the results of forcing it. In particular, if i = 0, then there is no size < i. However, when
we have successfully forced m>>=k, meaning that the latter actually evaluated to a delayed node, we
know its depth is not 0, and thus there exists a size j < i.
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program : ∀{i} → IO ConsoleInterface i Unit

force program =

let c1 = simpleCell "Start" in

do′ getLine λ{ nothing → return unit; (just s) →
method c1 (put s) >>= λ{ ( , c2) →
method c2 get >>= λ{ (s′ , c3) →
do (putStrLn s′) λ →
program }}}

Both do and >>= preserve the guardedness of the recursive call to program, and

this is communicated through the type system.

7 Interface extension and delegation

So far we have shown the implementation in Agda for a single object. In this

section, we will show the facets of having several objects and we implement reuse

mechanisms based on delegation.

For the purpose of illustration, we introduce the CounterCell class. It extends the

functionality of a SimpleCell and counts the number of times an element is stored

and retrieved. Further, it includes a method stats to print these statistics. Figure 3

depicts the extended interface in Java.

Fig. 3. StatsCell interface in Java.

In Agda, CounterMethod extends the method definition of a SimpleCell, where

super lifts a CellMethod of SimpleCell; further, a constructor for the stats method

is added:

data CounterMethod A : Set where

super : (m : CellMethod A) → CounterMethod A

stats : CounterMethod A

Instead of embedding the superclass interface CellMethod into CounterMethod, we

could have reused get and put as constructors for CounterMethod, as Agda supports

constructor overloading. However, embedding with super gives us benefits later. We

can still get nice names for the inherited methods (c indicates a CellMethod) by

using Agda’s pattern synonym facility:

pattern getc = super get

pattern putc x = super (put x)
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The full object Interface in Agda is given by statsCellI, in which the result types for

put and get refer to SimpleCell and Unit represents void:

statsCellI : (A : Set) → Interface

Method (statsCellI A) = CounterMethod A

Result (statsCellI A) (super m) = Result (cellJ A) m

Result (statsCellI A) stats = Unit

Figure 4 shows the CounterCell in Java that is equivalent to our implementation

in Agda. Notably, we restrict the implementation to delegation as reuse mechanism

as we cannot fully express the subtype relationship between CounterCell and

SimpleCell. In particular, the Agda code explicitly states that put and get are

defined in the interface of SimpleCell; if we moved the methods to a super

class of SimpleCell, we have to adapt our code. In Java, we can override any

method without the need to specify in which particular superclass the method is

defined in.

In Agda, the class CounterC is defined as a console object

CounterC : (i : Size) → Set

CounterC = IOObject ConsoleInterface (statsCellI String)

The constructor counterCell specifies the functionality of the CounterCell class.

The local state includes an object of class CounterC (the class of a SimpleCell)

and two natural numbers for the get and put statistics. Each method may issue IO

commands or call methods of other objects; getc and putc delegate to the respective

methods in SimpleCell and return an object with the increased counter variable,

whereas stats issues printing of the statistics as an IO command.

counterCell : ∀{i} (c : CellC i) (ngets nputs : N) → CounterC i

method (counterCell c ngets nputs) getc =

method c get >>= λ { (s , c′) →
return (s , counterCell c′ (1 + ngets) nputs) }

method (counterCell c ngets nputs) (putc x) =

method c (put x) >>= λ { ( , c′) →
return (unit , counterCell c′ ngets (1 + nputs)) }

method (counterCell c ngets nputs) stats =

do (putStrLn ("Counted "

++ show ngets ++ " calls to get and "

++ show nputs ++ " calls to put.")) λ →
return (unit , counterCell c ngets nputs)
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Fig. 4. CounterCell implementation in Java.

Finally, the test program is a one-to-one translation from the Java original. This

time, it is not recursive, so we do not have to worry about termination:

program : String → IO ConsoleInterface ∞ Unit

program arg =

let c0 = counterCell (simpleCell "Start") 0 0 in
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method c0 getc >>= λ{ (s , c1) →
do (putStrLn s) λ →
method c1 (putc arg) >>= λ{ ( , c2) →
method c2 getc >>= λ{ (s′ , c3) →
do (putStrLn s′) λ →
method c3 (putc "Over!") >>= λ{ ( , c4) →
method c4 stats >>= λ{ ( , c5) →
return unit }}}}}

main : NativeIO Unit

main = translateIO translateIOConsoleLocal (program "Hello")

8 State-dependent objects and IO

8.1 State-dependent interfaces

We motivate stateful object interfaces with the implementation of a stack. A stack

has two operations: push places an object on the stack, and pop removes the top

object and returns it. Consider a stack interface in Java:

public interface Stack<E> {
void push(E e);

/** @throws EmptyStackException if the stack is empty **/

E pop() throws java.util.EmptyStackException;

}
A stack underflow happens when the pop method is called on an empty stack.

In the Java Development Kit (JDK), the pop method throws a runtime exception,

which the programmer is advised but not forced to catch.

In Agda, a safer version of a stack class can be defined, where the type system

ensures that a pop operation may only be performed on a non-empty stack. The

interface depends on the state of the stack, i.e., the number of elements that are on

the stack:

StackStates = N

A state-dependent object interface in Agda9 is given by a value of the following

record type (superscript s indicates the state-dependency of the interface):

record Interfaces : Set1 where

States : Set

Methods : (s : States) → Set

Results : (s : States) → (m : Methods s) → Set

nexts : (s : States) → (m : Methods s) → (r : Results s m) → States

9 Also known as indexed container (Altenkirch & Morris, 2009).
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The set of methods depends on the state of the object, while the result depends

on the state and the invoked method. The nexts function determines the successive

state after the result of the method invocation has been computed.

To model state-dependent methods, StackMethods needs to be indexed by the

size of the stack. The pop method is only available when the size is non-zero, i.e., of

the form suc n (successor of some natural number n). In Agda, this is realized by

an indexed data type, aka inductive family (Dybjer, 1994):

data StackMethods (A : Set) : (n : StackStates) → Set where

push : ∀ {n} → A → StackMethods A n

pop : ∀ {n} → StackMethods A (suc n)

Pushing to a stack has no return value (Unit), whereas the result of popping from a

stack of As is an element of type A:

StackResults : (A : Set) → (s : StackStates) → StackMethods A s → Set

StackResults A (push ) = Unit

StackResults A pop = A

The next state after a push operation is a stack with an increased size (i.e., state

(suc n)), while pop leads to a decreased size:

stackNexts : ∀ A n (m : StackMethods A n) (r : StackResults A n m) → StackStates

stackNexts n (push ) = suc n

stackNexts (suc n) pop = n

The previous definitions allow us to assemble the state-dependent interface for stack

objects:

StackInterfaces : (A : Set) → Interfaces

States (StackInterfaces A) = StackStates

Methods (StackInterfaces A) = StackMethods A

Results (StackInterfaces A) = StackResults A

nexts (StackInterfaces A) = stackNexts A

8.2 State-dependent objects

A state-dependent object for interface I is a coalgebra that has one eliminator

objectMethod, which for each method of I returns an element of the response type

and the adapted object:

record Objects (I : Interfaces) (s : States I) : Set where

objectMethod : (m : Methods I s) →
Σ[ r ∈ Results I s m ] Objects I (nexts I s m r)
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Since the type of the returned object depends, via nexts, on the returned result r,

we need to type the returned pair via a Σ-type, defined in Agda’s standard library.

