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Abstract

A Fitting class of finite soluble groups is one closed under the formation of normal subgroups and
products of normal subgroups. It is shown that the Fitting classes of metanilpotent groups which are
quotient group closed as well are primitive saturated formuations.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 F 16.

In Section 7 of [2] we proved that a Fitting class ̂ "of finite metanilpotent groups
which is quotient group closed is a primitive saturated formation provided that J*"
is generated by supersoluble groups. We are now able to remove this qualifica-
tion.

THEOREM. A Fitting class of metanilpotent groups which is quotient group closed is
a primitive saturated formation.

All groups mentioned here will be finite and metanilpotent. We assume that the
reader is familiar with the ideas and methods of [1], [2] and [3] most of which are
by now standard. Accordingly we suppress arguments which are variations on
those in the works cited.

Let ^ b e a metanilpotent and Q-closed Fitting class. In order to prove the
theorem it suffices to show that

(1) if p, q are primes and if lfr\ ^ ^ contains a non-nilpotent group then
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For, let !Fp be the Fitting formation generated by the automizers of all />-chief
factors of all groups in &. Note that J^ contains a non-trivial g-group for some
prime q if and only if some group in & has a />-chief factor whose automizer has
order divisible by q. Let^"0 denote the local formation defined by the J^. J^o is a
primitive saturated formation [4], and &c. J^o. We show that J*"= #"0. If we
suppose, to the contrary, that J*"# &0 then we may select a group G in J^o \^"of
least order. Since J^ is normal subgroup and normal product closed G/F(G) is a
<jr-group for some prime q; and F(G) is a^-group for some prime p because if

F(G) = S1 X S2 X • • • X Sr

is the Sylow decomposition of F(G) then, ^0 being Q-closed and G mininal,
G/Sj e j f ( U i < r ) and G e s JG/S j X G/S2 X • • • X G/Sr) c F , a con-
tradiction. Moreover G is not nilpotent since ̂ "contains all />-groups for primes p
dividing the order of groups in 3F. Hence J^ contains a non-trivial g-group and so
there is a group L in ^"with a />-chief factor whose automizer has order divisible
by q. If L0/F(L) is the Sylow ^-subgroup of L/F(L) then Lo e i*"and, if T is the
Hall />'-subgroup of F(L), then L 0 / r G -^- B u t ^o/7" i s n o t nilpotent and
belongs to &C\ SfpSPq. By (1), therefore, G e ^ 5 " ? c i ^ , a contradiction to
J*"¥= J^o. This completes the reduction of the Theorem to (1).

We can further reduce the class of groups we need to consider. For different
primes p, q let ^(p, q) denote the class of groups of the form PC where P is a
normal /^-subgroup and C a subgroup of order q.

(2) / / « ( p , q) c When ^ c ^ .
To prove (2) suppose that G = AB with ^<G, ^ e ^ , B e ^ . If 5 is not

cyclic then it may be written as a product of normal subgroups Bx, B2. By
induction on \B\ we conclude that

If 5 is cyclic and \B\ = q then G e & by hypothesis, so it remains to consider the
case when B is cyclic of order qa with a > I. The group W — CqwrCg.-i has a
subgroup isomorphic to B, and we identify them. Let

T = A twrB W;

the reader is referred to page 227 of [3] for an account of the twisted wreath
product, and for the notation used there. Since W is a product of subnormal
(cyclic) subgroups of order less than qa we have, by induction, that r e J . It
follows that

By Lemma 2.3 of [3]

A\w\BsAxK
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where K admits B. Consequently

AB =

This completes the induction and the proof of (2).
The proof of (1) is further reduced by another proposition: here Djj is the

unique (up to isomorphism) group which has a unique minimal normal subgroup,
a />-group, with a complement of order q.

(3) 7/2)/ e Pthen W(p, q) c &.
The proof of this result uses the following invariant y{H) associated with a

group H. Let 91 p denote the class of elementary abelian ^-groups. Denote by
%p(H) the smallest normal subgroup of H whose factor group is an elementary
abelian/>-group, and by {^.p)

s{H) its 5th iterate:

H and (Kp

Let S be the greatest non-negative integer for which

and let e be the least positive integer for which

(As usual if X, Y are subgroups of a group, [Jf,y] is the subgroup generated
by all commutators [x, y], x e X, y e Y; [X,1Y] = [X,Y] and [X,eY] =
[[X,(e-l)Y],Y]foTe>l.)

