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In this paper we study the problem of the representation of d.g. near-rings,
and in particular the problem of a faithful representation, which is equivalent to
the adjoining of an identity. This problem has been considered by Malone [5]
and Malone and Heatherly [6]and [7]. They have shown that a finite near-ring
with two sided zero can be embedded in the d.g. near-ring generated by the inner
automorphisms of a suitable group, and that an identity can always be adjoined
to a near-ring with two sided zero. They have also given some special conditions
under which a faithful representation of a d.g. near-ring exists. .

From another point of view, Frohlich has studied groups over a d.g. near-
ring in [3] and [4]. If (R, S) is a d.g. near-ring, where S is the distributive semi-
group generating R, then he showed that free (R, S) groups exist. We use free (R,S)
groups to show that not every d.g. near-ring (R, S) can have a faithful represen-
tation on a group, if we insist that S should be a semigroup of distributive ele-
ments, i.e. endomorphisms on the group. This is true even in the finite case.

We start by setting the work of Frohlich on free (R. S) groups in the context
of varieties, using methods differing substantially from his. Using these ideas, we
construct in each non-abelian variety a d.g. near-ring without a faithful representa-
tion. This opens up the problem of determining those d.g. near-rings which do
have a faithful representation. It also leaves open the question of whether it is
possible to embed a d.g. near-ring (R, S) in a d.g. near-ring with identity, if we
do not insist that the elements of S should be distributive in the larger near-ring.

We finish by establishing that for every d.g. near-ring (R, S), there exist
‘nearest’ d.g. near-rings (R, S), (R,S) which have faithful representations and
such that (R, S) is a homomorphic image of (R, S) and (R, S) is a homomorphic
image of (R,S). For those d.g. near-rings to which an identity can be adjoined,
there is a natural way of doing it. If the near-ring is a ring, then it is interesting to
note that this method of adjoining the identity is the standard one.
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1. Definitions and preliminary results

A near-ring R is a set on which are defined two operations: addition + and
multiplication - , a symbol which will generally be omitted, such that (R, +) is a
group (not necessarily commutative), (R, -) is a semigroup and the left distributive

law
x(y+z) =xy+xzforall x,y,zeR

is satisfied. The additive identity will be denoted by 0, and the multiplicative
identity, if it exists, by 1. An element r € R is called distributive if we have

(x+ y)r = xr+ yrforall x,yeR.

A distributively generated (d.g.) near-ring is a near-ring R such that (R, +)
= Gp{S; S a (multiplicative) semigroup of distributive elements}, i.e. R is gen-
erated as an additive group by the set S. S need not be the semigroup of all dis-
tributive elements. As the set S which is chosen can be important, we denote a
d.g. near-ring by (R, S).

A common example of a near-ring is the set of all mappings of a group G
(all groups will be written additively) into itself, with point-wise addition, and
with multiplication being composition of maps. Distributive elements in this case
are the endomorphisms, and these generate a d.g. near-ring, which we will denote

by E(G). A pair G, 0 consisting of a group G and a near-ring homomorphism @ is
called an (R, S) group, where (R, S) is a d.g. near-ring, if 8 is a homomorphism
from R into E(G) such that S6 < End(G), the semigroup of endomorphisms of
G. Such a map 0 is called a representation of (R, S) on the group G. The map will
often be omitted and we will write gr for g(r8), where g € G, r € R, and speak of an
(R, S) group G. A representation 0 is faithful if Ker 8, the kernel of 8, is trivial. If
R has an identity 1, the representation 6 will be called unitary, and G will be called
a unitary (R, S) group, if 0 maps 1 to the identity map of G onto itself. Every d.g.
near-ring (R, S) has an obvious representation, namely the right regular representa-
tion on the group (R, +), which is faithful if R has a left identity, i.e. an element e
such that er = r for all reR.

Let S be a multiplicative semigroup. Then a group G is called an S group if
there exists a homomorphism 6 from S into End(G). We then write gs for g(s9),
where g € G, s € S. A homomorphism ¢ from an (R, S) group (S group) G to another
(R, S) group (S group) H is an (R, S) homomorphism (S homomorphism) if

(gr)¢ = (g¢)r for all reR,

((gs)¢ = (g¢)s for all s S). Frohlich has proved (| 2], 2.1.1) that ¢ is an (R, S)
homomorphism if and only if it is an S homomorphism. Near-ring homomor-
phisms are not sufficient for our purposes. So we define a d.g. near-ring homomor-
phism as follows. Let (R, S) and (7, U) be two d.g. near-rings. Then a d.g. near-
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ring homomorphism 6 is a near-ring homomorphism from R to T such that
S0 < U.