Here, Σ[ x ∈ A ] B denotes Σ A (λx → B), where Σ A C is the dependent product

type defined as a record with fields proj1 : A and proj2 : C proj1.
10

The state-dependent version of an IO object is

record IOObjects (Iio : IOInterface) (I : Interfaces) (s : States I) : Set where

method : (m : Methods I s) →
IO Iio ∞ (Σ[ r ∈ Results I s m ] IOObjects Iio I (nexts I s m r))

IOObjects is a straightforward adaption to state-dependency of IOObject from

Section 5. The IO version of a stack object could additionally log its activity on an

output channel. However, in the following we restrict it to the non-IO version for

clarity of exposition.

The simplest implementation of a stack object is just a wrapper of its data, a stack

implemented as a vector (Vec A n) of elements in type A, where n is the current

stack size:

stack : ∀{A}{n : N} (as : Vec A n) → Objects (StackInterfaces A) n

objectMethod (stack as) (push a) = unit , stack (a :: as)

objectMethod (stack (a :: as)) pop = a , stack as

In the case of method pop, in principle, we have two cases for the content on the

stack: First, the stack is non-empty, i.e., of the form a :: as where a is the top

element and as is the rest. This case is handled by the second clause. The other

case, the stack being empty, i.e., of the form [], is ruled out by the dependent typing:

method pop expects n to be a successor, but [] : Vec A 0 enforces n = 0. This allows

Agda to conclude that this case is impossible, and no clause has to be written for it.

In contrast with the Java version, no exception handling is needed.

Objects that may flexibly depend on runtime values may not only be suitable for

ensuring runtime invariants, but may also help model extensions of object-oriented

programming; for instance, method dispatch may depend on another dimension.

Consider context-oriented programming (Hirschfeld et al., 2008), where the behavior

of an object depends on a given execution context that can be activated dynamically

at runtime.

10 Note that Objects is given as a ΠΣ-types rather than ΣΠ-types. In general, polynomial functors can
be reduced to ΣΠ-types (see, e.g., Setzer (2016)). The coalgebras corresponding to ΣΠ-functors are
Petersson–Synek trees (Petersson & Synek, 1989), which are trees with nodes indexed over some set
I , and each node having a label and a branching degree (where the set of labels, the branching
degree, and the index set of the subtrees depend on the index of the root). The theory of indexed
containers (Hancock et al., 2013) shows that indexed coalgebras of polynomial functors can be
reduced to Petersson–Synek trees. Coalgebras given by ΠΣ-types will be essentially Petersson–Synek
trees. However, the label is only given to the subtrees of a node, not to a node itself. This amounts
to having trees which differ from Petersson–Synek trees by not having a label at the root. By forming
a product consisting of the type of ΠΣ-trees and the type of labels at the root, we obtain a tree
which is equivalent to a Petersson–Synek tree. Therefore, we obtain the full generality of coalgebras of
polynomial functors.
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8.2.1 Example of use of safe stack

We consider an example of the use of safe stacks, where type theoretic rules prevent

the use of pop on empty stacks.

A stack machine for evaluating the Fibonacci numbers iteratively using a safe

stack serves as an illustration. This is essentially the result of computing the recursive

definition of the Fibonacci numbers (which is of course inefficient) using a stack.

This definition can easily be generalised to other recursive functions. The presented

example is an adaption of Section 5.1.4. of Abelson et al. (1996).

The stack machine consists of a state, a number n : N, and a stack of size n.

The state is either an expression (fib m) to be evaluated or a value (val k) to be

returned. The elements of the stack are expressions with a hole •, into which k is to

be inserted, once the stack above it has been emptied, and the state has become a

value (val k). These elements are of the form (•+fib m), which means that (fib m)

has to be added to the result k, or k′ +•, which means that the result k has to be

added to k′:

data FibState : Set where

fib : N → FibState

val : N → FibState

data FibStackEl : Set where

+• : N → FibStackEl

•+fib : N → FibStackEl

FibStack : N → Set

FibStack = Objects (StackInterfaces FibStackEl)

FibStackmachine : Set

FibStackmachine = Σ[ n ∈ N ] (FibState × FibStack n)

The function reduce carries out a one-step reduction, returning either a new stack

machine or the value computed, i.e., an element of the disjoint union of the two sets.

If the state is (val k), then this expression is used to reduce the top element on the

stack. If the state is (fib m), then the machine is supposed to compute (fib m). In

case of m = m′ + 2 we have (fib (m′ + 1)) as the next state, which when evaluated

will be inserted into the whole of the element (•+fib m′) pushed onto the stack,

computing fib (m′ + 1) + fib m′. Note that we never pop from the stack when it is

empty:

reduce : FibStackmachine → FibStackmachine 	 N

reduce (n , fib 0 , stack) = inj1 (n , val 1 , stack)

reduce (n , fib 1 , stack) = inj1 (n , val 1 , stack)

reduce (n , fib (suc (suc m)) , stack) =

objectMethod stack (push (•+fib m)) � λ { ( , stack1) →
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inj1 ( suc n , fib (suc m) , stack1) }
reduce (0 , val k , stack) = inj2 k

reduce (suc n , val k , stack) =

objectMethod stack pop � λ { (k′ +• , stack1) →
inj1 (n , val (k′ + k) , stack1)

; (•+fib m , stack1) →
objectMethod stack1 (push (k +•)) � λ { ( , stack2) →
inj1 (suc n , fib m , stack2) }}

Note that we use the previously defined right-triangle operator � which can

be used to make a method call and —depending on the result—continue with

a succeeding operation. The function computeFibRec repeatedly applies reduce

until it returns a result. We know it is TERMINATING. However, since we did

not calculate how often we should iterate this operation, we have to override the

termination checker:

{-# TERMINATING #-}
computeFibRec : FibStackmachine → N

computeFibRec s with reduce s

... | inj1 s′ = computeFibRec s′

... | inj2 k = k

fibUsingStack computes the Fibonacci function:

fibUsingStack : N → N

fibUsingStack m = computeFibRec (0 , fib m , stack [])

8.3 Reasoning about stateful objects

8.3.1 Bisimilarity

Henceforth, we assume an arbitrary I : Interfaces and use O for the type of objects

of this interface. Assume

I = record { States = S; Methods = M; Results = R; nexts = next }
O = Objects I

In Agda, the equality used in type checking is definitional equality, which is

a decidable equality based on equality of normal forms up to α, η-equality. It is

not extensional. For instance, functions are equal if they have the same normal

form, not if they return equal values for equal arguments. The standard generic

propositional equality in Agda is Martin-Löf’s intensional equality type. One can

define extensional propositional equality types, but the preservation of such equalities

by functions needs to be proved for each instance needed.
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The natural extensional equality on coalgebras is bisimilarity, which means that

two elements of coalgebras are bisimilar if all eliminators return equal or bisimilar

results for equal arguments. Since the result type of an eliminator might refer to

the coalgebra, this results in a recursive definition. Because the coalgebra is defined

coinductively, it is natural to define the bisimilarity coinductively as well. Essentially,

this means that two elements of a coalgebra are bisimilar, if, after repeatedly applying

eliminators until one obtains an element of a type which was defined before the

coalgebra was introduced, one obtains equal results. Adapted to objects, this means

that two objects are bisimilar if they yield the same responses if subjected to the

same method calls, which is a recursive definition to be understood coinductively.

