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A NOTE ON THE IMPULSE DUE TO A
VAPOUR BUBBLE NEAR A BOUNDARY
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Abstract

An expression for the impluse due to a vapour (cavitation) bubble is obtained in terms of
an integral over a nearby boundary. Examples for a point source near a free surface, rigid
boundary, inertial boundary and a fluid of different density are considered. It appears
that the sign of the impluse determines the direction a cavitation bubble will migrate and
the direction of the high speed liquid jet during the collapse phase. The theory may
explain recent observations on buoyant bubbles near an interface between two fluids of
different densities.

1. Introduction

Cavitation damage to turbo-machinery is a major concern to hydraulic engineers.
One of the mechanisms causing damage is the 'pitting' due to a high speed liquid
jet impacting on the rigid boundary. However, for a free surface or a suitably
pliable surface, the jet is directed away from the surface. In this paper we consider
the correlation between the sign of the bubble impulse and the direction of
movement of the bubble and the high speed liquid jet near different types of
plane boundaries: for example a free surface, an interface between two fluids of
different density, a boundary with a prescribed mass per unit area (inertial
boundary) and a rigid boundary. It is suggested that the response of both the
bubble and the boundary depends on the inertia of the boundary relative to that
of the fluid containing the vapour bubble.

A natural extension of the study on the impulse is in its use as a check on the
global conservation of linear momentum. Global balances for mass and energy
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are generally used as checks on the numerical solution of integral equations in
fluid mechanics (see, for example, Longuet-Higgins and Cokelet [12], Fen ton and
Mills [7]) but linear and angular momentum less frequently. In recent numerical
studies of the growth and collapse of vapour (cavitation) bubbles near different
boundaries (Blake and Gibson [5], Gibson and Blake [9]) the calculation of the
impulse was used for global checks on the approximate numerical solution of the
integral equations.

It is well known that there is no force acting on a body in steady flow in an
infinite inviscid fluid in the absence of circulation (d'Alembert's paradox).
However, it is not so well known that d'Alembert's paradox may not hold in the
case of a deformable body in an infinite fluid. Examples of cases where a body
may propel itself through a fluid have been presented by Benjamin and Ellis [3],
Saffman [13] and more recently Wu [14]. Wu formally develops a mathematical
relationship between the impulse due to a deformable body in an infinite fluid
and the forces acting on it. In this paper we seek to extend Wu's analysis to a
cavitation bubble in a semi-infinite fluid and to illustrate the results with several
examples of a source immediately adjacent to different types of boundary. In
addition, the theory developed in the paper helps explain some very recent
observations on the growth and collapse of cavitation bubbles near flexible
boundaries (Gibson and Blake [9]) and the interface between fluids of different
density (Chahine and Bovis [6]).

2. Derivation of impulse

The linear momentum P of a volume V, surface S' and unit outward normal n
of fluid of constant density p is defined as follows:

P = p(udV= pf V$dV= pf QndS. (1)
Jy Jy Jy

Here, we are assuming that we have inviscid potential flow and that we can define
the velocity as a gradient of a scalar potential satisfying Laplace's equation.

In the theory to be developed in this section for a vapour bubble near a
boundary in a semi-infinite fluid, the material surface S' will be divided into three
separate surfaces: (i) the bubble surface S, and a material control surface of (ii)
the approximately planar boundary 2fc to the half space and (iii) the outer
boundary 2 (see Figure 1). We now write the fluid momentum P as the sum of
two integrals

= p\j+f
[Js •'sus

(2)

https://doi.org/10.1017/S0334270000000321 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000321


A vapour bubble near a boundary 385

x, or x

Control
Surfaces

Boundary

Fig. 1. Geometry and surface described in text.

The lower half-space boundary 2A need not be coincident with the plane x = 0.

Clearly in the case of a cavitation bubble, the potential will have a source-like
behaviour and hence </> will vary inversely with distance. If the outer control
surface is allowed to extend to infinity, the expression for the fluid momentum
normally yields a divergent integral (the exceptions being the infinite fluid and
the linearised free surface examples). The solution to this dilemma is to consider
the rate of change of the fluid momentum in a finite volume V which must be
equal to the force F acting on the fluid, either at the external boundaries or due to
a buoyancy force (Landau and Lifshitz [11]), as follows:

dt
(3)

Omitting buoyancy forces for the moment and considering the remaining
surface pressure forces, we have

pndS. (4)

