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Abstract
Given n convex bodies in the Euclidean space Rd, we can find their volume polynomial which is a homo-
geneous polynomial of degree d in n variables. We consider the set of homogeneous polynomials of degree
d in n variables that can be represented as the volume polynomial of any such given convex bodies. This
set is a subset of the set of Lorentzian polynomials. Using our knowledge of operations that preserve the
Lorentzian property, we give a complete classification of the cases for (n, d) when the two sets are equal.
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Introduction
For n convex bodies K = (K1, . . . ,Kn) in Rd and non-negative x1, . . . , xn ∈R their linear
combination, also called the Minkowski sum, is defined as the set

x1K1 + . . . + xnKn:=
{
x1k1 + . . . + xnkn ∈Rd | k1 ∈K1, . . . , kn ∈Kn

}
.

This is again a convex body andMinkowski [16] proved that the volume of this linear combination
is a homogeneous polynomial

vol(x1K1 + . . . + xnKn)=
∑
α∈�d

n

d!
α!Vα(K)xα

of degree d, where the coefficients Vα(K) for α ∈ �d
n are called the mixed volumes of K. The

volume here refers to the restriction of the Hausdorff measure on Rd to the set of convex bodies
in Rd. We specifically note that the Hausdorff measure coincides with the Lebesgue measure for
Borel subsets of Rd and thus, for convex bodies [17, Kor. 2.8].

This leads us to the problem whether a given homogeneous polynomial in n variables of degree
d and with non-negative coefficients can be represented as the volume polynomial of n convex
bodies in the Euclidean space Rd. Over the years, there have been several advances in relation to
answering this question. Most famously, Alexandrov and Fenchel independently from each other
noticed that the coefficients satisfy the Alexandrov-Fenchel inequality

Vα(K)2 ≥Vα−ei+ej(K)Vα−ej+ei(K)

for every α ∈ �d
n with αi, αj > 0 (see [1, 10]). This inequality started a whole line of further inequal-

ities that could be deduced using the Alexandrov-Fenchel inequality and that the coefficients of
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2 Amelie Menges

volume polynomials satisfy. These are sometimes loosely referred to as the known inequalities.
In 1938, Heine [13] managed to show that these inequalities describe the set of volume polyno-
mials completely in the case (n, d)= (3, 2). He further proved that they are not enough to classify
the set of volume polynomials in the case (n, d)= (4, 2). This was generalised by Shephard [19]
who constructed an example of a homogeneous polynomial in d + 2 many variables for degree d
whose coefficients satisfy all known inequalities but which cannot be represented as the volume
polynomial of any d + 2 many convex bodies. Further, he proved that the known inequalities fully
describe the set of volume polynomials in two variables of any degree.

Generalising the known inequalities, Gurvits [11] introduced the set of strongly log-concave
polynomials and showed that it contains the set of volume polynomials. Furthermore, he conjec-
tured that the sets are equal in the case of three variables. This was disproved by Brändén and Huh
(see [7, 14]) who used the reverse Khovanskii-Teissier inequality [15, Theorem 5.7]

(
d
i

)
V(d−i)e1+ie2 (K)Vie1+(d−i)e3 (K)≥Vde1 (K)Vie2+(d−i)e3 (K)

to construct an example of a strongly log-concave polynomial that cannot be a volume polynomial.
They also introduced the set of Lorentzian polynomials which equals the set of strongly log-
concave polynomials in the homogeneous case (see [7, Theorem 2.30]). Almost simultaneously,
Anari, Liu, Oveis Gharan, and Vinzant (see [2–5]) introduced completely log-concave polynomi-
als which also equal Lorentzian ones for homogeneous polynomials as was proven by Brändén
and Huh (see [7, Theorem 2.30]).

Working with Lorentzian polynomials and particularly operations that preserve the Lorentzian
property, Brändén and Huh answered a question of Gurvits and proved that the product of two
Lorentzian polynomials is again Lorentzian (see [7, Corollary 2.32]). This statement was also
proven by Anari, Oveis Gharan, and Vinzant independently from Brändén and Huh (see [5,
Proposition 2.2]). On the other hand, polynomial factors of Lorentzian polynomials generally
do not have to be Lorentzian. But as there are certain cases when we can deduce that the fac-
tors are Lorentzian polynomials, we can ask if the same is true for volume polynomials. Using
our results for this problem, we can generalise the polynomials constructed by Shephard [19] and
Brändén and Huh [7, 14] which are examples for Lorentzian polynomials that cannot be vol-
ume polynomials. Thus we can fully classify the cases in which the set of volume polynomials
equals the set of Lorentzian polynomials. Particularly, this fully settles the question, whether the
Alexandrov-Fenchel inequality including its corollarys are enough to classify mixed volumes.