We will now define the varieties with which we will work. A variety of groups
is the class of all groups satisfying a given set of laws or words, e.g. the variety of
abelian groups is the class of all groups satisfying the law [x, y]= —x—y+x+y=0.
See H. Neumann [8]. Varieties of d.g. near-rings can be defined in the same
way, but by using laws involving both addition and multiplication. These have
been considered by Frohlich in [4], where the definition used is somewhat dif-
ferent although equivalent to that used here. The only varieties of d.g. near-rings
we will use will be those satisfying additive laws.

We will be using presentations of groups in B, a variety of groups. Free
groups possessing the universal property exist in varieties, ([8],§4). So we can
speak of Fr(X), the free B group on the set X. A presentation of a group GeB
is a definition of G given by

G = Gp{X; w{x, -, x{) =0, iel}

which means that G = Fr(X)/K where K is the normal closure of the set of words
{wi(x, -, x®; ieI} in Fr(X). This corresponds to ordinary presentations, ex-
cept that we omit from the relations {wy(x{", ---,x4,); i € I} all the laws of B. We
will also use the fact that free products of groups exist in B, the B free product,
generally called the verbal product ([8], definition 18.31, theorem 18.42).

We now prove a result which will enable us to link a variety of groups with
a corresponding variety of d.g. near-rings. First we need

LemMaA 1.1. Let w(xy,-++,x,) be a word in n variables. Then
gw(rl’ ""rn) = W(grl’ "'9grn)
whenever ry, -, r, lie in the d.g. near-ring (R, S),g € G and G is an (R, S) group.

PrROOF. We prove this lemma by induction on the length I(w(x,, --*, x,)) of the
word w(xy, -, x,). If I(w(x,,---,x,)) = 1, then the result comes from the definition.
So we assume that the lemma holds for all words with length at most m. Suppose
I(w(xy, -+, x,) = m + 1. Then

WXy o Xy) = W (X, 0005 %) + Y5
where y; = + x; and I(w'(x,, "+, x,)) = m. Then
gw(ry, -5 ra) = gW'(ry, -, 1) 2 1))
= w(gry, -, gr.) % gr;
= w(gry, -, gr,)

using the induction hypothesis, This finishes the induction argument and the proof.
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Let B be a variety of groups, and let (R, S) be a d.g. near-ring. Then we define
the variety B of d.g. near-rings by (R, S) e B if (R, + ) € B. There will be no con-
fusion in using the same symbol for a variety of groups and a variety of d.g. near-
rings.

THEOREM 1.2. Let (R,S) be a d.g. near-ring with a faithful representation
on the (R,S) group G. Let G B, a variety of groups. Then (R, S) € B.

ProoF. Let B be defined by the set of words {wi(x,,+ -, X,); iel}. If
Py Tuh € R, then, by lemma 1.1,

GWLr s s Tay) = wilgry, -, gra:y) = 0 for all geG. As the representation
of (R,S) on G is faithful, this shows that w(r,---,r,;) =0 for all choices of
ris s Ty i R, all i€ 1. Hence the set of words {wi(x,, -+, x,q); i €I} is satisfied
in (R, 4+ ) for aisl ieI and 350 (R,S)eB.

Theorem 1.2 provides the reason for considering groups in 8 together with
d.g. near-rings in B.

Before we start the work of constructing free (R, S) groups, we will prove a
resuit which reduces the amount of work needed to show that a given mapping
between d.g. near-rings is a d.g. near-ring homomorphism.

THeOREM 1.3. Let (R, S) and (T, U) be two d.g. near-rings. If 0 is a group
homomorphism from (T, + ) into (R, + ) which is also a semigroup homomor-
phism from U into S, then it is a d.g. near-ring homomorphism from (T, U) into
(R, S).