The first integral on the right of (4) can be omitted since the pressure p is a
constant (and equals pc the vapour pressure) evaluated over a closed surface.
Using the expression for P given in (2), we obtain, upon rearranging (4),

(5)
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As the outer control boundary 2 U S6 is a material surface, we may use the
general surface integral relation defined in Batchelor [2] (page 134) and for this
particular example yielding,

j-Lf *nds)=pf ^ndS-pf 4>l;(v4>)dS, (6)

where -§-, is the substantial derivative. On substitution of (6) and the Bernoulli
pressure expression

p = p — p — — p I u I (7)

into (5), we obtain

- - - ' '</> 1 ~ ? | V<t>\2n\dS. (8)
dt 'Vyuy . r a«

Now noting that <j> = O(l/R) and by letting 2 be extended to large R we see that
the integral over 2 is O(\/R2). On taking the infinite limit, the value of this
integral is zero and we are therefore left with the integral over the boundary
surface 2fc. Upon integration, we obtain the expression for the bubble impulse

e(t)dt, (9a)
•'O

where

Fe(0 = p(U%^-||V<H2nU- W

Thus, we now have a relation between the bubble impulse and an integral over
the boundary surface 2 6 . By rearranging (9b) and with the knowledge that <J> is
harmonic, we can also obtain the following equivalent expression for Fe(f):

S. (9c)

In the next section this expression will be used to obtain the impulse for various
singular source solutions corresponding to different (linear) boundary conditions.
It appears that the sign of the impulse determines the direction that the cavitation
bubble will migrate. In the linear analysis to follow we choose x = 0 to be the
boundary surface 2fc, then the expression for Fe(?) in the x-direction becomes (in
cylindrical coordinates)

Fx(t)=F,(t)-ex = p*[ r(u2-v2)dr, (10)
•'o

where ex is the unit vector in the x-direction and u and v are the velocities in the x
and r-directions respectively.
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The expressions for Fe(f) may also be defined as an integral over S by using the
identity

JS •'2U2.1

which, on substitution into (9b), yields

F.(*) = -
2nj dS. (12)

This is self consistent, since we would also obtain (12) if we applied the Batchelor
formula (6) to ls and used the Bernoulli pressure expression on the bubble surface

S = 0. (13)

3. Point source-plane boundary examples

Let us suppose we have a point source of strength m(t) located at the point
x = h, r = 0 in the fluid. It is then straightforward to calculate the x-component
of the impulse Ix(t) by evaluating the integral over the plane boundary (x = 0)
for the following cases.
(a) Rigid boundary

In this case we define the potential <j> due to a point source as follows:

1 1
1/2

On the boundary (x — 0) we have

and

On substitution into (9a) and (10) we obtain the following expression:

mr

(14)

(15a)

(15b)

(16)
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(b) Free surface (linearised boundary condition <#> = 0)
In this case the potential is simply

</> =
_ ~m{t) 1

- hf
(17)

T h e velocities on x = 0 are

3d) mh

•i + hi>n ° 8 a )

and

o = | £ = 0. (18b)

On substitution into (9a) and (10) we obtain

(t)dt>0. (19)

We may have anticipated this change from the rigid boundary to free surface
example as the law of Bjerknes tells us that an oscillating body will migrate
towards a rigid boundary and away from a free surface (Birkhoff and Zarantonello
[4]).
(c) Inertia! boundary

Let us suppose there is some material of mass per unit area a forming the
boundary to the fluid (that is, the boundary has no rigidity). In this case the
linearised boundary conditions at x = 0 become

H = 9£ ( 2 0 a )
dt dx

and

a— = p -p, (20b)
dt2

where x = f(r, t) is the displacement of the boundary. Equation (20a) is the
kinematic condition equating the material velocity to the normal fluid velocity,
whereas (20b) is the dynamic boundary condition with the pressure on the
non-fluid side being pm. If we substitute the linearised Bernoulli equation and
(20a) into (20b) and integrate we obtain

o<j>x — p<J> = 0 on x = 0. (21)
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In this case it is convenient to write the solution for a point source in two
different ways

-m(t) 1 1

hf + r2]1/2

a Jo

(22a)

and

[(x - hf + r2]V2 [(x + hf 1/2

(22b)

Here Jo is a first kind Bessel function of zeroth order. The first two terms in (22a)
correspond to the rigid boundary expression for the potential while in (22b) the
first two terms correspond to the free surface example. The advantage of the
double formulation is that we need only consider the Hankel transforms when we
substitute these expressions into (9a) and (10). Thus, for the velocities on x = 0
we have