To express bisimilarity in Agda, let us first define a relation ΣR R on dependent

pairs (a, b), (a′, b′) ∈ Σ AB that holds iff the first components a, a′ ∈ A are identical

and the second components b, b′ ∈ B a are related by R a : (b b′ : B a) → Set11:

data ΣR {A : Set} {B : A → Set} (R : ∀{a} (b b′ : B a) → Set)

: (p p′ : Σ[ a ∈ A ] B a) → Set

where

eqΣ : ∀{a}{b b′ : B a} → R b b′ → ΣR R (a , b) (a , b′)

We can establish ΣR R (a, b) (a, b′) using constructor eqΣ, provided we have a proof

of (R b b′). This enables us to define the bisimilarity relation coinductively in a very

similar way to how we have defined objects:

record ≅ {s : S} (o o′ : O s) : Set where

bisimMethod : (m : M s) →
ΣR ( ≅ ) (objectMethod o m) (objectMethod o′ m)

A bisimilarity derivation o ∼= o′ for two objects o, o′ ∈ O s at the same state s is

an infinite proof tree which we can, by bisimMethod, query for its node sitting

on branch m : M s for a valid method call m. This node will consist of an eqΣ
constructor certifying the identity of responses and holding a subtree for the equality

of the objects after the method invocation.

Reflexivity of bisimilarity is shown corecursively; the proof, as the statement, is

rather trivial.

refl≅ : ∀{s} (o : O s) → o ≅ o

bisimMethod (refl≅ o) m = let (r , o′) = objectMethod o m

in eqΣ (refl≅ o′)

To show that o is bisimilar to itself, we subject it to an arbitrary method call m.

Trivially, there is only one result r, which is equal to itself. By the coinduction

11 ΣR is an example of an inductive family, which are special cases of inductive–recursive definitions. See
Dybjer & Setzer (2003) for a model of inductive–recursive definitions.
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hypothesis, the new object o′ is bisimilar to itself, thus, eqΣ is sufficient to establish

bisimilarity.

8.3.2 Verifying stack laws

In this section, we show that two stack laws hold for our implementation of a stack

by a vector. Both hold in Agda by computation, so reflexivity of bisimilarity is

sufficient to prove them.

The first law states that for an arbitrary stack st constructed from a vector v of

elements of type E, if we first push an arbitrary element e and then pop from the

stack, we get back e and the original stack:

pop-after-push : ∀{n} {v : Vec E n} {e : E} →
let st = stack v

( , st1) = objectMethod st (push e)

(e2 , st2) = objectMethod st1 pop

in (e ≡ e2) × (st ≅ st2)

pop-after-push = refl , refl≅

In Agda, the proof is trivial by expansion of the definition of our stack

implementation: first, st1 computes to stack (e :: v), then the pair (e2, st2) computes

to (e, stack v), and both goals hold by reflexivity.

The second law concerns the opposite order of these operations. If we first pop

and element from stack st constructed from the non-empty vector e :: v, and then

push the popped element, we end up with the same stack st:

push-after-pop : ∀{n} {v : Vec E n} {e : E} →
let st = stack (e :: v)

(e1 , st1) = objectMethod st pop

( , st2) = objectMethod st1 (push e1)

in st ≅ st2

push-after-pop = refl≅

Again, this lemma is proven by computation.

8.3.3 Bisimilarity of different stack implementations

Alternatively to a vector, we can store the stack contents in a finite map implemented

naively as a pair of a number n : N, which denotes the stack size, and a function

f : N → E, which gives direct access to the stack elements, with f 0 standing for

the top element and f (n− 1) for the bottom element. The value of f k for k � n is
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irrelevant. We can transform such a finite map into a vector through the function

(tabulate n f ), which computes the vector f 0 :: f 1 :: · · · :: f (n − 1) :: [] and will

be used to relate the finite maps and vectors later:

tabulate : ∀ (n : N) ( f : N → E) → Vec E n

tabulate 0 f = []

tabulate (suc n) f = f 0 :: tabulate n ( f ◦ suc)

The object stackF n f implements a stack represented by the finite map (n, f ).

Pushing a new element e onto the stack will result in increasing the stack size to

(suc n) and changing the function f to a new function f ′ such that top position

0 maps to the new element e and position m + 1 maps to (f m). Basically,

we have shifted the old stack content to make space for the new element e in

position 012:

stackF : ∀ (n : N) ( f : N → E) → Objects (StackInterfaces E) n

objectMethod (stackF n f ) (push e) = , stackF (suc n) λ
{ 0 → e

; (suc m) → f m }
objectMethod (stackF (suc n) f ) pop = f 0 , stackF n ( f ◦ suc)

Popping from the stack returns the top element f 0 and changes the stack size from

(suc n) to n and the representing function from f to f ◦ suc.

Given a finite map (n, f ) that tabulates to a vector v, we obtain bisimilar

stack objects (stackF n f ) and (stack v). After we push a new element e we can

invoke the coinduction hypotheses on the new stack objects provided that their

data is still in correspondence, (tabulate (suc n) f ′ ≡ (e :: v)). By definition of

tabulate, the heads of these vectors are both e, and the equality of their tails is the

assumption p:

impl-bisim : ∀{n f } v (p : tabulate n f ≡ v) → stackF n f ≅ stack v

bisimMethod (impl-bisim v p) (push e) =

eqΣ (impl-bisim (e :: v) (cong ( :: e) p))

bisimMethod (impl-bisim (e :: v) p) pop rewrite cong head p =

eqΣ (impl-bisim v (cong tail p))

12 One of the referees suggested considering a different implementation, where one appends elements
at the end (at f n) rather than at the beginning (f 0). Popping would then be the result of merely
changing the n-value. The problem is that pushing is much more complicated since we cannot define it
via pattern matching, but would need an if–then–else statement on whether the argument is equal to n.
This is not a problem for defining the function – however, proofs referring to if–then–else statements
are much more complicated than proofs referring to pattern matching definitions. Therefore, our
solution is more suitable for proving properties.
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Here, (cong head p) has type f 0 ≡ e, where f is the implicit argument. The

syntax rewrite cong head p makes an implicit case distinction on (cong head p),

which in this example equates f 0 with e.13

When popping from a non-empty stack whose vector representation is e :: v,

we first have to show the equality of the result component, f 0 ≡ e. This equation

is obtained from p : tabulate (suc n) f ≡ (e :: v) by applying head on both

sides. After rewriting with this equation, we can proceed with eqΣ and apply the

coinduction hypothesis with tabulaten (f ◦ suc) ≡ v, which we get from p by

applying tail on both sides.

