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Abstract

Let M be an n-dimensional space-like hypersurface in a locally symmetric Lorentz
space, with n(n — 1) R = x H (¢ > 0) and satisfying certain additional conditions on the
sectional curvature. Denote by S and H the squared norm of the second fundamental
form and the mean curvature of M, respectively. We show that if the mean curvature is
nonnegative and attains its maximum on M, then:

(1) if H? < 4(n — 1)c/n?, M is totally umbilical;

(2) if H? = 4(n — 1)c/n?, M is totally umbilical or is an isoparametric hypersurface;

3) if H2 > 4(n — l)c/n2 and S satisfies some pinching conditions, M is totally
umbilical or is an isoparametric hypersurface.
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1. Introduction

Let M!" be an m-dimensional connected semi-Riemannian manifold of index s(s > 0);
itis called a semi-definite space of index s. In particular, M{" is called a Lorentz space.
When the Lorentz space M{" is of constant curvature c, it is called a Lorentz space form
and denoted by M7"(c). A hypersurface M of a Lorentz space M{" is said to be space-
like if the metric on M induced by that of the Lorentz space M{" is positive definite.
It is well-known that space-like hypersurfaces with constant mean curvature in
arbitrary space—time are of interest in relativity theory (see [10] and [15]). Therefore,
space-like hypersurfaces in a Lorentz space form have recently been investigated by
many differential geometers from both the physical and the mathematical points of
view; see, for example, [1, 4, 5, 7, 8, 11, 13] and [14]. Goddard [8] conjectured
that a complete space-like hypersurface in de Sitter space M {’H with constant mean
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curvature H must be totally umbilical. Akutagawa [1] and Ramanathan [13] proved
independently that the conjecture is true if H> < 1 whenn =2 and n> H?> < 4(n — 1)
when n > 3.

We note that the investigation of space-like hypersurfaces for which the scalar
curvature n(n — 1)R and the mean curvature H are linearly related is also a very
important and interesting problem. Cheng [4] and Li [9] obtained some characteristic
theorems, in terms of the sectional curvature, on space-like hypersurfaces where the
scalar curvature n(n — 1) R and the mean curvature H are linearly related. Recently,
the author proved a characteristic theorem concerning such hypersurfaces in terms of
the mean curvature H [14].

All of the above results were obtained under the assumption that the ambient
manifolds possess very nice symmetry properties. Many researchers have recently
begun to study ambient manifolds which do not have symmetry in general: for
example, the general Lorentz space or locally symmetric Lorentz space; see [3]
and [16], for instance. In [3], Baeker al. obtained some important results on complete
space-like hypersurfaces in locally symmetric Lorentz space with constant mean
curvature.

In this paper, we consider (n 4 1)-dimensional Lorentz space M f“ of index 1.
We denote by ?, K and R the semi-Riemannian connection, sectional curvature
and curvature tensor on M ;’H, respectively. If the Lorentz space M ;‘H satisfies the
following conditions:

1. for any space-like vector u and any time-like vector v, K (1, v) = —c1/n where
c] 18 a constant;
2. for any space-like vectors u and v,

K(u,v) > e, (1.1)

where ¢ is a constant;

then we shall say that M;’H is a locally symmetric Lorentz space satisfying
condition (*).

REMARK 1. The Lorentz space form Mf“(c) satisfies condition (*), with —c/n
=c)=c.

In what follows, we shall investigate space-like hypersurfaces, with the scalar
curvature n(n — 1)R and the mean curvature H being linearly related, in a locally
symmetric Lorentz space satisfying condition (*). We shall prove the following results.

THEOREM 1.1. Let M be an n-dimensional space-like hypersurface with n(n — 1)R
=k H, where k is a positive constant, in a locally symmetric Lorentz space M f'H that
satisfies condition (*). Suppose that the mean curvature H is nonnegative and attains
its maximum on M ; then the following properties hold.
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(D) IfH2 <4(n — l)c/nz, then M is totally umbilical.

(2) If H> =4(n — 1)c/n?, then M is totally umbilical or is an isoparametric
hypersurface with two distinct principal curvatures, one of which is simple.

(3) If H?> > 4(n — 1)c/n® and the squared norm S of the second fundamental
form satisfies S < nH? 4+ (BZ,’H’C)2 or S$>nH?+ (B;,n,c)z, then M is totally
umbilical or is an isoparametric hypersurface with two distinct principal
curvatures, one of which is simple, with ¢ = 2cy + (c1/n) (c2 > 0) and

n
Bine =\ gor =L~ DH £ Vi2H? — 4 = e,

REMARK 2. Note that if M;’H is the de Sitter space Mf“(c), where ¢ = —cy/n
= ¢ > 0, then Theorem 1.1 reduces to [14, Theorem 1.2].