PRrOOF. Since 8 is a group homomorphism from (T, + ) into (R, + ), we only
need to show that 0 is a semigroup homomorphism from T into R. We first note
that, if u € U, then (—u)8 = —(u8). Now let ¢,u; + -+ + ¢,u, and g0, + -+ +1,0p,
be two elements of T, where u,,v;€ Tande, = +1=n;forl i< n 1 <jsm

Then
(Bqtty + - + gu ) 03 + -+ + Hu0p)
= (equy + -+ eu vy + 0+ (Egly + 0 F U mUm
= 111(8111101 + -+ 6nunvn) + o+ ’7m(81u10m + 4 snunvm)°
Also

(yuy + - + g,u)0(n,v, + -+ + 0,0
= (g (u;,0) + -+ + &,(,0)) (1,(010) + *+- + 1, (v 6))
as 0 is a group homomorphism,
= (81(u,0) + -+ + &,(u, D) 1:1(v,0) + -+ + (&, (u10) + -+ + £,(UO(Vm0)
= 11,(6,(u,0)(v,0) + -+ + &,(,0)(010)) + -+ + 1,(e,(1,0)(v,0) + -+ + &,(1,0)(v,6))
= 1,(e,(u;0,)0 + -+ + &,(u,0)0) + - + n,(e,(U0,)0 + -+ + &,(u,0,,)0)
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as 0 is a semigroup homomorphism from U into S,

= (& 101) + o + (U )0 + -+ F N,y 0) + -0 + 8, (UD,))0

as 0 is a group homomorphism,

= ((ertty + =+ + &uIN )0 + - + (€11 + -+ + &) N¥m)O

= ((equy + - + &u, )10y + -+ + 1,0))0.

We have used the fact that if s € S, then #(—s) = ~(rs), and have shown that f is a
semigroup homomorphism from T into R, hence completing the proof of the
theorem.

2. Free (R, S) groups

Throughout we will work within a given variety B, which we will consider
both as a variety of groups and of d.g. near-rings as defined above.

Let S be a multiplicative semigroup. We will first define the free B d.g. near-
ring on the semigroup S. This has already been done for the variety of all groups by
Frohlich in [3]. We generalize his results to arbitrary varieties, and use a different
method of proof. Let X be a set. Define Fr(X, S) to be the free B group on the set
of symbols {x,s,; xc X, seS}. For teS, we define f as an endomorphism of
Fr(X,S) by

2.1 X ., 8, (s,

for all xe X, seS.As the symbols {x,s,; x € X, s€ S} are a free generating set in
B for Fr(X,S), we can extend the map defined in (2.1) uniquely to be an endo-
morphism of Fr(X,S).

Let § = {§; seS}. We will show that S is a semigroup of endomorphisms
of Fr(X, S), isomorphic as a multiplicative semigroup to S. To do this it is enough
to show that t,1, = 1, t, for all t,€ S, i = 1,2, and also that if ¢, # t, then
t, # t,. But

Xty = (4ity), =ty by = Xty 1,
2.2)

Setity = (stit)), = (St ty = 5.1, 1y

for all xe X, seS. As this is a generating set for Fr(X,S), (2.2) shows that #,1,
= tl tz. Iftl # tz, then

x—tI = tlx # t2x = x_t_z_-
Hence t, # 1, and we have shown that § is a semigroup of endomorphisms of
Fr(X,S) isomorphic to S. Because of this we will omit ~ and write s for the

endomorphism of Fr(X, S) denoted by § above. We now write (Fr(S), S) for the
d.g. near-ring generated by the semigroup S of endomorphisms of Fr(X, S).
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The following theorem generalizes Theorem 2.1 of [3].

TueoreM 2.1. (i) Fr(S) is a d.g. near-ring in B generated by the distributive
semigroup S;

(i) (Fr(S), +) is the free B group on the set S;

(i) every S group He® is a (Fr(S),S) group;

(iv) every semigroup homomorphism 0 of S into T, where (R,T) is a d.g.
near-ring in B, can be extended to a d.g. near-ring homomorphism from
(Fr(S),8) 10 (R, T);

) (Fr(S),S) is uniquely determined to within d.g. near-ring isomorphism
by (i) and either (ii) or (iii) or (iv).