8.4 State-dependent IO

State-dependent interactive programs are defined in a similar way as state-dependent

objects, except for replacing Methods by Commands and Results by Responses.

Later, we will use state dependent IO in a situation where the components

have different type levels (Set vs Set1). We, therefore, define the operations

polymorphically in the finite type levels α, σ, γ, ρ, which from now we consider

fixed but arbitrary. Levels have the lowest element lzero, successor operation lsuc

and the maximum operation �14:

record IOInterfaces : Set (lsuc (σ � γ � ρ )) where

States : Set σ
Commands : States → Set γ
Responses : (s : States) → Commands s → Set ρ
nexts : (s : States) → (c : Commands s) → Responses s c → States

State-dependent IO programs are defined in a similar way as state-dependent

Objects (here, S=States i, C=Commands i, R=Responses i, next=nexts i):

record IOs (i : Size) (A : S → Set α) (s : S) : Set (lsuc (α � σ � γ � ρ )) where

constructor delay

forces : {j : Size< i} → IOs′ j A s

data IOs′ (i : Size) (A : S → Set α) : S → Set (lsuc (α � σ � γ � ρ )) where

dos′ : {s : S} → (c : C s) → ( f : (r : R s c) → IOs i A (next s c r) )

→ IOs′ i A s

returns′ : {s : S} → (a : A s) → IOs′ i A s

returns : ∀{i}{A : S → Set α} {s : S} (a : A s) → IOs I i A s

forces (returns a) = returns′ a

13 See Agda (2016) on how to reduce the rewrite-construct to the with-construct. The with-construct was
introduced in McBride & McKinna (2004).

14 Note that Set α has type Set (lsucα) and (α : Level) → Setα has type Setω, which is a universe above
any Setα. Universe Setω only exists internally in Agda as the type of level-polymorphic universes, it
cannot be written by the user. It is needed in type theoretic rules which require to associate a type for
any A occurring in a typing judgment a : A.
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dos : ∀{i}{A : S → Set α} {s : S}
(c : C s) ( f : (r : R s c) → IOs I i A (next s c r)) → IOs I i A s

forces (dos c f ) = dos′ c f

Translation into NativeIO is as before; however, the type level ρ of Responses

has to be lzero. Furthermore, the result type needs to be independent of s and in

Set:

translateIOs : ∀{A : Set }{s : S}
→ (translateLocal : (s : S) → (c : C s) → NativeIO (R s c))

→ IOs I ∞ (λ s → A) s

→ NativeIO A

9 A drawing program in Agda

In this section, we will introduce a graphics library in Agda and implement a proof-

of-concept drawing program with it. The library is using Hudak’s SOE Haskell

library (Hudak, 2016). The GUI interface in the Agda library has commands for

creating, changing, and closing GUI components, and for checking for GUI events

such as pressed keys (together with the character pressed) or mouse movements

(together with the new point). The library will refer to data types representing GUI-

related data such as a type Window of windows. All these commands and types will

be translated to Haskell functions and types using the SOE library:

data GraphicsCommands : Set where

getWindowEvent : Window → GraphicsCommands

openWindow : String → Maybe Point → N → N

→ RedrawMode → Maybe Word32

→ GraphicsCommands

closeWindow : Window → GraphicsCommands

drawInWindow : Window → Graphic → GraphicsCommands

GraphicsResponses : GraphicsCommands → Set

GraphicsResponses (getWindowEvent ) = Event

GraphicsResponses (openWindow ) = Window

GraphicsResponses (closeWindow ) = Unit

GraphicsResponses (drawInWindow ) = Unit

GraphicsInterface : IOInterface

Command GraphicsInterface = GraphicsCommands

Response GraphicsInterface = GraphicsResponses

IOGraphics : Size → Set → Set

IOGraphics i = IO GraphicsInterface i
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Graphics commands are translated into native IO commands by a function

translateNative, which replaces each command by a native function:

translateNative : (c : GraphicsCommands) → NativeIO (GraphicsResponses c)

We define now a simple drawing program, which opens a window and draws a

trace of where the mouse moves. After having started, the state of the program is

given by the last point up to which the drawing has already been carried out. After

the first mouse movement event at point p, the drawing consists of a single point at

position p. Initially there is no such point. So, we define the state as

State = Maybe Point

The loop of the program checks for any window event, which are handled by

winEvtHandler. If key ‘x’, representing a request to terminate the program, was

pressed, the program closes the window and terminates. If, after we have started

(state (just p1)), a mouse movement event with point p2 occurs, a line is drawn

from p1 to p2, and the state is updated to (just p2). If the same mouse movement

event occurs in the initial state nothing, no line is drawn, but as before the state

is updated to (just p2). In all other cases, winEvtHandler calls the loop function

without changing the state:

mutual

loop : ∀{i} → Window → State → IOGraphics i Unit

force (loop w s) = do’ (getWindowEvent w) λ e →
winEvtHandler w s e

winEvtHandler : ∀{i} → Window → State → Event → IOGraphics i Unit

winEvtHandler w s (Key c t) = if charEquality c ‘x’

then (do (closeWindow w) return)

else loop w s

winEvtHandler w s (MouseMove p2) = s � λ
{ nothing → loop w (just p2)

; (just p1) → do (drawInWindow w (line p1 p2)) λ →
loop w (just p2) }

winEvtHandler w s = loop w s

The main program opens a window and then runs the loop. This program is then

translated into a native IO program:

program : ∀{i} → IOGraphics i Unit

program =

do (openWindow "Drawing Prog" nothing 1000 1000

nativeDrawGraphic nothing) λ win →
loop win nothing
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translateIOGraphics : IOGraphics ∞ Unit → NativeIO Unit

translateIOGraphics = translateIO translateNative

main : NativeIO Unit

main = nativeRunGraphics (translateIOGraphics program)

10 A graphical user interface using an object

10.1 Graphical user interfaces with event handlers

So far our interactive programs were client-side programs: The program issues

commands and receives responses. In the drawing program in Section 9, we ran a

loop that was checking for any events that had occurred and modified the program

state accordingly. When dealing with more complex GUIs this becomes inefficient.

A better way is to use event listeners.

In object-oriented programming languages such as Java, when creating a GUI, one

uses commands which create GUI elements such as frames, buttons, and text fields,

and commands for placing them usually within previously created GUI elements.

For instance, one can place a button within a frame.

These GUI elements are associated with events, which are usually triggered by

user interaction. For example, once we have created a button, a button click event

is created, which is activated whenever the button is pressed. Moreover, there are

events triggered by the user interface itself, such as the paint event that signals that

a window’s contents needs to be repainted. Events are handled by event listeners or

event handlers. An event handler is an interactive program that is executed whenever

the event is triggered and is provided with parameters accordingly. For instance,

when a mouse click event is triggered, one obtains the coordinates of the location

of the mouse click. An event handler also has other parameters which are implicit,

such as the device context. When the event is triggered, the event handler is applied

to these arguments.