Our main findings can be summarised as follows.

1. If a Lorentzian polynomial can be factorised into polynomials with disjoint sets of
variables, these factors are again Lorentzian. (Theorem 2.1)

2. If a volume polynomial can be factorised into polynomials with disjoint sets of variables,
these factors are again volume polynomials. (Theorem 2.5)

3. If a Lorentzian polynomial can be written in the form g = xd1 f with degx1 (f )= 1, the factors
are Lorentzian. (Theorem 2.2)

4. If a volume polynomial can be written in the form g = xd1 f with degx1 (f )= 1, the factors
are volume polynomials. (Theorem 2.6)

5. The set of volume polynomials equals the set of Lorentzian polynomials if and only if n≤ 2,
d = 1 or (n, d)= (3, 2). (Theorem 3.2)

The paper is structured as follows. Section 1 is devoted to preliminaries; we recall basic defini-
tions and properties of Lorentzian polynomials as well as volume polynomials. Section 2 focuses
on the factors of Lorentzian (resp. volume) polynomials and the question whether they are again
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Lorentzian (resp. volume) polynomials. Finally, in Section 3 we use our prior findings to fully
classify when the set of volume polynomials equals the set of Lorentzian polynomials and proof
our main Theorem 3.2 that the sets Vd

n and Ldn coincide if and only if n= 2 or (d, n)= (2, 3) for
d, n≥ 2.

1. Preliminaries
The paper is set inRd with the standard Euclidean topology. Particularly, we denote the Euclidean
norm of a vector v ∈Rd by

‖v‖:= √
v · v,

where ·:Rd ×Rd →R denotes the dot product in Rd. By a convex body K in the Euclidean space
Rd, we refer to a non-empty compact convex set. Particularly, the convex bodies we consider do
not need to have non-empty interior and thus can be less than full-dimensional. When we talk
about the dimension of a convex body, we refer to the dimension of the smallest affine space
containing the convex body.

We fix some notation and terminology concerning convex bodies and their volume polynomi-
als. As a general reference, we suggest the monograph of Schneider [18, Chapter 1]. Let n and d be
positive integers. We write [n]:= {1, . . . , n} and

�d
n:= {α ∈Nn

0 |
n∑

i=1
αi = d}

for the d-th discrete simplex. The space of homogeneous polynomials of degree d in n variables
over R is denoted by Hd

n . For a polynomial f ∈Hd
n , we denote its degree in the variable xi by

degi (f ).
Let K:= (K1, . . . ,Kn) be convex bodies in Rd. Their volume polynomial is the homogeneous

polynomial

volK(x):= vol(x1K1 + · · · + xnKn):=
∑

α∈�d
n

d!
α!Vα(K)xα

for non-negative x1, . . . , xn and x:= (x1, . . . , xn) and we callVα(K) for α ∈ �d
n themixed volumes

of K. For a multi-index α ∈ �d
n we write

α!:= α1! · . . . · αn! and xα := xα1
1 · . . . · xαn

n .

We generally assume K to be full-dimensional, meaning that the affine dimension of the convex
body

∑
K:=

n∑
i=1

Ki

equals d. This guarantees that the volume polynomial is non-zero. We further use the notation

Vα(K)=V(Kα)=V(Kα1
1 , . . . ,Kαn

n )

to refer to the mixed volume of the convex bodies K = (K1, . . . ,Kn). The set of all volume
polynomials is denoted by Vd

n .
The mixed volumes satisfy several useful properties of which we will only list a few here. For a

more thorough understanding, we refer to the monograph of Schneider [18, Chapter 5].
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Proposition 1.1.
(a) The mixed volumes are non-negative, symmetric in the convex bodies and they satisfy

V(aK1 + bK̃1,K2, . . . ,Kd)= aV(K1, . . . ,Kd)+ bV(K̃1,K2, . . . ,Kd)

for non-negative a, b ∈R≥0 and convex bodies K1, . . . ,Kd, K̃1 ⊆Rd (see Schneider [18,
Chapter 5.1]).

(b) For a1, . . . , an ∈Rd and a regular matrix A ∈Rd×d, we have

vol(x1Ta1,A(K1)+ . . . + xnTan,A(Kn))= | det (A)|vol(x1K1 + . . . + xnKn),

whereat Tai,A denotes the affine transformation Rd →Rd, x 
→Ax+ ai (see Shephard [19,
p. 126]).

(c) For convex bodies K1, . . . ,Kd in Rd the mixed volume V(K1, . . . ,Kd) is positive if and only
if there exist line segments Li ⊆Ki with linearly independent directions for all i ∈ [d] (see
Schneider [18, Theorem 5.1.8]).