Proor. (i) follows from the definition, and theorem 1.2.
(i) Let g;s; + -+ +¢,5, be a word in the elements of S, where g; = + 1,
1=<i < n Then

(2.3) x(e15y + o0 + 8Sy) = &1S1x F 0 F ExSpe

As S, = {s,; se S} is part of a free B basis of Fr(X, S), the right hand side of (2.3)
is equal to O only if &y, + -+ + &,y, is a law in B ([8], Corollary 13.25). This
suffices to prove (ii) since we already know by theorem 1.2 that (Fr(S), +)e 3. In
particular (2.3) shows that Gp{S,} = (Fr(S), +) for each x € X, under the obvious
isomorphism,

(iii) Let H be an S group. Then there is a semigroup homomorphism 6 from
S into End(H). As HeB, we have (E(H), +)eB. As S is a free B basis
of (Fr(S), +), we can extend the mapping 6 : S — End(H) to be a group homo-
morphism from (Fr(S), +)into (E(H), +). Then by theorem 1.3, @ is a d.g. near-
ring homomorphism from (Fr(S),S) to (E(H),End(H)), ie. H is a (Fr(S),S)
group.

(iv) As(R,T)is in B, we have (R, +) e B. Then the same argument as that
used in (iii) gives the result.

(v) Let (R,S) be any d.g. near-ring in B. By (iv) there is a d.g. near-ring
epimorphism 6 from (Fr(S), S) onto (R, S) which extends the identity map on S.
If (R, S) satisfies (ii), then (Fr(S), +) = (R,+) under 0 and so (R, S) = (Fr(S),S)
as a d.g. near-ring. If (R, S) satisfies (iii), then Fr(X, S) is an (R, S) group and, by
the argument used in (ii), (R, +) is the free B group on the set S. So (R, S) satisfies
(i) and is d.g. near-ring isomorphic to (Fr(S), S). If (R, S) satisfies (iv), it is im-
mediate that 8 has a two sided inverse which is a d.g. near-ring homomorphism,
arising from the identity map from S = (R, S) to S < (Fr(S),S). Hence 0 is a
d.g. near-ring isomorphism. This finishes the proof of the theorem.

We now consider an arbitrary d.g. near-ring (R, S), generated by a distributive
semigroup S. By theorem 2.1 (iv), the identity map on S extends to a d.g. near-ring
epimorphism 6 from (Fr(S),S) to (R, S). Let Ker 6, the kernel of this epimor-
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phism be the ideal I of (Fr(S), S). Then Fr(X, S)I, the normal closure of Fr(X, S)I
= Gp{gr; g Fr(X,S), reI} in Fr(X, S) is easily seen to be a normal S subgroup,
and hence an (R, S) subgroup ([2], 1.2.3). This enables us to define

Fr(X,S)/Fr(X,S)] = Fr(X,R,S)

as an (R, S) group, where the action of S on Fr(X, R, S) is defined in the natural
way from the action of S on Fr(X, S), namely

(g+ Fr(X,S)I)s = gs+ Fr(X,S)I.

To check that this defines Fr(X, R, S) as an (R, S) group is a routine matter, and
was essentially done by Fréhlich in [3], result (2.2). In the same paper, theorems
3.4 and 5.1, and in [4], theorem 2.4, Frohlich establishes the existence of the free
(R, S) sum of (R, S) groups and of free (R, S) groups in a category. We will state
and prove the result in the setting of varieties, as it is a fairly short result and for
completeness.

THEOREM 2.2. Fr(X, R, S) is the free (R, S) group on the set X, in the variety ‘B.

Proor. Let H be an (R, S) group, and let 8 : X - H map X into H. Define
¢ : Fr(X,S) » H by

(2.4) x¢p = x0, s,¢ = (xBs

and extend this map to a homomorphism from Fr(X,S) to H, possible since
Fr(X,S) is freely generated by {x,s,; x€ X, se€ S}. Then H is an (Fr(S),S) group
by theorem 2.1 (iii), and from (2.4), ¢ commutes with the action of S on a generating
set of Fr(X, S), and hence on Fr(X, S). Hence ¢ is an S homomorphism, and so a
(Fr(S), S) homomorphism ([2], 2.1.1). Since HI = 0,

(gr)d = (gd)r =0

for all ge Fr(X,S), rel. Hence Fr(X,S)I < Ker ¢ and so FH(X,S)I < Ker ¢.
Thus ¢ induces an S homomorphism pu : Fr(X,R,S) - H which will also be
defined by (2.4). Again p is an (R, S) homomorphism by [2], 2.1.1. Since g must
agree with 6 on X, and is an (R, S) homomorphism the definition (2.4) is forced
and p is uniquely defined. Hence the result is true.