In object-oriented programming such as Java, the event handlers are usually

invoked as methods of several objects. This allows communication between the event

handlers. In Section 10.2, we will introduce an example of a spaceship controlled by

a button. The coordinates of the spaceship are changed when a button is pressed.

The paint event handler then uses these coordinates to draw the spaceship at a

different location.

10.2 wxHaskell

In this section, we will translate our IO programs into native IO programs, which

then translate into Haskell programs by making use of the Haskell library wxHaskell

(Leijen, 2004; Haskell Wiki, 2016). This library is suitable for creating GUIs since it

has good support for server-side programs based on action handlers. Here, “server-

side” refers to the notion put forth by Hancock & Setzer (2005) and Setzer &

Hancock (2004). The wxHaskell library offers bindings for wxWidgets, and an
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object-oriented (C++) widget toolkit to build GUIs. For each method in C++

there is a wrapper function in C with a pointer to a struct representing an object.

The Haskell library binds to the C functions. As the C++ methods assume access

to a mutable state, wxHaskell makes use of mutable variables. Our examples use

mutable variables based on Concurrent Haskell (Peyton Jones et al., 1996). In our

Agda code, we do not focus on modeling the inheritance relationship between

widgets that is present in the C++ library. In wxHaskell, inheritance relationships

are modeled as phantom types; however, as it relies on unsafe object casts, it is

only an approximation that does not fully represent subtyping of object-oriented

programming languages (see the related work of phantom types in Section 11).

wxHaskell provides some basic data types such as the device context DC, frame

Frame and button Button. Additionally, it provides functions for creating and

placing GUI elements. GUI elements have properties, using syntax such as

frame [text := "Frame Title"]

for creating a frame with the title “Frame Title.” Event handlers are associated with

GUI elements by using syntax such as

set myframe [on paint := prog]

which sets the onpaint method (in underlying C++ terms) for frame myframe to

program prog, where prog is an element of IO () in Haskell. In order to share

information between event handlers, mutable variables are used. As multiple events

may occur in parallel, we use variables based on Concurrent Haskell (Peyton Jones

et al., 1996):

A mutable location MVar a is either empty or contains a value. There are

commands for creating a mutable location, putting a value into the location, and

taking a value out of the location:

newMVar :: a -> IO (MVar a)

putMVar :: MVar a -> a -> IO ()

takeMVar :: MVar a -> IO a

A thread putting a variable blocks until the variable is empty, and then puts

a value into that location. If it is taking a variable, it blocks until the variable

is non-empty, and then reads the value, leaving the location empty. The dispatch

function in the next section utilizes Haskell’s MVar semantics to implement thread-

safe communication. The Agda Var type corresponds to the Haskell MVar type and,

e.g., nativePutVar is a wrapper for putMVar in Haskell.

10.3 A library for object-based GUIs in Agda

We will handle variables by forming a list of variables. Since a variable depends on

its type—an element of Set—a list ofvariables is an element of the next type level
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Set1 above Set:

data VarList : Set1 where

[] : VarList

addVar : (A : Set) → Var A → VarList → VarList

We form the product of the set of variables in a VarList. In our example below,

we have only one variable of type A. In order to obtain it as product A instead of

A × Unit, we add a special case for the singleton list:

prod : VarList → Set

prod [] = Unit

prod (addVar A v []) = A

prod (addVar A v l) = A × prod l

The function takeVar reads in sequence all the variables, empties them, and

returns the product. If a variable is empty, it waits until it is non-empty, before

taking it. The function putVar writes all the variables, leaving them non-empty. If a

variable is non-empty, it waits until it is empty, before putting the value:

takeVar : (l : VarList) → NativeIO (prod l)

takeVar [] = nativeReturn unit

takeVar (addVar A v []) = nativeTakeVar {A} v

takeVar (addVar A v (addVar B v′ l)) =

nativeTakeVar {A} v native>>= λ a →
takeVar (addVar B v′ l) native>>= λ rest →
nativeReturn ( a , rest )

putVar : (l : VarList) → prod l → NativeIO Unit

putVar [] = nativeReturn unit

putVar (addVar A v []) a = nativePutVar {A} v a

putVar (addVar A v (addVar B v′ l)) (a , rest) =

nativePutVar {A} v a native>>= λ →
putVar (addVar B v′ l) rest

We have two levels of IO interfaces: the level 1 interface GuiLev1Interface is used

for creating and modifying GUI elements without making use of event handlers. It

does not, however, allow the use of variables. We omit its definition, which is similar

to the one given in Section 9.

The main program uses the level 2 interface, which extends the level 1 interface

and has commands for adding event handlers that refer to programs written for

the level 1 interface. This means that it negatively refers to the set of all level 1

IO programs. In order for this to be possible, the set of level 1 programs needs

to be defined (and therefore the level 1 interface be finished) before we can define

the level 2 interface. If we allowed the level 2 interface to refer to itself we would
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get an inconsistent type theory (essentially, we would need the principle Set : Set).

Therefore, we could not use Agda for verification.

Because of this, we separate level 1 and level 2 interfaces: The level 1 interface

has no event handler. The level 2 interface extends the level 1 interface with the

possibility of adding event handlers, which refer to level 1 programs. We call them

“level 1” and “level 2,” because level 2 programs can refer to the collection of all

level 1 programs.

Event handlers are expected to be executed as independent threads, possibly in

parallel. In order to communicate between them, we add to the level 2 interface the

ability to create and use variables that represent the shared state between the event

handlers. Event handlers access the shared variables, modify them and update the

shared variables.

A first approximation for the type of an event handler referring to variable list

l is

eventHandler : prod l → IO GuiLev1Interface (prod l)

When translated into a native IO program, the event handler will read the state of

all variables, obtaining value a : prod l. Then, it will execute program (eventHandler

a) which, when terminating, returns an element a’ : prod l which will then be written

back to the variables.

Some modifications are needed: One is that eventHandler has two kinds of

additional parameters: (1) some are to be executed when it is first created. Let

the types of those parameters be B1, . . . , Bn. (2) Furthermore, we have some

parameters which are used each time eventHandler is activated. Let their types be

C1, . . . , Cn. The reason for the other modification is that one event handler might

trigger events which other event handlers then handle. For this to work, one might

need to update the variables before this trigger event is activated, so that the other

handlers triggered make use of the updated state. The solution is to have a list of

event handlers instead of having just one event handler. The event handlers in such

a list will be executed in sequence. After each event handler in this list has been

executed, the variables are updated. As a consequence, event handlers from other

threads from now on will make use of the updated state. Therefore, we can update

the state in one event handler of the list, and trigger an event in a later event handler

of the list. A handler that refers to the revised state will handle the triggered event.