The invariant we use is the ordered pair

If we assume, contrary to the assertion (3), that ^(p, q) % &', then there exists
a group C e ^(p, q)\& for which y(G) is minimal in the lexicographical
ordering of pairs. Note first that y(G) > (1,1). For, y(G) < (1,1) means that
P = Op(G) is elementary abelian whence, if G = PC with \C\ = q, P = Pt X P2

X • • • X Ps where each Pt is minimal normal in G; and then PtC = D£ or
PtC = CpX Cq. Since 7)/ and Cp X Ĉ  both belongs to Sunder the hypothesis of
(3) we conclude that

Hence y(G) > (1,1).
The chain of lemmas we need to establish (3) begins now, and the notation of

the last paragraph is maintained: G is a minimal counterexample to the truth of
(3), Op(G) = P and G = PC where \C\ = q.ln what follows contructions involv-
ing several isomorphic copies of given groups abound. The following useful
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convention therefore will be employed, usually without further comment: isomor-
phic copies of a group H will be denoted by subscripts, thus Hlt H2 for example
with h1 >-> h, h2 •-* h being isomorphisms.

(4) IfK = AHwhere A<K, A<=%pandH& &, then K&&.
For, a semi-direct product X = AlH1 may be formed using the action of Hx on

A1 inherited from that of H on A:

«*> = (a"),.

By Lemma 5.1 of [2], J T e f , However the mapping X -* K defined by hxax -» ha
is an onto homomorphism, so K e & also.

(5) Suppose that H e &C\ %{p, q), that A is a p-group on which H acts as a
group of operators, and that y(A) < y(G). Then the semidirect product AH G 3?'.

Let H = QD where Q = Op(H) and \D\ = q. The proof of (5) is by induction
on the smallest positive integer r for which

[A,rQ] = l.

If r = 1 then AH e sn{ H X AD } c Jf, since H e & by hypothesis and AD e J?"
by the minimality of y(G). So suppose r > 1.

Write 33 for the variety generated by the group AQ, and let F be the 93-product
of Ax and Qr:

F = A1%QX.

(See Hanna Neumann [5], page 35 for a definition of verbal product.) There is a
homomorphism a from F onto AQ whose restrictions to Ax and Qx are, respec-
tively, ax •-> a, A^ -> x. We define an action of Q X Q o n F as follows:

a{c"c i )= (ac)i> x1
(c"c;)= {xc'\, a(EA,x^Q.

If C = {(c1; c,): c 6 C } then a extends to a homomorphism a: FC -> ̂ 4/^ via

Put L = ker a ( = ker a) and observe that L < [Ax, Qx].
Since [A, rQ] = 1 we have [Av rQx\ < L; and if y(A) = (S\ e') then

[(yipYXA^A^ QJ), e'/lj < L. Hence if N is the normal closure in F of f ,̂ r g j
and [(3fy,)*'(̂ 41[v41, gj]), e'^J then Â  < £; also iV admits Cx X Cv

In what follows the convenient notation X e^(modY) means that Y is a
normal subgroup of X and Af/F e ̂ \ We have

[^i> (?i](?i(l X Cx) e ̂  (mod JV), by induction on r;

Mi ,GiMi( c i x !) e J^(modiV), by the minimality of y(G);

whence

f ( l x d ) e N0,{f, [^ , eJSiCl X d ) } c ̂  (mod N),

F(d X 1) G NjF.I^ .eJ^d X 1)} c
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and consequently (F/N^C-^ X C:) e no^=^ so that (F/N)C e %„&=&.
Finally AH e Q& - &, completing the induction and the proof of (5).

(6) Suppose that K e <%(p, q) has a subgroup C of order q andp-subgroups Q, R
normalized by C and that

(i) QC, RC e &,
(n)y([Q,R])<y(G),and
(iii) Q and R together generate Op(K).
Then K e &.
This result is a corollary of (5) and its proof is a re-play of that of (5). Consider

a verbal product X = Q, * R,, where 33 = varOJK), and the natural homo-
morphism a: X -* Op(K) given by x1 >-> x,yx >-* y (x & Q, y ^ R). Let Cl X Cv

act on X by

Again if C = {(c1( cx): c £ C } then a extends to a homomorphism a: XC
via

(c1,c1)a = c.