If S and hence R has an identity, and we impose the condition that all repre-
sentations of (R, S) are to be unitary, then using theorems 5.7 and 5.8 of [3], or
directly, it is easy to see that the following results hold.

THEOREM 2.3. Let S be a semigroup with identity. Then Fr(X,S), the free
B group on the symbols {s,; x € X, s € S} is the free unitary (Fr(S),S) group on X.

THEOREM 2.4. Let S be a semigroup with identity. Then Fr(X, R, S)
= Fry(X,S)/Fr(X,S)I is the free unitary (R,S). group on X, where
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(R, S) = (Fr(S), S)/I and Fr(X, S)I is the normal closure of Fr (X, S)I =Gp{gr;
geFr(X,S),rel} in Fr(X,S).

3. The counterexample

Before we proceed to construct our counterexample, we will prove two ele-
mentary results which will be needed at a later stage.

LeMMA 3.1. Let (R,S) € B have a faithful representation. Then the represen-
tation of (R, S) on the free (R, S) group on one generator is faithful.

PrROOF. Let G B give rise to the faithful representation for (R, S) and let
H = Fr(x, R, S) be the free (R, S) group on one generator, x. Given r # 0, reR,
we can choose g € G such that gr # 0. Map x — g and extend this mapping to an
(R, S) homomorphism @ from H to G by theorem 2.2. Then xr = 0 would imply

0=(xrf =x0r=gr #0,

a contradiction. Hence xr # 0 and H gives rise to a faithful representation for
(R,S).

LeMMA 3.2. Let (R,S) be a d.g. near-ring, and let X = {x,; A€ A} be a set of
elements in R. Then the ideal I of (R, S) generated by X is the normal subgroup
of (R, +) generated by

RXS = {rx;s, rx;, x;5, ;0 A€A, reR, s S}.

Proor. If I is the normal subgroup generated by RXS, it is easy to check that
RI < I'and IS < I, and so, by Frohlich [1], result 1.3.2, I is an ideal. Any ideal
containing X must contain RXS and hence I. This finishes the proof,

We now come to the counterexample. Let B be any non-abelian variety. Let
S be a four element semigroup S = {a, b, c,0} with all products equal to 0. Let
(Fr(S), S) be the free d.g. near-ring in B on the semigroup S, with 0 taken as the
additive O of (Fr(S), +). We define (R, S) as the homomorphic image of (Fr(S), S)
given by the ideal I generated by the element a + b + ¢ of Fr(S). In this case
(Fr(S), S) is the zero d.g. near-ring. By lemma 3.2, I is the normal closure of the
element a + b + ¢ in (Fr(S), +) since RXS reduces to a + b + c. Hence (R, +) is
the free B group on two generators, which we can take to be a and b.

Now let G = Fr(x, S) be the free (Fr(S), S) group on one generator, x, and let
H = Fr(x,R,S) be the free (R,S) group on the element x. Then H = G/G—I ,
where GI is the normal closure of GI in G. Then the free (R, S) generator of H is
% = x + GI. From lemma 3.1, we know that if (R, S) has a faithful representation,
then Xr # O for 0 # re R. And then %R is a subgroup of H isomorphic to (R, +)
under the mapping r — Xr.
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But GI contains x(a+ b+ c¢) and (2x)¥a + b + ¢) = 2xa + 2xb + 2xc.
Hence in H we have
—%c = Xa + %b
and
—(2%c) = 2xa + 2xb.

Hence xa and b commute. As XR is generated by Xa and xb, it follows that xR
is abelian. But (R, +) is the free B group on two generators, and B is a non-
abelian variety. Hence (R, +) is not abelian, since any relation which holds between
free generators of a free B group is a law in B ([8], 13.25). Hence *R is not iso-
morphic to (R, +) and we have a contradiction if we assume that (R, S) has a
faithful representation.

THEOREM 3.3. In every non-abelian variety B, there exists a d.g. near-ring
(R, S) which does not have a faithful representation.