Using these considerations, we obtain that the type of an event handler is as follows:

eventHandler : B1 → · · · Bn → List ( prod l → C1 → · · · Cn

→ IO GuiLev1Interface (prod l))

The level 2 interface GuiLev2Interface will be a state-dependent IO interface. The

state of GuiLev2Interface is the list of variables obtained up to now, i.e., VarList :

Set1:

GuiLev2State : Set1
GuiLev2State = VarList
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The level 2 interface has as commands level 1 commands, a command for creating

a variable, and commands for adding a button handler, and an onPaint handler.

The type of event handlers is as discussed before. The type of event handlers will

refer to the variables created up to now; therefore, the commands for setting an

event handler will depend on this state. Since the type of variables is an element of

Set, the type of commands will be an element of Set1:

data GuiLev2Command (s : GuiLev2State) : Set1 where

level1C : GuiLev1Command → GuiLev2Command s

createVar : {A : Set} → A → GuiLev2Command s

setButtonHandler : Button

→ List (prod s → IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s

setOnPaint : Frame

→ List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s))

→ GuiLev2Command s

Responses for level 1 commands are the corresponding level 1 responses. The

response for the create variable command is the variable which was created. For all

other commands the response is empty (an element of Unit). The type of responses

is an element of Set:

GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s → Set

GuiLev2Response (level1C c) = GuiLev1Response c

GuiLev2Response (createVar {A} a) = Var A

GuiLev2Response = Unit

When creating a new variable, the return type will be a new variable; adding the

new variable to the list of variables then updates this state. Otherwise the state will

remain unchanged. Here, we have an example of a state-dependent interface where

the next state not only depends on the command executed, but also on the response

returned:

GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s)

→ GuiLev2Response s c

→ GuiLev2State

GuiLev2Next s (createVar {A} a) var = addVar A var s

GuiLev2Next s = s

Combining the above we obtain the resulting interface, which is an element of the

second type level Set2:

GuiLev2Interface : IOInterfaces

States GuiLev2Interface = GuiLev2State

Commands GuiLev2Interface = GuiLev2Command

Responses GuiLev2Interface = GuiLev2Response

nexts GuiLev2Interface = GuiLev2Next
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When translating an event handler, which refers to variables l, into NativeIO, we

obtain a list of functions of type

f : prod l → NativeIO (prod l)

The function dispatch will translate each of these functions into an element of

NativeIO, which takes the variables, obtains a value a, executes f, and then writes

back the variable:

dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit

dispatch l f = takeVar l native>>= λ a →
f a native>>= λ a1 →
putVar l a1

Dispatch will be used for writing event handlers which are possibly executed in

parallel. Any dispatched handler of the form (dispatch l f) will empty the variables

initially. No other dispatched handler then starts, because it waits until the variables

are non-empty. When the first dispatched handler has finished, it writes the variables,

allowing other dispatched handlers (which run in parallel) to start. Therefore, the

execution of dispatched handlers of different threads is mutually exclusive. This

is necessary since any intermediate changes of the state are not shared between

threads.

The dispatching of a list of such functions is obtained by dispatching each

individual function in sequence. Therefore, updates to the variables in one element

of the list are shared to all other event handlers before executing the next element of

the list. Since the variables are then non-empty, other threads accessing the variables

at this point might interrupt execution and change the variables. Therefore, reading

the variables again after having written them is necessary since they may have

changed.

In the example given below in Section 10.4, we will make use of having a list of

event handlers. When moving the spaceship, we will first update the coordinate of

the spaceship, which changes the variable containing the coordinate. Then, we will

call the repaint function, which needs to make use of the updated coordinates:

dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit

dispatchList l [] = nativeReturn unit

dispatchList l (p :: rest) = dispatch l p native>>= λ →
dispatchList l rest

We define translateLev1Local : (c : GuiLev1Command) → NativeIO

(GuiLev1Response c) similarly to as we did in Section 9. The translation of level 2

commands makes use of the dispatch function. Since the event handlers are lists of

functions, we need to apply the level 1 translation to each of the elements of this
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list by using the operation map:

translateLev2Local : (s : GuiLev2State)

→ (c : GuiLev2Command s)

→ NativeIO (GuiLev2Response s c)

translateLev2Local s (level1C c) = translateLev1Local c

translateLev2Local s (createVar {A} a) = nativeNewVar {A} a

translateLev2Local s (setButtonHandler bt proglist) =

nativeSetButtonHandler bt

(dispatchList s (map (λ prog → translateLev1 ◦ prog) proglist))

translateLev2Local s (setOnPaint fra proglist) =

nativeSetOnPaint fra (λ dc rect → dispatchList s

(map (λ prog aa → translateLev1 (prog aa dc rect)) proglist))

translateLev2 : ∀ {A s} → IOs GuiLev2Interface ∞ (λ → A) s → NativeIO A

translateLev2 = translateIOs translateLev2Local

Note that the translation of (setButtonHandler bt proglist) uses

nativeSetButtonHandler, which creates a new thread running a handler. The handler

waits for a button event. If the button event happens the handler code is executed.

10.4 Example: A GUI controlling a space ship in Agda

We are going to introduce a program displaying a small spaceship controlled by

buttons in Agda. This example is based on the Haskell program of the asteroids

game (Leijen, 2004; Leijen, 2015). We will demonstrate only one button in this

paper, which moves the spaceship to the right by a fixed amount. We will define

three versions, which differ by the type of shared variables. These versions correspond

to different methodologies of writing event handlers. The first one uses the data type

of integers Z as its shared state. It represents the x -coordinate of the spaceship.

The second one uses an object for storing the shared state. Here, we wrap Z

into a cell object. More advanced examples would make use of more complex

objects. Finally, the third one follows the common approach in object-oriented

programming, namely to define the event handlers as methods of a common

object.

All versions will define three event handling functions: onPaint, which handles the

onpaint event for drawing the spaceship; moveSpaceShip, which is the first part

of the button handler, which updates the state so that next time the spaceship is

drawn its coordinates have changed; and callRepaint, which triggers a repaint event.

The button will be handled by the two handlers moveSpaceShip and callRepaint

in sequence. When the button event is triggered, first moveSpaceShip moves the

spaceship by updating and sharing the state of the spaceship with new updated

coordinates. Then, the callRepaint handler will trigger a repaint event that triggers

the paint function to repaint the spaceship with the new coordinates.
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It turns out that in all three versions the types of the event handling functions are—

except for the type of the shared variable—the same. Furthermore, the definitions

of the main program are identical. We will therefore define it at the end.