Let y([e,^]) = («',*')• Then

and so N, the normal closure in I of [(%p)*'([Qi, RJ), e.'[Qx, Rx]] is also
contained in ker a; and it admits C1 X Cv Now

[Qu RAQiiCi X l ) e / (mod AT), [ ^ i J j / J ^ l X C , ) G 5 - (mod N)

by (5); then

X(CX X 1) e N0{ X, [Qlf R^Q.iC, X 1)} c <F (mod JV)

and

X(l X Cx) e ^ { ^ . [ e ^ H j ^ l X Cx)} cJ^(modiV)

so

A-Ce s ^ o t ^ Q X 1), X(l X Cj)} c J f (modiV).

Finally A" G Q1 { A'C/A^} c J^as required.
(7) / / H is a group with an elementary abelian normal p-subgroup T then there

exists a group W = W(H, T) with the following properties.
(i) W has an elementary abelian normal p-subgroup A, which we call the base

group of W, with a complement H in W isomorphic to H/T.
(ii) As ZpH-module A is injective.
(iii) There is an embedding TJ: H -* W for which W = A(Hr\) and A n HT\ = Tt\.
There are many ways of constructing such a group W. For example if

W = Twr H/T then the Krasner-Kaloujnine embedding [5, page 46] of H into W
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has the desired properties, and A, the base group of W is a direct sum of copies of
the regular module for H — H/T, therefore certainly injective. We will suppose
whenever convenient that H and Hi\ are identified.

(8) LetT = {%p)\P). Then W(G, T) e 0rmd(%p)'
+1(W(G, T)) = 1.

For, G= G /TeJ^by the minimality of y(G) and then W(G, T) e J^by
Lemma 5.1 of [2]. Also (21 p)\W(G, T)) e 31̂  so the other assertion is immediate.

PROOF OF (3). Write

V=(T, i f e = l ,

and define Y — W{W{G, T), V). (Here we are using the convenience of having
G < W(G, T).) Let A be the base group of Y. By Sylow's Theorem we may
suppose that C < G, replacing G by one of its conjugates if necessary.

Now Cy(F) > Op(Y) and therefore, as Z^-module, Khas an automorphism
induced by a non-trivial element c of C. Since A is injective as Z^W-module there
is an automorphism of A agreeing on V with the action of c. It follows that there
is an action of Cx on Y, and therefore a semi-direct product Z = YCly satisfying
[W, CJ < A and vdl = vd,d^ C.

By (8), and Lemma 5.1 of [2], Y e J^and therefore Z e J ^ .
In the direct product Z X G2 consider the elements a = (c, c2), a' = (cl5 ct),

and the subgroups A = Op(Z)P2(a, a'), and T = {(v, v2): v e V}. Plainly T<A.
We claim that A/r e &. To see this observe that

A e No{0,(Z)P2(<rV),0,(Z)P2<a)}

so it suffices to show that Op(Z)P2(a'1a') e .̂ -(mod T) and Op(Z)P2(a) e&
(mod T). The first of these is easy:

Op(Z)P2(a-la') e

and this remains true modulo T. The second comes as follows. Let P = {(x, x2):
j t e P } . Since T admits a and since y(P/T) < y(G), (P/Y)(a) e &. Also

Op(W(G, T))(a) * W(G, T) e &, by (8).

Note too that

[O,(W(G, T)), P] = [Op(W(G, T)), P]

and consequently by (8) that y([Op(W(G, T)), P]) < y(G). It then follows from

(6) that (Op(W(G, r» i >
2 / r ) (a ) e &. However

Op(Z)P2(o) =AOp(W(G,T))P2(a)
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which is i n J ^ m o d T) by (4). This completes the verification that A/T e &.

We conclude, therefore, that

But this yields

By Maschke's Theorem AT/T is completely reducible for the action of (a ' ) ; in
particular P2T/T n AT/T is complemented in AT/T by a normal subgroup of

T ( ' }
G~P2(a')eQ{(AP2/T)(a'))Q^.

This contradiction to the choice of G concludes the proof of (3).
It remains to observe that if 5^n ^ . ^ contains a non-nilpotent group then it

contains Dp
q. For, if H is a non-nilpotent group in J^n St°pSr°q of minimal order

then <b(H) = 1 so, in particular, Op(H) is elementary. Moreover if Z) is a Sylow
^-subgroup of H then £> is cyclic and of order q; CD(Op(H)) = 1; and Op(H) is
irreducible for D. But then

T\(] ~ LJ cz <3F"

as required.
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