The only restriction on B is that it is not an abelian variety. So if B is a locally
finite variety, i.e. a variety whose finitely generated groups are finite, then we have
a finite d.g. near-ring (R, S) which does not have a faithful representation. Compare
this with the results in Malone [5] and Malone and Heatherly [7], that any finite
near-ring with a two sided zero can be embedded in a near-ring generated by the
inner automorphisms of a suitable group. This gives a faithful representation of
any finite d.g. near-ring (R, S) in the wider sense of an embedding of R as a near-
ring in a near-ring generated by the endomorphisms of some group G. But the
elements of S no longer remain distributive in the larger near-ring. The question
#s to whether a d.g. near-ring can be embedded in a d.g. near-ring with identity
by means of 2 near-ring monomorphism is still open.

To return to d.g. near-ring embeddings, the question now arises as to what
conditions on a d.g. near-ring (R, S) are necessary or sufficient for (R, S) to have a
faithful representation. Two obvious sufficient conditions are

THEOREM 3.4. (i) If S has a left identity, then any d.g. near-ring (R, S) on
S has a faithful representation.

(i) If (R, +) has S as a set of free B generators, then (R, S) has a faithful
representation.

Proor. (i) The left identity of S is a left identity for R, hence (R, +) gives
rise to a faithful representation for (R, S)

(ii) This follows from theorem 2.1.

These two results give examples of two kinds of sufficient conditions we may
have: a condition on the multiplicative structure of S or a condition on the pre-
sentation of (R, +) in terms of S as a set of generators. There would seem to be a
lot of work to do in this direction. :
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4. The upper and lower faithful d.g. near-rings for (R, S)

Throughout this section, we will work within a given variety B.

Although a d.g. near-ring (R, S) may not have a faithful representation, it is
the homomorphic image of a d.g. near-ring with a faithful representation, namely
(Fr(S), S), and has as homomorphic image a d.g. near-ring with a faithful represen-
tation, in fact the representation on any (R, S) group, including the free (R,S)
group. This motivates the following work.

We first define a faithful d.g. near-ring (R, S) to be a d.g. near-ring (R, S) with
a faithful representation. We can now define the upper and lower faithful d.g.
near-rings for a d.g. near-ring (R, S).

The upper faithful d.g. near-ring for (R, S) is a faithful d.g. near-ring (R, S)
such that 8 : (R,S) — (R, S) is a d.g. near-ring epimorphism with Gls = identity,
and if 0 is any d.g. near-ring epimorphism from a faithful d.g. near-ring (T, S) to
(R, S) with 0,3 = identity, then 0 = @8 for a uniquely defined d.g. near-ring epi-
morphism ¢ : (T, S) — (R, S).

The lower faithful d.g. near-ring for (R, S) is a faithful d.g. near-ring (R, S)
such that 8 : (R, S) — (R, S) is a d.g. near-ring epimorphism with le = identity,
and if 6 is any d.g. near-ring epimorphism from (R, S) to a faithful d.g. near-ring
(T,S) with 0,3 = identity, then 6 = 8¢ for a uniquely defined d.g. near-ring
epimorphism ¢ : (R, S) — (T, ).

We will show that for any given d.g. near-ring (R, S), upper and lower faithful
d.g. near-rings exist, and we will determine them in terms of (R, S). We start with
the lower faithful d.g. near-ring. First we need some preliminary results.

LEmMA 4.1. Let 0 be a d.g. near-ring homomorphism from (R, S) into (T, U).
Let G be a (T,U) group with representation ¢. Then G can be defined as an
(R,S) group, and the kernel of the representation u of (R,S) on G is the inverse
image under 8 of Ker ¢.

Proor. We define ru by g(ru) = g(r0¢) for all reR, ie. u=0¢. The rest
follows easily.

LEmMMA 4.2. Let (R,S) be a d.g. near-ring, and let G = Fr(x,R, S) be the
free (R, S) group on one element, x. Write A = A(R,S) = {r; Gr =0}.If G is a
representation of (R, S), then Ker 8 2 A.

PrOOF. Assume that Ker 0 2 A. Let r € A—Ker 6. Then we have a group H
such that hr # 0 for some h € H. Map x to h and extend this to ¢, an (R, S) homo-
morphism from G to H. Then

0= (xr)¢ = (xp)r = hr # 0.