In the first version, the event handlers will read the x -coordinate, an element of

Z, and return the updated coordinate. Here, + is the constructor for Z embedding

N into Z. We define the type of the shared variable and its initial value:

VarType = Z

varInit : VarType

varInit = (+ 150)

The event handling functions are as follows:

onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType

onPaint z dc rect = do (drawBitmap dc ship (z , (+ 150)) true) λ →
return z

moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType

moveSpaceShip fra z = return (z + (+ 20))

callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType

callRepaint fra z = do (repaint fra) λ → return z

In the second version, we define the variable via an object. Here, we will take the

example of a simple cell, containing an integer with constructor cellZC:

VarType = Object (cellJ Z)

cellZC : (z : Z ) → VarType

objectMethod (cellZC z) get = ( z , cellZC z )

objectMethod (cellZC z) (put z′) = ( unit , cellZC z′ )

varInit : VarType

varInit = cellZC (+ 150)

The event handlers are defined as before, but now they call methods of the simple

cell object for getting and setting the coordinate. We omit their types since these are

identical for all three versions of this program:

onPaint c dc rect =

let (z , c1) = objectMethod c get in

do (drawBitmap dc ship (z , (+ 150)) true) λ →
return c1
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moveSpaceShip fra c =

let (z , c1) = objectMethod c get

( , c2) = objectMethod c1 (put (z + (+ 20)))

in return c2

callRepaint fra c = do (repaint fra) λ → return c

The third version makes use of an object, which has methods onPaintM,

moveSpaceShipM, callRepaintM corresponding to the first three event handling

functions:

data GraphicServerMethod : Set where

onPaintM : DC → Rect → GraphicServerMethod

moveSpaceShipM : Frame → GraphicServerMethod

callRepaintM : Frame → GraphicServerMethod

GraphicServerResult : GraphicServerMethod → Set

GraphicServerResult = Unit

GraphicServerInterface : Interface

Method GraphicServerInterface = GraphicServerMethod

Result GraphicServerInterface = GraphicServerResult

GraphicServerObject : ∀{i} → Set

GraphicServerObject {i} = IOObject GuiLev1Interface GraphicServerInterface i

graphicServerObject : ∀{i} → Z → GraphicServerObject {i}
method (graphicServerObject z) (onPaintM dc rect) =

do (drawBitmap dc ship (z , (+ 150)) true) λ →
return (unit , graphicServerObject z)

method (graphicServerObject z) (moveSpaceShipM fra) =

return (unit , graphicServerObject (z + (+ 20)))

method (graphicServerObject z) (callRepaintM fra) =

do (repaint fra) λ →
return (unit , graphicServerObject z)

VarType = GraphicServerObject {∞}

varInit : VarType

varInit = graphicServerObject (+ 150)

The event handlers will now simply call the methods of the shared object. The

methods’ result type is IO (Unit × GraphicServerObject), namely the product of the

https://doi.org/10.1017/S0956796816000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000319


Interactive programming in Agda 45

response type Unit of the methods and of the type of the updated object, whereas

the result of the event handlers needs to be IO GraphicServerObject. Therefore, we

apply mapIO proj2 to the results of those methods. Here, mapIO is a function which

takes as arguments an f : A → B and an element of IO A and maps it to IO B by

applying f to its return values:

onPaint obj dc rect = mapIO proj2 (method obj (onPaintM dc rect))

moveSpaceShip fra obj = mapIO proj2 (method obj (moveSpaceShipM fra))

callRepaint fra obj = mapIO proj2 (method obj (callRepaintM fra))

The main program, which is identical for all three versions, does the following:

It creates a frame and a button, adds the button to the frame, creates a variable

of type VarType initialized by varInit, and sets the button handler and the onPaint

handler to the event handlers defined. The program is then translated into a NativeIO

program:

program : ∀{i} → IOs GuiLev2Interface i (λ → Unit) []

program = dos (level1C makeFrame) λ fra →
dos (level1C (makeButton fra)) λ bt →
dos (level1C (addButton fra bt)) λ →
dos (createVar varInit) λ →
dos (setButtonHandler bt (moveSpaceShip fra ::

[ callRepaint fra ])) λ →
dos (setOnPaint fra [ onPaint ])

returns

main : NativeIO Unit

main = start (translateLev2 program)

11 Related work

Typestate-oriented programming (Garcia et al., 2014) is an extension of object-

oriented programming (Strom & Yemini, 1986). It models state-dependent interfaces

and object behaviour in imperative object-oriented programming. The states are

given by a finite number of type states. Executing a method may change the state

of an object. Although typestate-oriented programming can express the full range

of object-oriented programming including aliases, it lacks a notion of dependent

states that can be statically verified. Thus, the approach may catch only some errors

statically, while still resorting to runtime checks or assertions (Garcia et al., 2014)

to cover all errors. Furthermore, objects with an infinite number of states (such

as our stack example with the state being the number of elements on the stack)
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are out of the scope of typestate-oriented programming and other approaches to

typestate.

Abadi & Cardelli (1996) introduce the ζ-calculus, which is similar to the λ-calculus,

but for objects. There is a special second order quantifier called Self-quantifier

ζ(X)ϕ(X) := μY.∃X <: Y.ϕ(X). This allows us to type objects and classes which

make self-referential calls. Dependent types are not studied in their approach.

Coinduction in type theory: In the context of Nuprl’s extensional type theory,

simple coinductive types (Mendler et al., 1986) such as streams have been considered

as greatest fixed-points of functors, using, in modern terminology, the following

introduction rule:

Γ, n : N � e : Fn(�)

Γ � e : νF
In talking about the finite approximations Fn(�) of the coinductive type νF ,

it resembles sized types. However, in extensional type theory type checking is

undecidable. Corecursive definitions have to be justified by proof, here by induction

on the natural number n, whereas in Agda’s sized types are built into the core

language. One could, of course, say that Agda’s sized types give the information

needed to create such proofs.

Coquand (1994) introduces coinductive types via constructors as non-wellfounded

trees—in contrast to the coalgebraic approach to define them via their destructors

(Hagino, 1989; Setzer, 2012; Abel et al., 2013). Coquand’s work contains the

definition of productivity of corecursive definitions and the guarded-by-constructors

criterion to ensure productivity. This also extends to proofs as “guarded induction

principle,” but has limited expressivity, which is overcome by sized types as described

in this article.

Coinductive types have been added to Coq’s Calculus of Inductive Constructions

following Coquand’s proposal (Giménez, 1996). In Giménez’ thesis, it was already

noted that dependent pattern matching on coinductive data breaks subject reduction.

Giménez also suggested a type-based productivity check (Giménez, 1998) with

similar proposals occurring at around the same time (Hughes et al., 1996; Amadio

& Coupet-Grimal, 1998). Since then, sized types have seen thorough theoretical

exploration (Barthe et al., 2004; Blanqui, 2004; Abel, 2007; Abel, 2008; Barthe

et al., 2008; Sacchini, 2013) and several prototypical implementations (Barthe et al.,

2005; Abel, 2010).