(d) For i ∈ [n], the volume polynomial and mixed volumes carry the information degi (volK)=
dim (Ki) and vol(Ki)=Vdei(K) (see Gurvits [12, Fact A.7]).

Due to part (b) of the above Proposition 1.1, we may always assume that the considered con-
vex bodies contain the origin, which often times simplifies our settings and calculation. For a
k-dimensional linear subspace E⊂Rd, we denote by volE (resp. VE) the volume (resp. the mixed
volume) in the space E. We omit the subspace in the notation if it can be deduced from the con-
text. By K|E, we denote the orthogonal projection of a convex body K ⊂Rd onto the space E. If
some of the convex bodies we are considering lie in a common linear subspace, we can use this to
represent the mixed volume in Rd as a product of the mixed volumes in the smaller subspace and
its orthogonal complement.

Proposition 1.2. [18, Theorem 5.3.1] Let E be a k-dimensional linear subspace of Rd and let
L1, . . . , Lk ⊂ E as well as K1, . . . ,Kd−k ⊂Rd be convex bodies. We have

(
d
k

)
V(L1, . . . , Lk,K1, . . . ,Kd−k)=VE(L1, . . . , Lk)VE⊥(K1|E⊥, . . . ,Kd−k|E⊥),

where E⊥ refers to the orthogonal space of E.

The mixed volumes satisfy several useful inequalities, the most famous being the Alexandrov–
Fenchel inequality (see [1, 10])

V(K1, . . . ,Kn)2 ≥V(K2
1 ,K3, . . . ,Kn)V(K2

2 ,K3, . . . ,Kn).

A generalisation of polynomials with coefficients satisfying this inequality leads us to the set of
Lorentzian polynomials.

Definition 1.3. (see [7])A subset J ⊆Nn is calledM-convex if for any α, β ∈ J and any index i ∈ [n]
with αi > βi, there exists an index j ∈ J with αj < βj and α − ei + ej, β − ej + ei ∈ J. We denote by
Md

n the set of all polynomials in Hd
n with non-negative coefficients andM-convex support.We further

define the set of Lorentzian polynomials as L1n:=M1
n and for d ≥ 2 as

Ldn:= {f ∈Md
n | for all α ∈ �d−2

n :H∂α f has at most one positive eigenvalue},
whereHf refers to the Hessian of a polynomial f ∈Hd

n.
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The conditions for the Hessian matrices lead to the fact that the coefficients of Lorentzian
polynomials always satisfy the Alexandrov-Fenchel inequality. In fact, we have the inclusion Vd

n
⊆ Ldn.

Theorem 1.4. [7, Theorem 4.1] Every volume polynomial is Lorentzian.

As Lorentzian polynomials have been thoroughly studied, especially concerning operations
that preserve their properties, we will focus on some basic notions here and refer the reader to
the work of Brändén and Huh [7] for a broader understanding.

Proposition 1.5.

(a) The product of Lorentzian polynomials is Lorentzian (see [7, Corollary 2.32]).
(b) Let A ∈Rn×m

≥0 be a (n×m)-matrix with non-negative entries. For a Lorentzian polynomial
f ∈ Ldn and x:= (x1, . . . , xm)
, we have f (Ax) ∈ Ldm (see [7, Theorem 2.10]).

Both of these properties can be transferred to volume polynomials. To do so in the case of prod-
ucts of volume polynomials, it is enough to first consider two polynomials in distinct variables in
Vd1
n1 (resp. inV

d2
n2 ) and then embed the associated convex bodies inRd1 (resp.Rd2 ) in the Euclidean

space Rd1+d2 . The volume polynomial of the resulting convex bodies is exactly the product of the
two polynomials. The general case follows immediately from an appropriate substitution of the
variables.

Remark 1.6.

(a) The product of volume polynomials is a volume polynomial.
(b) Let A ∈Rn×m

≥0 be a (n×m)-matrix with non-negative entries. For a volume polynomial
f ∈Vd

n and x:= (x1, . . . , xm)
, we have f (Ax) ∈Vd
m (see [11, Example 1.2]).

