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1. Introduction and main results. The Wielandt subgroup co(G) of a group G is
defined to be the intersection of all normalizers of subnormal subgroups of G; the terms
of the Wielandt series of G are defined, inductively, by putting a)0(G) = 1 and
(on+1(G)/a>n(G) = a)(G/(on(G)). If, for some integer n, con(G) = G, then G is said to
have finite Wielandt length; the Wielandt length of G being the minimal n such that
con(G) = G.

It may well happen that the Wielandt subgroup of a group G is trivial; for instance,
this is the case if G is the infinite dihedral group. On the other hand H. Wielandt showed
in [8] that in a finite group G the socle (that is the subgroup generated by all minimal
normal subgroups) is contained in co(G). Thus any finite group has finite Wielandt length.

The relation between the Wielandt length and the derived and Fitting length in a
finite soluble group was first investigated by A. Camina in [2]. Recently R. Bryce and J.
Cossey [1] improved on Camina's results by obtaining best possible bounds for both the
derived and the Fitting length of a finite soluble group in terms of its Wielandt length.

The aim of this paper is to extend these results to infinite groups. To do this we have
to restrict ourselves to the class of groups with finite Wielandt length. Extending the
notation of Bryce and Cossey [1], we denote by 2Bn the class of groups G such that
u>n(G) = G, and set SB = U SB,,. Then we show that the bounds found by R. Bryce and

neN

J. Cossey hold for all soluble groups in the class 2B. To be more precise, we denote by 21,
9? respectively, the class of abelian groups and the class of nilpotent groups, and if n e N,
by W and 31" the class of those groups admitting a normal series of length n, whose
factors are abelian or, respectively, nilpotent. Furthermore, we denote by 2l2 the class of
all (abelian) groups of exponent 2. Our main results are then the following.

THEOREM 1. Let G be a soluble group in 9B«; then G e3ln+i.

THEOREM 2. Let G be a soluble group in SBn.
(i) / / n = 0 (mod 3) then G e 215"'3.

(ii) Ifn = 1 (mod 3) then G e 2t5(«-i)/3+2.
(iii) Ifn = 2 (mod 3) then G e Sl5("-2)/3+3W2.

Our proof is modelled on Bryce and Cossey's approach to the finite case, and uses
Robinson's classification [4] of soluble T-groups (which are the same as the soluble
SBj-groups).

2. Proofs. If G is a group, we denote by F(G) the Fitting subgroup of G; that is
the subgroup generated by all normal nilpotent subgroups of G. If G is soluble, then
CG(F(G)) = Z(F(G)) (see [5; 5.4.4]).
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We recall that, if A is a group, a power automorphism of A is an automorphism
mapping every subgroup of A on itself. It is well known that Paut(>l), the set of all power
automorphisms of A, is an abelian normal subgroup of Aut(A); moreover if A is abelian,
Paut(v4) ^ Z(Aut(.A)) (see Cooper [3] for the relevant facts about power automorphisms).
We also recall that, according to a result of E. Schenkman [7], the intersection of all
normalizers of subgroups of a group G (sometimes called the "norm" of G) is contained
in Z2(G), the second centre of G. Now, in a nilpotent group, the Wielandt subgroup
coincides with the norm; thus a nilpotent group in 2Bn has nilpotency class at most 2n. We
have therefore the following

LEMMA 1. Let G be a group in SB,,, n eN. Then F(G) is nilpotent of class at most 2n.

Proof. This is because every finite subset of F(G) lies in a normal nilpotent subgroup
of G, which by the observation above, has class at most 2n. •

Finally, we recall that a soluble SBrgroup is metabelian (see [4] or also [5; 13.4.2]),
and so ct)(G) is metabelian for every soluble group G.

LEMMA 2. Let G be a soluble group, W = CD(G) and N = F(W). Then W/N<
Z(G/N).