Component-based programming: Hancock & Hyvernat (2006) and

Granström (2012) (see also the component-based programming language

IPL (Granström, 2016)) have suggested the use of interactive programs in

component-based programming. A component is a combination of a server-side

and a client-side program: It receives a request from the server and then interacts

with the client-side until it has computed a response, which is then returned to

the server-side. After the request ends, the component waits for the next server

request. In this sense, an IOObject is a component having the object interface as

a server-side interface and the IO-interface as a client-side interface. CounterCell

(Section 7) can be considered as a component which communicates with a CellC

object on its client-side.
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Isabelle has many advantages since it integrates powerful automated theorem

provers, especially Sledgehammer. Its built-in equality for coalgebras is already

bisimilarity, making proofs much easier. However, it lacks dependent types. Strict

positivity is more restrictive than in Agda which allows inductive–recursive (Dybjer

& Setzer, 2003) and inductive–inductive definitions (Nordvall Forsberg & Setzer,

2010), which only make sense using dependent types. Lochbihler and Züst (2014)

demonstrated how to use Isabelle as a functional programming language. Their type

of interactive programs makes use of a type similar to our IO monad. Because of

the lack of dependent types, this type has only one command with one type of

arguments, and one result type. That could easily be generalised to finitely many

methods, but not to the full generality in this paper. Blanchette et al. (2015) introduce

friendly functions that are allowed on the right-hand side of corecursive definitions.

They play a similar role to that of size preserving functions in our settings. However,

size preserving functions seem to be more general.

Software Transactional Memory: The STM monad (Harris et al., 2008; Hackage,

2016) allows us to combine a series of actions such as writing and reading variables

into one transaction. If such a transaction is interrupted, the transaction is rolled

back to the state it was before it was executed. IO actions are not allowed inside

such transactions. For this reason, the STM monad is not suitable for our approach,

and we use manual locking via MVars instead.

Functional Reactive Programming (FRP) is another approach for writing

interactive programs in functional programming languages. The idea is that input

and output are given by input and output streams, and one has operations for

creating new streams from existing ones. The elements of the input streams change

as the input changes, which is then reflected in the elements of the streams defined

from it, including the output streams. Therefore, the output reacts in response

to the input. In connection with dependent types, FRP has been studied from the

foundational perspective (Sculthorpe & Nilsson, 2009) and for verified programming

(Jeffrey, 2013).

Phantom Types for Modeling Inheritance Relationships: wxHaskell offers bindings

to the C++ GUI-library wxWidgets. The Haskell bindings model inheritance

relationships (e.g., between widget classes in C++) as phantom types. However,

wxHaskell cannot fully represent subtyping of object-oriented programming

languages, as it relies on unsafe object casts. Phantom types are types with an

additional type parameter which is not used by its constructors. For instance, we

can state

data isPerson x

data isStudent x

data isPhDStudent x

If we had existential quantifiers over types, one could define

Person = ∃x.isPerson x

Student = ∃x.isPerson (isStudent x)

PhDStudent = ∃x.isPerson (isStudent (isPhDStudent x))
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and then obtain: if a : Student then a : Person and if a : PhDStudent then

a : Student and a : Person.

However, Haskell does not have existential quantifiers, so instead one defines

Person = isPerson ()

Student = isPerson (isStudent ())

PhDStudent = isPerson (isStudent (isPhDStudent ()))

Now, an element of Student is no longer an element of Person but we can define an

upcasting function

upcast : Student → Person

As we can equally define downcast : Person → Student, the definition is unsafe.

Furthermore, Student and Person are type synonyms, so they do not really have

different constructors or (as objects) methods. One can distinguish them by having

operations such as

studentNumber : Student → N

which is a postulated function and gets its implementation only from the

corresponding C code. In this sense, this use of phantom types is unsafe, meaning

we do not really have a type hierarchy but are using potentially unsafe casts which

are not type-checked.

Algebraic effects and Idris: In the dependently typed programming language Idris,

Brady has created an effects library based on algebraic effects (Brady, 2014).

Algebraic effects were introduced in Bauer & Pretnar (2012, 2015). Effects can

be considered as a version of state-dependent IO.

The type Effect of effects is a predicate on the sets Result, incoming InResource,

and outcoming resources OutResource : Result → Set. Written in Agda syntax, this

reads as follows:

Effect : Set1
Effect = (Result : Set) → (InResource : Set) → (OutResource : Result → Set) → Set

This can be considered as a state-dependent interface: The states are Set, the

commands for a state s are the effects for which the result component is s, the

responses are the Result component of the effect, and the next state is determined

by the OutResource component:

effectToIOInterfaces : Effect → IOInterfaces

States (effectToIOInterfaces eff) = Set

Commands (effectToIOInterfaces eff) s =

Σ[ Result ∈ Set ] (Σ[ outR ∈ (Result → Set) ] (eff Result s outR))

Responses (effectToIOInterfaces eff) s (result , outR , op) = result

nexts (effectToIOInterfaces eff) s (result , outR , op) = outR
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In order to handle several effects in parallel, Brady introduces the type EFFECT,

which consists of a state and a state-dependent interface, which can be simplified to

EFFECT = Set × Effect

Then, he defines a second level of state-dependent interfaces Eff, which, as before,

are state-dependent interfaces, but with (List EFFECT) as state. This type is not a

closed data type but open for new commands to be registered, similar to IO in

Haskell.

Furthermore, Brady introduces handlers, which are defined by referring to the

predicate based data type Effect. If we replace this type by a set interface with the

components States, C, R, and next, we obtain the following type of a handler, which

depends on an operation M : Set → Set:

(A : Set) → (s : States) → (c : C s) → ( f : (r : R s c) → next s c r → M A) → M A

Using a handler, an IO program for the corresponding interface with return type

A can be evaluated to an element of M A essentially by evaluating the handler for

each effect. This allows, for instance, to write effectful programs having as effects an

exception with return type A, and evaluate them to an element of Maybe A.

Brady introduces some very elegant syntax for defining and programming with

effects. As in Bauer & Pretnar (2015), he allows expressions of normal data types to

be formed from effectful programs (Brady uses a ! notation). This means that Idris

code looks very similar to ML code where we have terms with side effects. However,

this requires strict evaluation and that the order of evaluation is fixed.

12 Conclusion

We have seen how to introduce interactive programs and objects in Agda. We

demonstrated how to program with them, including introducing GUIs with action

listeners. We have seen the importance of state-dependent interactive programs and

objects. One true example of a state-dependent interactive program was the creation

of variables, where the new state depends not only on the issued command but also

on the response given by the real world, namely the variable that was created. The

example in Section 10 solved a problem in Agda: The original implementation in

Haskell is rather low-level and requires the direct modification of variables. Our

program solves this issue by using a shared object which can be accessed by the

action listeners while they are executed. This is very close to the way this is actually

implemented in standard object-oriented languages.

Our approach is a first step toward introducing object-orientation into dependent

type theory. However, object-orientation consists of much more than simple objects.

We have not shown how to define objects calling each other recursively; some work

is already available in the third author’s work (Setzer, 2006). The problem is to find

a definition in such a way that it passes the termination checker – a method calling
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itself immediately would result in black hole recursion. We have introduced a first

step toward inheritance, namely to extend an object by additional methods reusing

the original method implementations. However, future work is required to develop

a methodology for overwriting existing methods. Proper inheritance would require a

more expressive form of subtyping as it is currently implemented in Agda. The most

challenging problem at this moment seems to be how to define objects dynamically

on the heap. This would need some notion of pointers.

We hope that this article is a step toward having a programming language that

has both dependent types and object-orientation. This would allow to combine

both of these advanced programming paradigms, and to create a language in which

programming is considerably easier and safer.
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