Generally, the set of Lorentzian polynomials allows more operations that preserve it than
the set of volume polynomials. One such operation is the derivative: Whereas the definition of
Lorentzian polynomials immediately shows that the derivative of any polynomial f ∈ Ldn is again
Lorentzian, the same is not true for volume polynomials. This can be seen by considering the
Lorentzian polynomial

f := 1
2
x21x2 + 1

2
x21x3 + 1

2
x21x4 + 2x1x2x3 + 2x1x2x4 + 1

2
x1x3x4 + x2x3x4 ∈ L34,

which is the volume polynomial of the four convex bodies
K1:= conv(0, e1, e2), K2:= conv(0, e3),

K3:= conv(0, 2e1 + e3) and K4:= conv

⎛
⎜⎜⎜⎜⎝0,

⎛
⎜⎜⎜⎜⎝

3
2
1
2
1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

in R3. The derivative

∂1f = x1x2 + x1x3 + x1x4 + 2x2x3 + 2x2x4 + 1
2
x3x4

on the other hand cannot be a volume polynomial due to the findings of Heine (see [13, p. 119]).
In Section 3, we will go into more depth as to why the polynomial ∂1f cannot be represented as
the volume polynomial of any four convex bodies in R2.
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The derivative is just one example of such an operation. Another one is provided by the next
Proposition 1.7.

Proposition 1.7. [8, Lemma 4.4] Let f ∈ Ldn be a Lorentzian polynomial and let us write

f (x1, . . . , xn)=
d∑

i=0
xd−i
n fi(x1, . . . , xn−1).

Then fi is a Lorentzian polynomial of degree i for every i ∈ [d].

In contrast to Proposition 1.5 and Remark 1.6, an easy example shows that Proposition 1.7 is
not necessarily true for volume polynomials. Let us consider the polynomial

f := x35 + x25(x1 + x2 + x3 + 3
2x4)+ x5(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

+ x1x2x3 + 1
2x1x2x4 + 1

2x1x3x4 + 1
2x2x3x4,

which is the volume polynomial of the convex bodies

K1:= conv(0, e1),
K2:= conv(0, e2),
K3:= conv(0, e3),

K4:= conv(0,
1
2
(e1 + e2 + e3)),

and the unit cube

K5:= conv(0, e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3).

Just as above, according to Heine (see [13, p. 119]), the elementary symmetric polynomial in four
variables of degree two, and thus f2, cannot be represented as a volume polynomial.

2. Operations
We have noted that the product of Lorentzian (resp. volume) polynomials is again a Lorentzian
(resp. volume) polynomial. Generally, the factors of Lorentzian or volume polynomials do not
have to be either. For example, the polynomial

f := x3 + 3x2y+ 3xy2 = x(x2 + 3xy+ 3y2)

is Lorentzian as the Hessian matrices of ∂xf and ∂yf have exactly one positive eigenvalue. Because
of the fact that f is bivariate, it is due to Shephard [19, Theorem 4] that f is a volume polynomial.
On the other hand, the factor x2 + 3xy+ 3y2 is not Lorentzian due to its Hessian matrix having
two positive eigenvalues and thus, it cannot be a volume polynomial (Theorem 1.4).

Nevertheless, there are certain cases where the factors of Lorentzian (resp. volume) polynomials
are Lorentzian (resp. volume) polynomials.

Theorem 2.1. Let f := gh ∈ Ld1+d2
n1+n2 be a Lorentzian polynomial with factors g ∈Hd1

n1 and h ∈Hd2
n2

with non-negative coefficients and in distinct variables x1, . . . , xn1 and y1, . . . , yn2 . Then both
factors are again Lorentzian.
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Proof . Let f := gh ∈ Ld1+d2
n1+n2 be a Lorentzian polynomial with g and h having distinct variables.

We define the (n1 + n2)× (n2 + 1)-matrix

A:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
|g|1 0 . . . . . . 0
...

...
. . .

. . .
...

1
|g|1 0 . . . . . . 0

0 1 0 . . . 0
... 0

. . .
. . .

...

...
...

. . . 1 0

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where |g|1 defines the sum of the (non-negative) coefficients of g. Taking this matrix we know that
the polynomial

f

⎛
⎜⎜⎜⎜⎜⎜⎝
A

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y1
...

yn2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

= xd1h

is Lorentzian by Proposition 1.5. Essentially, we plug in the variable x for any of the n1 variables
that appear in the polynomial g, while simultaneously scaling the polynomial. Now, as the deriva-
tive of any Lorentzian polynomial is again Lorentzian, the polynomial h, which equals exactly the
derivative

∂d1x xd1h= d1!h
of the above polynomial up to scaling, is a Lorentzian polynomial and analogously, the same is
true for g. �

The next proposition shows that we can skip the restriction of distinct variables if we restrict
the degree of the (only) common variable of the two factors.

Theorem 2.2. Let f := xd11 g ∈ Ld1+d2
n be a Lorentzian polynomial with a polynomial g ∈Hd2

n such
that deg1 (g)≤ 1. Then the polynomial g is also Lorentzian.