Proof. Let A = W; then A is abelian and so A ^N. Moreover, W acts by conjugation
as a group of power automorphisms on A. Hence [G, W] =s CG(A) DW = CW(A). By
Robinson [4; Lemma 2.2.2], CW(A) = N. Thus [G, W] « N, as wanted. •

Proof of Theorem 1. Proceed by induction on n. If n = 1, then G is metabelian. Let
« > 1 and let W = co(G). By inductive hypothesis, G/W e 9T. Set N = F(W) and
R/W = F(G/W). By Lemma 2, W/N^Z(G/N) whence, in particular, R/N is nilpotent.
Thus GIN e 9T and so G e 3ln+1. •

In order to avoid repetitions in the next proofs, we state as a lemma a standard and
well known argument (see [6]).

LEMMA 3. Let Z be a central subgroup of the group A, such that A/Z is abelian.
(a) If A/Z is a n-group, for a set n of primes, then so is A'.
(b) If A/Z is periodic, then so is A'.
(c) If A/Z is divisible and periodic, then A is abelian.

Proof, (a) Let g, h eA. Then, for some ^r-number n, g" e Z since A/Z is a jr-group.
Moreover A is nilpotent of class 2, whence [g, h]n = [g", h] = 1. Thus A' is an abelian
group which is generated by elements whose order is a ^-number, and so A' is a ^r-group.

(b) Apply the same argument as in part (a).
(c) Let g, h eA, r eN. Since A/Z is divisible, there exists gi eA such that g\ = gz,

where z e Z. Now

Since A' is an abelian group, generated by the commutators [g, h], g, h eA, it follows,
together with (b), that A' is a periodic divisible abelian group. By a well known property
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of divisible subgroups of abelian groups, we have Z = A' x B, B a suitable subgroup of Z.
Now, A/B is a nilpotent periodic group with a normal series A/B > Z/B > 1, whose
factors are divisible; by a result of Cernikov (see [6, Theorem 9.23]) A/B is abelian.
Hence B > A'and so A'= 1. •

We observe that in (a) and (b) of the previous Lemma, it is enough to assume that
A/Z is locally finite instead of abelian (see [6; Vol. I, p. 102]), but we do not need this.

As observed before, if G is a soluble group, co(G) is a soluble T-group. Following
Robinson [4], we split the class of soluble T-groups into four mutually disjoint
subclasses, namely:

(1) the class of abelian groups;
(2) the class of periodic non abelian soluble T-groups;
(3) the class of T-groups of type I, that is all non abelian soluble T-groups G in

which CG(G') is not periodic;
(4) the class of T-groups of type II, that is all soluble non periodic T-groups G in

which CG(G') is periodic.
The following Lemma may be compared to Lemma 4.2 in [1].

LEMMA 4. Let Z be a central subgroup of the group H, and suppose that H/Z is a
soluble T-group.

(a) If H/Z is of type II, then H is metabelian.
(b) If Z is a 1-group of finite exponent, H is metabelian.
(c) There exists C^H, C metabelian, such that H/C is an elementary abelian 2-group

and [H, Aut(H)] =£ C.

Proof, (a) Let H/Z be a T-group of type II, and put D/Z = (H/Z)'. By Robinson
[4; 4.3.1], D/Z is a periodic abelian divisible group. Since D ' < Z and Z<Z(H), it
follows from Lemma 3(c) that D is abelian, and so H is metabelian.

(b) Let Z be a 2-group of finite exponent. If H/Z is abelian or of type II, H is
metabelian. Let H/Z be a T-group of type I and set D/Z = (H/Z)'. Then (see Robinson
[4; 3.1.1]) D/Z admits a 2-divisible subgroup T/Z of index at most 2, and D/Z =
(T/Z, xZ), with x2€ Z. By the same argument used in the proof of Lemma 3(c), T' is
2-divisible; since T' ^ Z and Z has finite exponent, we get T = 1. Hence T is abelian;
moreover (x, Z) is abelian and [T, x] = 1; in fact, if g e T and exp(Z) = 2r, then, by the
2-divisibility of T/Z, there exist gx e T and z eZ such that g\ = gz, whence

1 = [gi, A2' = \gf, *] = \gz, *] = [g, x].