_ 9</> _ —m(t)p/o

and

_H _ m(t) i„ | + p/a

(23a)

(23b)

where /, is a Bessel function of first kind and order. On substitution into (9a) and
(10), we obtain, for the x-component of the impulse,

where

H(a*)=

(24a)

(24b)

(24c)

(24d)
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and a* is the following non-dimensional parameter:

a* = ph/a. (25)

The integrals in (24b, c, d) may be evaluated either (i) numerically after first
using an identity from Laplace transform theory to remove the oscillatory
behaviour of the Bessel functions and then a transformation of the infinite
interval of integration to a finite one or (ii) analytically after using Parseval's
formula for Hankel transforms (Keane [10]). The resulting analytic expression for
H(a*) is as follows:

H(a*) = a* - 1/4 - 2a*Va*£,(2a*), (26)

where Et is the exponential integral (Abramowitz and Stegun [1]). Using the
asymptotic expansions of Ex for small and large a*, we obtain the rigid boundary
and free surface limits of —0.25 and 0.25 respectively. The graphical solution for
H(a*) is illustrated in Figure 2. The single zero of H(a*) occurs at a* = a% =
0.7798057 which corresponds to a zero impulse; the same as would be obtained
for a simple source in an infinite fluid.

.250

H

.125

.000

-.125

- . 2 5 0 • -

' 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 7 . 0 8 . 0 9 . 0 1 0

Fig. 2. Graph of H against a* as defined in (26).

Of particular significance is that for a* < aj the response of the fluid will tend
towards that of a rigid wall whereas for a* > aj the behaviour will be more like
that of a free surface. In the case of a finite body, such as a cavitation bubble, the
potential may be represented by a distribution of sources over the body or along
the axis of symmetry. Clearly cases will arise where parts of the bubble may
respond as if it is near a rigid boundary whereas in other parts of the bubble the
response may tend towards that of a free surface. In the case of the growth and
collapse of cavitation bubbles near flexible boundaries, the above discovery may,
in part, explain the observations of a cavitation bubble "sticking" to a flexible
membrane as reported in Gibson and Blake [9].
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(d) Interface between two fluids
In this case let us suppose we have two fluids; the lower one with density p, ,

the upper fluid with density p2. If the source is located in the lower fluid at x = h
and if the linearised dynamic boundary condition

Pl</>1 = Pl<t>2 ( 2 7 )

is applied on the interface x — 0, the expressions for the two potentials are

~~m 1 Pi ~ Pi
11/2

y{x — n) T r~j • - y^x -r- n) T r-J

and

(28a)

- ( 2 8 b )

On substitution into the expression for the x-component of the impulse (10), we
obtain

P g J ( P i - P 2 > (29)
(p, + fc)' ^ '

yielding the expected result for p2 tending to both 0 and oo as well as its zero
value at p, = p2 (corresponding to an infinite fluid). This suggests that, in the
absence of buoyancy forces on a cavitation bubble, the liquid jet will move in the
direction of the denser fluid.

4. Influence of buoyancy forces

In a recent paper by Chahine and Bovis [6] on the growth and collapse of a
cavitation bubble near the interface between two fluids of different density, the
liquid jet was observed to move away from the interface when the cavitation
bubble was close to the interface but in the opposite direction when further away.
This suggests that buoyancy forces might be influencing the motion of the jet.
Indeed Gibson [8] observed and showed that buoyancy forces can alter the
direction of the liquid jet.

This can be understood if we include the additional buoyancy force term in the
expression for the impulse obtained in (29). Thus we obtain, approximately,

( 3 0 )
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where pc is the density of the vapour, g is the gravitational acceleration and V* is
the instantaneous volume of the cavitation bubble. In this case the source strength
m is approximately ^ . It is clear from (30) that for a cavitation bubble of
specified size and externally applied pressure that the sign of Fx(t) will depend on
the distance of the centroid from the interface. Thus, if the bubble is close to the
interface, Fx(t) may be positive indicating that the liquid jet will be directed away
from the interface whereas further away it will be negative in which case the jet
will be directed towards the interface. This theory would therefore suggest that
Chahine and Bovis' cavitation bubbles were affected by buoyancy.

5. Conclusions

It appears that the sign and magnitude of the bubble impulse may be valuable
indicators as to the direction the liquid jet moves during the collapse phase. The
larger the magnitude of the impulse, for given bubble volume, the greater the
potential for cavitation damage. The impulse appears to predict all previously
observed phenomena if we also include buoyancy forces in our calculations.
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