Proof . As the derivative of any Lorentzian polynomial is again Lorentzian, we can gather that the
polynomial

∂
d1
1 f = d1!(1+ d1x1∂1)g = d1!g((1+ d1)x1, x2, . . . , xn)

is a Lorentzian polynomial. Proposition 1.5 then allows us to conclude g ∈ Ld2n by scaling the
variable x1. �

Using the same technique of transforming the variables as in the proof of Proposition 2.1, we
can deduce the following corollary.

Corollary 2.3. Let f := gh ∈ Ld1+d2
n1+n2−1 be a Lorentzian polynomial, such that g ∈Hd1

n1 and h ∈Hd2
n2

share (exactly) one variable x1 and the polynomial h has at most degree 1 in x1. Then h is Lorentzian.
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Proof . Let the polynomial g be in the variables x1, . . . , xn1 and h be in the variables x1, y2, . . . , yn2 .
We set x1 = . . . = xn1 in f and scale the resulting polynomial by 1

|g|1 which preserves the
Lorentzian property by Proposition 1.5. The resulting polynomial is of the form

xd11 h

with deg1 (h)≤ 1. Thus, it satisfies the conditions of Proposition 2.2 and h is Lorentzian. �
Remark 2.4. Originally, we looked at the special case of multiaffine factors and proved that for
a Lorentzian polynomial f := gh ∈ Ld1+d2

n1+n2−1 with multiaffine factorsg ∈Hd1
n1 and h ∈Hd2

n2 sharing
one variable, both factors are again Lorentzian. Motivated by this, it was possible to generalise the
techniques we used and thus, come to the proof of Proposition 2.2 and Corollary 2.3.

In order to conclude similar results for volume polynomials, we need to use different tech-
niques as the derivative of a volume polynomial is generally not a volume polynomial anymore,
which renders most of the previously used techniques useless for volume polynomials. Instead,
we can use the geometric aspects of the given convex bodies to transfer the results to volume
polynomials.

Theorem 2.5. Let f := gh ∈Vd1+d2
n1+n2 be a volume polynomial with factors g ∈Hd1

n1 and h ∈Hd2
n2 with

non-negative coefficients and in distinct variables x1, . . . , xn1 and y1, . . . , yn2 . Then both factors are
again volume polynomials.

Proof . We proceed similar to the the case of Lorentzian polynomials and first assume that
f := xd1n+1g ∈Vd1+d2

n+1 is a volume polynomial with g ∈Hd2
n being a polynomial in the variables

x1, . . . , xn. Let K:= (K1, . . . ,Kn+1) be the convex bodies in Rd1+d2 associated to the correspond-
ing variables x1, . . . , xn+1. As we have degn+1 (f )= d1, the convex body Kn+1 must lie in a
d1-dimensional linear subspace E⊆Rd1+d2 due to Proposition 1.1(d). Due to the factorisation
of f , it must be

V(Kα1
1 , . . . ,Kαn

n ,Kd1−1
n+1 )= 0

for all α ∈ �
d2+1
n . With Proposition 1.1(c) this allows us to assume K1, . . . ,Kn ⊆ E⊥ as it means,

that we cannot expand any system of d1 − 1 linearly independent vectors from E with d2 + 1
linearly independent vectors coming from line segments in K1, . . . ,Kn to get a basis of Rd1+d2 .
Now we take α ∈ �

d2
n and we have

V(α,d1)(K)=
(
d1 + d2

d1

)−1
V(Kd1

n+1)V(K
α1
1 , . . . ,Kαn

n )

= d1!d2!
(d1 + d2)!V(K

d1
n+1)V(K

α1
1 , . . . ,Kαn

n )

by Proposition 1.2. For the volume polynomial f , this leads to

f =
∑

α∈�
d2
n

(d1 + d2)!
α!d1! V(α,d1)(K)xαxd1n+1

= xd1n+1
∑

α∈�
d2
n

d2!
α! vold1 (Kn+1)V(Kα1

1 , . . . ,Kαn
n )xα

= xd1n+1vold1 (Kn+1)vol(x1K1 + · · · + xnKn),
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where vold1 refers to the d1-dimensional volume in the subspace E ofRd1+d2 . Hence, g is a volume
polynomial.

For the general case, we use a transformation of the variables as before and obtain the
result. �
Theorem 2.6. Let f := xd11 g ∈Vd1+d2

n be a volume polynomial with a polynomial g ∈Hd2
n such that

deg1 (g)≤ 1. Then the polynomial g is also a volume polynomial.