Therefore D = (T, x) is abelian, and so H is metabelian.
Finally, let H/Z be a non abelian periodic T-group; then H is periodic. Let

X = O2(H) be the maximal normal subgroup of H without elements of order 2. Since
i n Z = l, it is enough to prove that H/X is metabelian; thus we may assume X = 1. In
this case N/Z = F(H/Z) is a 2-group. By Robinson [4; 4.2.2], H/Z is a 2-group, whence
(Robinson [4; 4.2.1]) either H/Z is a Dedekind 2-group or D/Z = (H/Z)' = (T/Z, xZ),
where T/Z is divisible and x2 e Z. In the first case, H is a nilpotent 2-group of class at
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most 3 and therefore it is metabelian. In the second case, T is abelian by Lemma 3(c),
and so, arguing as in the case in which H/Z is of type I, we have that D is also abelian,
proving that H is metabelian.

(c) By part (a), we may assume that H/Z is of type I or it is periodic and non abelian
(for otherwise we take C = H).

If H/Z is of type I, then if C = F(H), C satisfies the required conditions (see
Robinson [4; 3.1.1]).

Thus, let H/Z be a non abelian periodic T-group. Write D/Z = (H/Z)' and, for
every prime p, let Dp/Z be the /7-component of D/Z; let further n be the set of those
primes p, such that Dp is not abelian (possibly n = 0) . We observe that, by Robinson
[4; 4.2.1 and 4.2.2J, if D2/Z is not trivial, then it is the extention of a (possibly trivial)
divisible 2-group T/Z, by an element xZ, with x2 e Z. By Lemma 3(c), T is abelian. As in
the proof of part (b), (Z, x) is abelian and, if g e T, there exist gt eT, z e Z such that
gl = gz; whence [g, x] = [gz, x] = [gi, x] = [gu xf = [gu x2] = 1. Thus D2=(T,x) is abe-
lian, and so 2 $ n.

For each pen, let CP = CH(DP/Z) and C = p | Cp. Let yeH; by Robinson
pen

[4; 4.2.2], y induces by conjugation on Dp/Z a power automorphism a i—>ay — aa (where a
is a p-adic unit) of order a divisor of p — 1. Since Qp is not abelian, there exist g, h e Dp

such that [g, h] ¥= 1. By Lemma 3(a), [g, h] is a /^-element. Moreover there exist z, z' e Z
such that gy =gaz and hy = haz'\ since [g, h] e Z, we get

\g, h] = [g, hy = [gy, hy] = [g*z, h«z'i = [g«, /,«] = [g, h]^.

Because [g, h] ¥= 1, we have therefore a2=l (modp) and so, since the order of H/Cp is a
divisor of p — 1, y2 e Cp. As ///C,, is a non trivial cyclic group, we get \H/CP\ = 2. It is
easy to see that Cp is characteristic in H if Z is characteristic, e.g. if Z = Z{H). This can
be assumed without loss of generality in part (c). So [//, Aut(//)] =£ Cp. It follows that
H/C is an elementary abelian 2-group, and [H, Aut(/f)j < C.

It remains to show that C is metabelian. Let q, r be prime numbers not belonging to JT;
then Dq and Dr are abelian. If g e Dq and h e Dr then, for some «, u € f̂ J, we have
l = [g«\h} = [g,h]«u and l = [g,h

r"] = [g,h]r: Thus, if ?*/-, [D,,Dr) = l. Therefore
Dn. = {Dq\q $ JT) is an abelian group, and, clearly, D^sC. Let Z)̂  = (Dp \p e JT).
Now, C/Dn' is a nilpotent T-group such that (C/D^)' < D/Dn, does not admit
2-elements. Hence C/Dn. is abelian, and so C is metabelian, concluding the proof of the
Lemma. •

If G is a group, and r a prime, we denote by Or(G) the subgroup of G generated by
all normal r'-subgroups of G (that is periodic subgroups all of whose elements have order
an r' number). Then Or{G) is a normal r'-subgroup of G and Or(G/Or(G)) = 1.
Furthermore, if P is the set of all prime numbers, then f] Or(G) = 1.