This is a contradiction, and so we deduce that Ker § = A.
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THEOREM 4.3. Let (R,S) be a d.g. near-ring. Then its lower faithful d.g.
near-ring is (R, S)/A where A = A(R,S) = {r; Gr = 0} and G is the free (R, S)
group on one generator.

Proor. Certainly (R, S)/4 is a faithful d.g. near-ring. Denote (R, S)/4 by (R, S)
and let 6 be the natural d.g. near-ring epimorphism from (R, S) to (R, 8) with (_)Is
= identity. Let 0 be a d.g. near-ring epimorphism from (R, S) to a faithful d.g.
near-ring (T, S) with 0|S = identity. Let H = Fr(x, T, S) be the free (T, S) group
on one element x. Then as (T, S) is a d.g. homomorphic image of (R, S), we deduce
by lemma 4.1 that H is an (R, S) group with the action of s € S defined in the same
way for both (R, S) and (T, S). This gives rise to a representation of (R, S) whose
kernel is Ker 8, again by lemma 4.1. But by lemma 4.2, this means that A < Ker 0.
Hence 0 = 0¢ for a d.g. near-ring epimorphism ¢ : (R,S) — (T,S).As 6 = 0¢,
we must have d)]s = identity and this will define ¢ uniquely since S generates
(R, +).

We now turn to the upper faithful d.g. near-ring. Again, we will first prove
some preliminary results.

LEmMA 4.4. Let (T,S) be a faithful d.g. near-ring, and let G = Fr(x, T, S).
Then G = G, *G, is the free B product of G, the free B group on one generator
and G,, a group isomorphic to (T, +).

ProoF. Let (F, S) = (Fr(S), S) be the free B d.g. near-ring on the semigroup
S, and let H be the free (F, S) group on one element x. By theorem 2.1, H is the
free B group on the set {x,s,; s€S}. Also (T, S) = (F,S)/I for some ideal I of
(F,S) and G = H/(HD¥, where (HI)" is the normal subgroup of H generated by
HI = Gp{hr; heH,rel}, by theorem 2.2, We write H = H,;+*H, where
H, = Gp{x}, H, = Gp{s,; s€S} are both free B groups on the elements men-
tioned, and * indicates the free B product. By the definition of the action of (F,S)
on H, we know that HF = H,. Hence HI < H, and by lemma 4.5, we obtain
G =~ H, * H,/(HD)"* where (HI)"* is the normal subgroup of H, generated by
HI. Again GT = H,/(HD™, identifying G and H,*H,/(H)">. In fact xT
= H,/(HD)®2 ~ (T, +) from the first part of the proof of theorem 3.3. Hence
G = H,x(T, +) which is the result we want.

We now prove lemma 4.5. It is a fairly standard result, but there does not
seem to be a reference for it.

LeEMMA 4.5. Let G = Hx K, let N be normal in K and let M = N€ be the nor-
mal closure of N in G. Then GIM =~ Hx KN, All groups are in B and = indicates
the free B product.

ProoF. Let G' = H* K/N.Map G —» G’ by 0 extending h - h, k > k+ N.
Then Ker 8 = N. Hence Ker § 2 M, the normal closure of N. We know that 0 is
a homomorphism by the universal property of free B products ([8], 18.42).
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Now consider G/M. As K¢ " H = 0 ([8], 18.36), we have M N H = 0. So if
¢ : G — G/M is the natural homomorphism, then H$p = HM/M =~ HIH N\ M
= H. Hence G/M =Gp{H, KM/M} where we are substituting H for HM/M. We
now define u:G' - G/M by h » h and k+ N - k + M. Then p extends to a
homomorphism from G’ to G/M, by the universal property of free products
([8], 18.42). It is immediate that u is onto G/M. Hence Oy is an epimorphism from
G onto G/M and

hOu = hy = h, kBuy = (k+ N)u =k + M, forall heH, ke k.

Hence Ou = ¢. So Ker ¢ = Ker 0, i.e. M 2 Ker 0. This means that M = Ker ¢
= Ker 0. As 6u = ¢, this means that gy is 1 — 1 and so is an isomorphism.