Proof . Let f be the volume polynomial of the convex bodies K:= (K1, . . . ,Kn) in Rd1+d2 , so that
we have

f =
∑

α∈�
d1+d2
n

(d1 + d2)!
α! Vα(K)xα

=
∑

α∈�
d1+d2
n

α1=d1

(d1 + d2)!
α! Vα(K)xα +

∑
α∈�

d1+d2
n

α1=d1+1

(d1 + d2)!
α! Vα(K)xα

=xd11

⎛
⎜⎜⎜⎝

∑
α∈�

d2
n

α1=0

(d1 + d2)!
(α + d1e1)!Vα+d1e1 (K)xα +

∑
α∈�

d2
n

α1=1

(d1 + d2)!
(α + d1e1)!Vα+d1e1 (K)xα

⎞
⎟⎟⎟⎠

If we have deg1 (g)= 0, the statement follows immediately from Proposition 2.6. Thus, we only
consider the case that deg1 (g)= 1. With Proposition 1.1(d), we gather dim (K1)= d1 + 1 and due
to Proposition 1.1(c), we can assume K2, . . . ,Kn ⊆V for a d2-dimensional linear subspace V ⊆
Rd1+d2 . We denote by U1 the (d1 + 1)-dimensional linear subspace containing K1 and get U1 ∩
V =Rv for a vector v ∈Rd1+d2 . We can now write U1 =U +Rv for a d1-dimensional subspace
U ⊆Rd1+d2 and by a change of basis and Proposition 1.1(b), we assume U =V⊥ without loss of
generality, particularly v ∈U⊥. We write C1:=K1|U and chose the length of v such that we get

vold1+1(K1)= vold1+1(C1 + conv(0, v))= ‖v‖vold1 (C1).

For an α ∈ �
d2
n with α1 = 0, we have α + d1e1 ∈ �

d1+d2
n and with Proposition 1.2, we can rewrite

the mixed volume
(d1 + d2)!
d1!α! V(Kd1

1 ,Kα2
2 , . . . ,Kαn

n )= d2!
α! VU(C1)VV (Kα2

2 , . . . ,Kαn
n ).

On the other hand, for an α ∈ �
d2
n with α1 = 1, we get with Proposition 1.2

(d1 + d2)!
(d1 + 1)!α̂!V(K

d1+1
1 ,Kα2

2 , . . . ,Kαn
n )

= (d2 − 1)!
α̂! vold1+1(K1)VU⊥

1

(
(K2 |U⊥

1 )
α2 , . . . , (Kn |U⊥

1 )
αn

)
,

where α̂ refers to (α2, . . . , αn). Our choice of v allows us to further rewrite the above mixed
volume, so that we gather

(d2 − 1)!
α̂! vold1+1(K1)VU⊥

1

(
(K2 |U⊥

1 )
α2 , . . . , (Kn |U⊥

1 )
αn

)

= (d2 − 1)!
α̂! vold1+1(C1 + conv(0, v))VU⊥

1

(
(K2 |U⊥

1 )
α2 , . . . , (Kn |U⊥

1 )
αn

)

= (d1 + d2)!
(d1 + 1)!α̂!V((C1 + conv(0, v))d1+1,Kα2

2 , . . . ,Kαn
n ).
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By multilinearity in the first argument due to Proposition 1.1(a), we can split the convex body
C1 + conv(0, v), which allows us to then use Proposition 1.1(c) and finally Proposition 1.2 to
conclude

(d1 + d2)!
(d1 + 1)!α̂!V((C1 + conv(0, v))d1+1,Kα2

2 , . . . ,Kαn
n )

= (d1 + d2)!
(d1 + 1)!α̂!

d1+1∑
i=0

(
d1 + 1

i

)
V(Cd1+1−i

1 , conv(0, v)i,Kα2
2 , . . . ,Kαn

n )

=d2!
α̂!

(
d1 + d2

d1

)
V(Cd1

1 , conv(0, v),Kα2
2 , . . . ,Kαn

n )

=d2!
α! VU(C1)VV (conv(0, v),Kα2

2 , . . . ,Kαn
n ).

Inserting both cases into our polynomial f , we get

f = xd11 vold1 (C1)vold2 (x1conv(0, v)+ x2K2 + . . . + xnKn)

and thus, g is a volume polynomial. �
As in the case of Corollary 2.3 for Lorentzian polynomials, we can now deduce the following

Corollary by referring to Remark 1.6 and then using the above Proposition 2.6.

Corollary 2.7. Let f := gh ∈Vd1+d2
n1+n2−1 be a volume polynomial such that g ∈Hd1

n1 and h ∈Hd2
n2

only share one variable x1 and the polynomial h has at most degree 1 in x1. Then h is a volume
polynomial.