2. Preliminaries

Let M be an n-dimensional space-like hypersurface in Lorentz space M {‘H. Let
{e1, ea, ..., ey, en4+1} be alocal frame of orthonormal vector fields in M?'H such that,
restricted to M, the vectors {eq, e2, . .., e,} are tangent to M, and the vector e;y1 is
normal to M. Let {w;, wy, ..., w,, w,+1} be the dual frame field. We shall use the
following convention on the ranges of indices:

1<i,j,k,...<n, 1<A B, C,...<n+1.

We write &; =1 and ¢,41 = —1; then M f“ satisfies the structure equations
dop = — Z epwAp ANwp, wap+wpsr =0,
B
1 _
dwsp = =) ecwac Aoc — 3 Y " ecepRapcpwc A wp, 2.1)
C C.D

where Rapcp denotes the components of the Riemannian curvature tensor
of M?H. We denote by Rcp and R the Ricci tensor and the scalar curvature of

M {’H, respectively; then

Rep = Z egRpcpp, R= Z eaRaA.
B A

Now, let us write Ragc p.e for the covariant derivative of Rapcp. Then the
components R4pcp: g are defined by

Z eERaBCcD;EWE
E

=dRapcp — ) ¢6(REpcp®EA + Ragcp®E + RaEp@EC + RABCE®ED).
E
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Since M TH is a locally symmetric manifold,
Rascp:e =0. (2.2)
We have, for M, that

dw; = — E wij N\ wj, a),-j+a)j,~=0,
J

1
dwij = — Za)ik A wpj — 3 Z Rijrior A wy.
k k,l

The Gauss equation is given by

Rijri = Rijkr — (hith jx — hikhjp), (2.3)
nin — 1R = ZRW —n’H*+ S, (2.4)
ij
where S =3, ;(h; )2 H=(/n)Y; hi; and R denote, respectively, the squared
norm of the second fundamental form, the mean curvature and the normalized scalar
curvature of M.

Let {h;jx} and {h;ji;} be the covariant derivatives of {h;;} and {h;;}, respectively.
Then the Codazzi equation and Ricci identities are

hijk — hikj = Ratij, (2.5)
hijki — hijix = Z Rim Rnjrr + Z N j Rmiki - (2.6)
m m

Upon restricting RABCD;E to M, Ién+1ijk;l is given by

Ruttijk;i = Rutijkt + hji Rnvtin+1k + hit Ryt 1ijn+1 + Z hot Riije,  (2.7)
m
where the Rn+1 ijki are defined by
> Rusiijuor =dRupiijk — Y Rovujeon — Y Rovrinorj — Y Rug1ijion.
1 1 1 I

Let f be a smooth function on M. The first and second covariant derivatives f;, f;;
and the Laplacian of f are defined by

df =Y fibi. Y fibj=dfi+_ fi%i. Af=)_ fu.
i j j i
We introduce an operator O due to Cheng and Yau [6]:

Of =Y (Hs;; — hij) fij- (2.8)
ij
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Setting f =nH in (2.8), from (2.2) and (2.4) we obtain
OmH) = Z(nHa,-j — hij)(nH);j
i,j
=Y (H)(nH)ii — Y _ hij(nH)i
i ij
= %A(nH)2 — Z(nH,-)2 — Z hij(nH);;

- ——n(n — AR+ ZAS —n?VH]? - ;h,j(nH)U (2.9)

The Laplacian Ah;; of the second fundamental form A of M is defined by A#h;;
= %—1 hiikk. From (2.5) and (2.6) it follows that

Ahjj = Z hikjr + Z Rt iijk
k k
=> {hkikj =Y G Riiji + hirRigje) + Y Rn+lijkk}-
k 1 k

Using hyikj = hikij + Rn—i—lkikj’ we find that

Ahjj = Z hikij + Z(Rn+lijkk + Rusikikj) — Z(hklRlijk + hitRigjr);  (2.10)
% 3 ol

and from (2.3), (2.7) and (2.10), we obtain

Ahij = Z hikij + Z ntlijkk + Rosikik:j)
- Z Rotiknt1k = hik Rottint1;)
- Z 2hy Rijjk + hjiRikik + hit Riji) — nH Z hithij + Shij.
k1 1
Since MfJrl is locally symmetric, from (2.2) we have Rn+1ijk;k =0and Rn+1kik;j =0.

Choose a local frame of orthonormal vector fields {e;} such that, at an arbitrary point
of M,

hijz)\iaij- (2.11D)
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Then
‘AS-'E:huk+§:huAhU
i,j,k i,j
= Z hle + Z hij(nH);j — ( Z Ryt 1knt1k — Z ”th/Rn+l/n+lz)
i,j,k i,j i
- 2:34mﬂMRWk+MﬂmRmﬁ —nH Y A+ 5% (2.12)
ik -

By (2.9) and (2.12),

1
OmH) = }:mﬂ nﬂVHF—Emn—nAR
i,j.k

< Z Rn+1kn+lk - Z thl] Rn+ljn+]z>

i,j

- Z 2(hijhii Riijk + hijhii Rikjx) — nH Z )»3 + 82 (2.13)
i,j.k,1l J

The following result, due to Okumura [12] and Alencar and do Carmo [2], will be
very important for our purposes.