We now return to our given d.g. near-ring (R,S).Let G = Gp{x}*(R, +)
= Gp{x} * R,, where we write R, for the subgroup of G isomorphic to (R, +) and
Gp{x} is the free B group on one generator. Define s S as an endomorphism of
G by extending the map

X — sx’ rx - (rS)X

to the whole of G. This is possible by the universal property of free B products
([8), 18.42), since r, — (rs), is an endomorphism of R,. It is easy to check that
this defines a homomorphism from S to a semigroup of endomorphisms of G
which we will still denote by S. Then S generates a d.g. near-ring (R, S) which is
faithful, with G as a faithfu: representation.

THEOREM 4.6. The d.g. near-ring (R, S) defined above is the upper faithful
d.g. near-ring for (R, S).

PRrROOF. Let ¢;5; + - + ¢,5, be a word in the elements of S which is 0 in R,
where ¢, = +1,1 £ i < n. Then

0= x(slsl + ot ‘ann) = 8)8)x + v+ &Sy,
= (gg5; + - + &5,)-

Hence &;s; + - + &,5, = 0in R. So the identity map on S extends to a homomor-
phism 0 from (R, +) to (R, +) and it is a d.g. near-ring epimorphism by theorem
1.3.

Now let 8 be a d.g. near-ring epimorphism from a faithful d.g. near-
ring (T, S) — (R, S) with 9}s = identity. Then (T, S)/I = (R, S) for some ideal I
of (T,S). By lemma 4.4, if H = Fr(x,T,S) is the free (T, S) group on one gen-
erator, then H = Gp{x}* T, with T, = (T, +). So (R, +) = R, is 2 homomor-
phic image of T,, namely R, = T,/I, . Then there is a homomorphism from H to
G extending the map x — x, t, — t,u, where y is the natural map from T, to R,
induced by 6.
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By the definition of the action of S on H, we know that I_is an S group, and
hence so is I, its normal closure in H. Hence H/I” is a (T, S) group and by lemma
4.5, H/I! =~ Gp{x}*R, = G. The action of S T on G is the same as the action
of S = R on G. Hence (R, S) is a homomorphic image of (T, S) under a d.g. near-
ring homomorphism ¢ which extends the identity map on S. Then 8 = ¢8, and ¢
is uniquely defined as it must act as the identity map on S, a generating set for
(T, +). This finishes the proof.

We will close with a fairly straightforward, but interesting result about the
adjoining of identities.

LemMa 4.7. Let (R,S) be a faithful d.g. near-ring. Let G = Fr(x,R, S) be
the free (R,S) group on the generator x. If (T, U) is the d.g. near-ring contained
in E(G), with U = S U {1}, where 1 is the identity map on G, then (T, +) = G.

PROOF.As (R, S) < (T, U)with S = U,(T, +) givesrise to a faithful represen-
tation of (R, S). So the map x — 1 extends to an (R, S) homomorphism 8 from G
to (T, +). Then (xs)0 = 1s = s, 1.e. 5.0 =s. So G& = U and 6 is an epimor-
phism. But (T, U) has a faithful representation on G. Consider the map ¢ : r — xr.
This is a homomorphism from (T, +) to G such that 1¢ = x1 = x and s¢ = xs
= s,. Hence 0¢ is the identity map on {x,s,; s€ S} a generating set for G, and ¢0
is the identity map on U, a generating set for (T, +). So 6 and ¢ are both isomor-
phisms, giving us the result we want.

We now compare this with lemma 4.4 which states that G = G, * G, with
G, = Gp{x} the free B group on one generator, and G, = (R, +). From lemma
4.7, G, = Gp{S,} = (R, +) under the isomorphism s, — s. So (T, U), the d.g.
near-ring obtained in the natural way by adjoining an identity to (R, S), where
(R,S) is a faithful d.g. near-ring can be characterized as follows: (T, +) is the
free B product of (R, +) with a free B group on one generator, namely 1, and
multiplication is determined by U = S U {1} where 1 acts as multiplicative iden-
tity. If we now let B be the variety of abelian groups, then the free 8 group on one
generator is a copy of Z, the iritegers under addition, the free 8 product is the
direct sum and we can see that we have the standard method for adjoining an
identity. Of course in an abelian variety, d.g. near-rings are rings, and all rings are
faithful. So this process can always be carried out for rings.
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