Remark 2.8. Similarly to the corresponding results for Lorentzian polynomials, Proposition 2.6
and Corollary 2.7 were also motivated by the special case of multiaffine factors. For volume poly-
nomials multiaffine polynomials allow an explicit description of the corresponding convex bodies
as they all have to be line segments due to Proposition 1.1(d). This allows a straight forward
approach for the proof of Proposition 2.6, as we can use the directions of the line segments to
define the different linear subspaces explicitly. Further, we know by Proposition 1.1(c), that the
directions of the considered line segments are linearly independent if and only if the mixed vol-
umes are positive, so that respective directions form a basis of the appropriate linear subspace. The
generalisation of this technique can be seen above, where we do not rely on an explicit description
of the different subspaces.

The above results illustrate how we can use our knowledge of Lorentzian polynomials to obtain
new information on volume polynomials as we have first studied the factors of Lorentzian polyno-
mials and then transferred this knowledge to volume polynomials appropriately. But asmentioned
before, the vast majority of results and operations for Lorentzian polynomials are not transferable
to volume polynomials. Instead, we often need further restrictions or some adjusting of the results
to be able to transfer the operations preserving the Lorentzian property to volume polynomials.
We have seen one such example of a non-transferable result in Proposition 1.7. As we explicitly
do not require the convex bodies to have non-empty interior, we can transfer at least parts of
Proposition 1.7 to volume polynomials.

Proposition 2.9. Let f ∈Vd
n be the volume polynomial of n convex bodies K:= (K1, . . . ,Kn) in Rd

and let us write

f (x1, . . . , xn)=
d∑

i=0
xd−i
n fi(x1, . . . , xn−1).
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Then fd is a volume polynomial of degree d and fd−m for m:= dim (Kn) is a volume polynomial of
degree d −m.

Proof . We have fd = f (x1, . . . , xn−1, 0)= vol(x1K1 + . . . + xn−1Kn−1). Let U ⊆Rd be the m-
dimensional linear subspace with Kn ⊆U. We have

fd−m =
∑

α∈�d−m
n−1

d!
m!α!V(K

α ,Km
n )x

α

=
∑

α∈�d−m
n−1

(d −m)!
α! VU(Km

n )VU⊥((K|U⊥)α)xα

= volm(K1)vol(x1(K1|U⊥)+ . . . + xn−1(Kn−1|U⊥)). �

3. Volume polnomials as a subset of Lorentzian polynomials
TheAlexandrov-Fenchel inequality (see [1, 10]), being the first major restriction for sequences that
can be realised as a sequence of coefficients of a volume polynomial, started a long line of further
inequalities that can be deduced from it. The set of homogeneous polynomials with coefficients
satisfying these inequalities contains the set of Lorentzian polynomials ([11, Example 1.2(3)] and
[7, Proposition 4.4]) which allows us to solely focus on this smaller set as Brändén and Huh found
that every volume polynomial is Lorentzian [7, Theorem 4.1].

We denote by AFdn the set of homogeneous polynomials in n variables of degree d with
non-negative coefficients satisfying the Alexandrov-Fenchel inequality as well as the resulting
inequalities [19, p. 132]

V(Kα ,Kr−1
i ,Kj)V(Kα ,Ki,Kr−1

j )≥V(Kα ,Kr
i )V(K

α ,Kr
j )

for α ∈ �d−r
n and

(− 1)r det
((
V(Kβ ,Ki,Kj)

)
i,j∈[r]

)
≤ 0

for β ∈ �d−2
n and r ≤ n. Considering the polynomial

g:= c111x31 + 3c223x22x3 + 3c233x2x23
with c111, c223, c233 > 0 which lies in AF33 but not in L33, one sees that focusing on the set Ldn
instead of AFdn already reduces the number of polynomials due to the additional condition of the
M-convexity of the support of polynomials in Ldn. Thus going forward, we regard the set Vd

n as a
subset of Ldn instead of a subset of the bigger set AFdn .

Shephard proved [19, Theorem 4] that for any degree d ∈N, we have

Vd
2 = Ld2

and he further proved [19, Theorem 5] that for (d + 2)-many variables, the inclusion

Vd
d+2 � Ldd+2

is strict. This generalised a result of Heine [13, p. 119] for polynomials in four variables and of
degree two. To illustrate the idea behind the proof, we will mention Heine’s example here.

Example 3.1. [13, p. 119] The elementary symmetric polynomial in four variables of degree two

f := x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4
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is Lorentzian as can be seen straight forwardly by computing the Hessian matrix. If it were the
volume polynomial of convex bodies K1, . . . ,K4 ⊆R2, these would have to be line segments by
Remark 1.1. Without loss of generality, we assume Ki = conv(0, ei) for i= 1, 2 and K3 = conv(0, a),
K4 = conv(0, b) for a, b ∈R2. Computing the mixed volumes of these convex bodies leads to

1= ±ai = ±bi = ±(a1b2 − a2b1)

for i= 1, 2 and thus to a contradiction.