LEMMA 2.1 ([2, 12]). Let u1, ua, - . ., iy be real numbers such that ), p; =0 and
> ,ulz = B2, where B is a nonnegative constant. Then

2 3
NmM—lﬂ—Zh”—mm—nﬁ

with equality if and only if (n — 1) of the numbers p; are equal to B//n(n — 1) or
(n — 1) of the numbers ; are equal to —f/~/n(n — 1).

3. Proof of Theorem 1.1
Let |®|? be a nonnegative C function defined by
|®|> =S —nH?; (3.1

then M is totally umbilical if and only if |®|> =0
By (2.11) and condition (*),

< Z Rn+lkn+1k - Z thlj Rn+1]n+11)

i.j
—(S > Rupiknsic— Y nHXkRn+1kn+1k>
k k

- C1
== 2 (S = nHA)Rusiinyie = ) (S —nHi)—=ci|®f  (3.2)
k k
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and

- Z (hijhia Riiji + hijhii Rije) = — Z()»jkkﬁkjjk - )»/%Rkjjk)

i,j.kl Tk
== Z (Ajhe — )‘%)Rkjjk > ney(S — nHz)
J.k
= ncy| @ (3.3)

Since Y ,(H —%;)=0 and Y ;(H —1)>=S—nH?=|®|%, it follows from

Lemma 2.1 that
‘ S H =) = ——

2
<
nn—1)

Hence

—nH Y 1) = -3nH>S+20*H* + nH Y (H — 3;)
i i

)
> —3nH2(|® + nH) + 202 H* — n|H|———— | &
nn—1)
)
= 3nH?|®P — n2H* — n|H|——= |0, (3.4)
nin—1)
From (2.13) and (3.1)—(3.4), we obtain
1
2 2 2
OmH) > Zhijk —n?|VHI? = Sn(n = DAR
i,j.k
)
n |CI>|2{nc—nH2 =D e+ |q>|2}, (3.5)
nin—1)

where ¢ = 2¢> + ¢y /n.
In order to prove our theorems, we introduce an important operator

L=0+ («/2n)A.
We can now establish the following propositions.

PROPOSITION 3.1. Let M be an n-dimensional space-like hypersurface with
nonnegative mean curvature in a locally symmetric Lorentz space that satisfies
condition (*). If nn — 1)R=xH(k >0) and ¢ >0, then L =0+ (k/2n)A is
ellipticand R > 0, H > 0.

PROOF. Since the mean curvature of M is nonnegative, we have the scalar curvature
n(n — 1)R > 0. Choose a local frame of orthonormal vector fields {e;} such that, at an
arbitrary point of M, (2.11) holds. Then

n(n—DR =) Rijji —n*H>+) 13, (3.6)

2% J
Do g =kH =Y Riyji +n*H.
J i,j
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Therefore, R > 0. In fact, if there exists a point x such that R =0, then H = 0 at this
point; however, from (1.1) and (3.6),

ozzmm +Zx§ >nn— Dea
1] J

at this point, which is impossible since we have assumed ¢, > 0. Thus, we obtain
R>0and H > 0.

By (3.6) and (1.1), for any i,

K IZJ' )\i_nzHZ"‘Zinijji
H-—)i+—)= Aj—Ai+ = :
(n l+2n> Z ! l+2 nH

r 2
1 1
> (Z Aj) — ZAJ- -5 Zx,,\j +5n(n = 1)c2i|(nH)_1
- J I#j
[ 1 1
2 —1
_ Z,\j +5 Z,\,Aj — Z/\j +5n(n = 1)62](nH)
- I#] J
[ 1 1
2 -1
= Z)»j + 5 Z AAj + En(n — 1)62](71H)
- J# I#j
1,j#i
1 5 2 1
— E[ZM + (ZA,) +n(n — 1)c2](nH)_ > 0.
J#i J#i
Thus L is an elliptic operator. This completes the proof of Proposition 3.1. O

PROPOSITION 3.2. Let M be an n-dimensional space-like hypersurface in a locally
symmetric Lorentz space that satisfies condition (*). If n(n — 1)R =k H(x > 0) and
c2 > 0, then Zi’j,k hizjk >n?|VH|>.