reP

LEMMA 5. (a) If G is a soluble M2-group, then G e s # % .
(b) If G is a soluble %&3-group, then G e ?I5.
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Proof. Since the classes 5t32l2 and SI5 are both quotient and residually closed, we
may assume, by what was observed above OP>(G) = 1 for a suitable prime p. Let
W = o)(G) and TV = F(W). Since 2Bi c 2l2 and 2B2 <= %\ we are done in both cases if W is
abelian. Let us therefore assume that W is not abelian. Then either TV is not periodic (and
so W is a 7-group of type I) or TV is a p-group. Let K = (O2(G) (whence K = G in case
(a))-

Let W be a T-group of type I; then TV is abelian and, by Lemma 2, W/N =s Z(G/TV).
In particular, by Lemma 4(b), K/N is metabelian, since (see Robinson [4; 3.1.1])
\W/N\ = 2. Thus, G(3) = 1 if G e 2B2 and G(5) = 1 if G e 2B3.

Suppose now TV is a p-group. If p is odd, TV is abelian by Robinson [4; 4.2.1] and, by
Lemma 2, W/N < Z(G/TV). By Lemma 4(c), there exists C^K, with K/C an elementary
abelian 2-group, C/TV metabelian and [G, X] < C. If G e 2B2 this yields at once G e 2l32l2.
If G e 2B3 then, by Lemma 4(b), G/C is metabelian, and so G € SI5.

It remains to consider the case p = 2. In this case, if TV is abelian we argue as in the
previous case. Otherwise, TV is a non abelian Dedekind 2-group, and this implies (see [4])
TV = W. So K/N is a T-group. Let TV = Ax Q, where Q is a quaternion group of order 8,
and A an elementary abelian 2-group. Write X = Q' xA. Then X is a normal abelian
subgroup of K, and N/X is elementary abelian of order 4.

Let M/X = CK/X(N/X); then K/M is isomorphic to a subgroup of Aut(TV/X) = 53.
Let L/M be the inverse image of A3 in the embedding K/M—>S3. Thus L is a
characteristic subgroup of index at most 2 in K. We show that L(3) = 1. To do this, it is
enough to show that L" is contained in X.

Now, A//TV is a T-group so, by Lemma 4(b), M/X is metabelian. If L = M we are
done. Otherwise, \L/M\ = 3 and TV/A' is a minimal normal subgroup of L/X. Set
fl/X = (L/X1). Minimality of N/X implies that either RHN^X or R^N. In the first
case, since L/N is metabelian, L" <RC\N = X, as wanted. Assume therefore R>N.
Now, certainly /? < M and (R/X)' < TV/X Thus K/X is a nilpotent group of class at most
two. If g, h eR/X, then [g, h] eN/X and, since N/X is central and has exponent 2,
1 = [g> hf = [g2, h]. Therefore, if D/X = (R/X)2, we get D/X< Z(R/X). Now, (M/X)'
is abelian and, clearly, it is contained in R/X. So, if we write VIX- (D/X)(M/X)', we
have that V/X is an abelian normal subgroup of L/X. Moreover, R/V is an elementary
abelian 2-group. Now, L/V, which is a normal section of K/N, (observe that minimality
of N/X yields D>TV, otherwise R/X is abelian and we are done), is a T-group.
Therefore, L acts by conjugation as a group of power automorphisms on R/V. Since R/V
is abelian of exponent 2, it follows that R/V is contained in Z(L/V). Hence L/V is a
nilpotent 7-group and thus is a Dedekind group. Since \L/M\ = 3 and M/V is abelian, we
conclude that L/V is abelian. Using the fact that V/A"is abelian, we now get L"mX, and
so L(3) = 1, as required.

Now, if Ge2B2, G = K and thus, since |G:L|=£2, G € 2l3Sl2. If Ge2B3, then,
because L is a characteristic subgroup of index at most 2 in K, we have [G, K] < L; by
Lemma 4(b), G" < L and so G(5) = 1. •

Proof of Theorem 2. We proceed by induction of n. If n = 1, 2, 3, the result follows
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from Robinson [4], and Lemma 5. If » > 3 , apply Lemma 5 and the fact that, if
A = a)3(G), then A e 2B3 (and so ^( 5 ) = 1) and G/A e 2Bn_3. •
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