This example also illustrates why it is often useful to first refer to multiaffine polynomials as
they allow an easy computation of the mixed volumes, which would otherwise be more difficult
(see [6, 9]).

In the case of three variables, Heine [13, p. 118] proved

V2
3 = L23.

Later, Gurvits [11, Conjecture 5.1] conjectured that this might be true for all degrees. This was
disproved by Brändén and Huh ( [7, Footnote 15] and [14, Example 14]), who constructed the
Lorentzian polynomial

f := 14x31 + 6x21x2 + 24x21x3 + 12x1x2x3 + 6x1x23 + 3x2x23,

which cannot be a volume polynomial as the coefficients do not satisfy the reverse Khovanskii-
Teissier inequality [15, Theorem 5.7]. This inequality states that for three convex bodies K1,K2,K3
in Rd, the mixed volumes satisfy(

d
k

)
V(Kd−k

1 ,Kk
2)V(K

k
1 ,K

d−k
3 )≥V(Kd

1 )V(K
k
2 ,K

d−k
3 )

for all non-negative integers k≤ d.
To give some geometric motivation for the inequality, we assume that we have three con-

vex bodies K1,K2,K3 ⊆Rd with dim (K2)= k≤ d and dim (K3)= d − k. Let U ⊆Rd be the
k-dimensional linear subspace with K2 ⊆U. As the inequality is trivial when the right hand side
equals zero, we can assume K3 ⊆U⊥ due to Proposition 1.1(c). With this in mind, Proposition 1.2
leads us to (

d
k

)
V(Kk

2 ,K
d−k
3 )= volk(K2)vold−k(K3),(

d
k

)
V(Kd−k

1 ,Kk
2)= vold−k(K1|U⊥)volk(K2),(

d
k

)
V(Kk

1 ,K
d−k
3 )= volk(K1|U)vold−k(K3).

By approximating the volume of K1, we get

V(Kd
1 )≤ volk(K1|U)vold−k(K1|U⊥)

≤
(
d
k

)V(Kk
1 ,K

d−k
3 )V(Kd−k

1 ,Kk
2)

V(Kk
2 ,K

d−k
3 )

.

As was communicated by Ivan Soprunov, this shows that the above example of a polynomial in
L33 \V3

3 by Brändén and Huh cannot be a volume polynomial (without using Hodge theory, as in
their proof). In the general case, when the convex bodies K1,K2,K3 ⊆Rd have dimension greater
than k or d − k, one cannot use the above technique to see that the mixed volumes satisfy the
reverse Khovanskii–Teissier inequality.
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Using the above polynomials and our prior results, we are now in the position to prove our
main theorem and thus to fully classify when the inclusion Vd

n ⊆ Ldn is strict. First, the case n= 1
obviously leads to Vd

1 ⊆ Ld1 for all d ∈N. Second, the case d = 1 obviously leads to V1
n ⊆ L1n for all

n ∈N. The remaining cases are solved in the following.

Theorem 3.2. Let d, n≥ 2. The sets Vd
n and Ldn coincide if and only if n= 2 or (d, n)= (2, 3).

Proof . Shephard [19, Theorem 4] proved that the sets are equal for n= 2 and Heine [13, p. 118]
proved the same for (d, n)= (2, 3). We define the polynomial

fk:= xk2(14x
3
1 + 6x21x2 + 24x21x3 + 12x1x2x3 + 6x1x23 + 3x2x23)

for k ∈N0 which is a Lorentzian polynomial in L3+k
3 by Proposition 1.5 as it is the product of two

Lorentzian polynomials. By the results of Brändén and Huh ([7, Footnote 15] and [14, Example
14]), the second factor cannot be realised as a volume polynomial. By Proposition 2.6, the poly-
nomial fk cannot lie in V3+k

3 either. Hence, we have V3+k
3 � L3+k

3 for all k ∈N0. The polynomial

f := x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4
leads to the strict inclusion V2

4 � L24 (Shephard [19, Theorem 5] and Heine [13, p. 119]). Given n
withVd

n � Ldn, we can deduceVd
n+1 � Ldn+1 by taking a polynomial g ∈ Ldn \Vd

n . By Proposition 1.5,
the polynomial

g(x1, . . . , xn−1, xn + xn+1)

is a Lorentzian polynomial in Ldn+1. If the new polynomial was a volume polynomial, the same
would be true for g as setting xn+1 = 0 preserves volume polynomials due to Remark 1.6. �
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