PROOF. We choose an orthonormal frame field as in the proof of Proposition 3.1; then
we have =3, hl.zj #0. In fact, if S=3"; A =0 at a point x of M, then 1; =0
(fori =1,2,...,n) at this point. Therefore H =0 and R =0 at this point. But,
from (3.6) and (1.1), we have 0 = Zi’j Iémi > n(n — 1)cp, which is impossible since
we have assumed ¢; > 0.

Since Rapcp. g =0, from (2.4) and n(n — 1)R = « H it follows that

KViH = =202 HV;H +2 " hyjhji,
J.k

2 2
(g+n2H> |VH|2=Z (thjhkji) Szh?j Zhizjk=szhi2jk
Jik ij

i i,j,k i,j.k
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and
K 2 1
S hi—n*|\VHI> = | 5 +n*H ) —n®S||VH><
Lt L 2 S
i,j.k
K>, 252 21
=|—+n*(kH+n"H* = S)|I[VH|" <
4 S
K2 9 _ 51
=7 +n ;Rijji IVHI"5
K2 3 51
> (7 +n’(n — l)cz)IVHl 520
This completes the proof of Proposition 3.2. U

PROOF OF THEOREM 1.1. From (3.5) and Proposition 3.2,
L(nH) =00H) + (k/2n)A(nH)
1
=00mH) + En(n — 1)AR

> |d>|2{nc—nH2— Mn|1L1||oI>|+|<I>|2} = O P nc(1®]) (3.7)
Jnn—1) o
where
n—2
Prnc(|®) =ne —nH? — ¥n|H||<I>| + @
nn—1)

The discriminant of Py, (|®]) is (n/(n — 1))(n*H? — 4(n — 1)c).

(1) If H> < 4(n — 1)c/n® on M, then Py (|g|) > 0 on M and the right-hand side
of (3.7) is nonnegative. Since the operator L is elliptic and H attains its maximum
on M, from (3.7) we know that H is constant on M. From (3.7) again, we get that
|®|? Prp.c(|®]) =0, s0 |®]> =0 and M is totally umbilical.

(2) If H? = 4(n — De/n® on M, then Py (D) = (1] — (n — 2)/c//m)? = 0
on M. Similarly to the proof of (1), from (3.7) we deduce that H is constant on
M and |CI>|2PH,,1,C(|CI>|) =0. Hence, either |®|>=0 and M is totally umbilical, or
PH,n,c(|cD|) =0.

If Pypo(|®)) =0, then |®|=(n—2)/c/s/n. By (3.7), equality holds in
Lemma 2.1. Therefore we know that (n — 1) of the numbers H — A; are either equal to

® a2
\/n(n—l)_n«/n—l

or equal to the negative of the above expression. This implies that M has (n — 1)
principal curvatures which are equal and constant. As H is constant, the remaining

Ve
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principal curvature is constant as well; so M is an isoparametric hypersurface with
two distinct principal curvatures, one of which is simple.

Q) IfH?> 4(n — l)c/n2 on M, we consider two cases (a) and (b).

(a) If H? < ¢, then Py . (|®]) has two real roots Blg’n’c and B;’n’c, given by

B, .= 4(’1”—_1)[(;1 — ) H +/n2H? —4(n — 1)c].

Clearly, we have B;’mc >0, Bywe> 0 and By < B;’n’c. Since we are supposing
that S <nH?+ (By, )? or S>=nH?+ (B}, )* on M, which means that |®|
< B;I’n’c or |[®| > B;;’n’c on M, we know that Py, (|®]) >0 on M. Because L
is elliptic and H attains its maximum on M, we know that H is constant on M
from (3.7). Thus we obtain that |®|? Py, .(|®]) =0 so that |®|> =0 and M is
totally umbilical, or that Py , (|®|) =0. If Py, (|P]) =0, then |®| = By o1
|P| = BZ’H’C on M. If |®| = B;{’n’c(> 0), then by (3.7) equality holds in Lemma 2.1.
By making use of the same assertion as in the proof of (2) above, we infer that M is
an isoparametric hypersurface with two distinct principal curvatures, one of which is
simple. If |®| = B;;’ " (> 0), we also have that M is an isoparametric hypersurface
with two distinct principal curvatures, one of which is simple.

(b) If H? > ¢, then B;;’n’c > (0 and BI;,n,c < 0. By making use of the same assertion
as in the proof of case (a) above, we get that |<I>|2PH,,,,C(|Q>|) =0 so that |®|2 = 0 and
M is totally umbilical, or that Py , (|®|) =0. If Py ».(|®|) =0, then |®| = B;I,n,c
or |®| = B;{Ln,c on M. If |®| = By (= 0), then |®| = 0 and M is totally umbilical.
If|®| = B;7n7c(> 0), then by (3.7) equality holds in Lemma 2.1. As in the proof of
(2), we also have that M is an isoparametric hypersurface with two distinct principal
curvatures, one of which is simple. This completes the proof of Theorem 1.1. O
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