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We analyse moment and probability density function (PDF) statistics of a passive scalar
Θ at a Prandtl number of Pr = 0.71 in a turbulent jet. For this, we conducted a
direct numerical simulation at a Reynolds number of Re = 3500 and, further, employed
Lie symmetries applied to the multi-point moment equations, generalising recent work
(Nguyen & Oberlack 2024b under review with Flow Turbul. Combust.) that focused on
pure hydrodynamics. It is shown that the symmetry theory also provides highly precise
results for free shear flows for all the quantities mentioned and statistical symmetries
again play a key role. The scalar statistics are partly similar to the Uz velocity statistics,
and in particular, as in the above-mentioned work, a significant generalisation of the
classical scalings has been derived so that a variation of the scaling laws solely controlled
by the inflow is possible. An exponential behaviour of the scaling prefactors with the
moment orders m and n for scalar and velocity is also discovered for any mixed moments.
Instantaneous Θ-moments and mixed Uz-Θ-moments exhibit a Gaussian distribution
with variation of the scaled radius η = r/(z − z0). Therein, the coefficient in the Gauss
exponent is nonlinear with varying moment orders m and n. The scalar PDF statistics
are clearly different from the velocity statistics, i.e. already deviate from the Gaussian
distribution on the jet axis, as is observed for the Uz statistics, and become clearly skewed
and heavy tailed for increasing η.
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1. Introduction
Pioneers in turbulence research identified a universal pattern in the statistical moments of
canonical flows. Within these universal regions, von Karman & Howarth (1938) were prob-
ably first to identify similarity solutions, also known as turbulent scaling laws. However,
these laws were restricted to second-order moments. Self-preservation analysis, with a
primary emphasis on turbulent shear flows and especially turbulent jet flows, has led to the
derivation of classical scaling laws, exemplified by the seminal work of Townsend (1956,
1976). Both laminar and turbulent jets show a strong tendency towards self-similarity.
In the context of laminar round jet flow, an exact solution based on a similarity ansatz
was provided by Schlichting (1933). Observations from various experiments suggest that
turbulent round jet flows tend to reach a self-similar state in the far field (Wygnanski &
Fiedler 1969; Panchapakesan & Lumley 1993a; Hussein, Capp & George 1994).

Direct numerical simulations (DNSs) have emerged as powerful tools to investigate
turbulent flows with unprecedented precision. To validate scaling laws, especially of
higher-order moments, high-fidelity statistics are imperative, which can be achieved by
DNSs. However, there have been limited DNS studies for turbulent round jet flows,
especially those with a long box and incorporating an additional passive scalar. A passive
scalar refers to a scalar quantity, such as temperature or the concentration of a chemical
or contaminant, that does not influence the fluid flow. This concept applies specifically
to cases where temperature variations are small and concentrations are dilute so that
fluid properties are not affected. The Reynolds number Re in these studies has often
been kept low, and the averaging process has been limited to small time frames due to
computational constraints. Notably, Boersma, Brethouwer & Nieuwstadt (1998) initiated
DNS for turbulent round jet flows, providing early insights into the influence of inflow
conditions on self-similarity scaling in the far field at Re = 2400 based on the orifice
diameter. They imply that the collapse of the velocity and Reynolds stress profiles depends
on the inflow conditions. However, they were unable to resolve the far field due to
computational resources. As an extension of this work, Lubbers, Brethouwer & Boersma
(2001) examined the self-similarity of a passive scalar concentration at Re = 2000 as well
and a Schmidt number Sc = 1 in a box with the length of z/D = 40 where D is the jet
orifice diameter. The statistics have been extracted over 80D/Ub time units, where Ub
refers to the bulk velocity at the inlet. The results show that the mean concentration
in the far field is self-similar. However, the root mean square of the concentration
fluctuations are not self-similar. In Babu & Mahesh (2005) a DNS of a turbulent jet at
Re = 2400 and Sc = 1 is performed. The data are averaged over 1400D/Ub time units.
The instantaneous radial profiles of the velocity and passive scalar exhibit similarities and
alternate between ‘top-hat’ and ‘triangle’ profiles, both spatially and temporally. These
profiles are influenced by entrainment from the free stream into the jet, resulting in a
mean Gaussian profile as a function of r . Diffusion-dominated regions are observed,
occurring closer to the jet centre and as ‘brush-like’ regions near the jet edge. The
width of these brush-like regions decreases with increasing Re, suggesting a transition
in mixing behaviour. More recent simulations by Gilliland et al. (2012) focused on a DNS
at Re = 2400 and a large eddy simulation (LES) at Re = 68 × 103 in a box length of
z/D = 50 to investigate scalar intermittency in a turbulent round jet. This simulation is
quite recent and the averaging for both simulations was performed over approximately
900D/Ub time units. The results emphasise the importance of external intermittency in
scalar mixing. The study highlights the need for improved subgrid-scale models in LES
to improve the accuracy of predicting external intermittency over a wide range of Re.
Recently, we (Nguyen & Oberlack 2024a) were able to contribute to this field with a DNS
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of a spatially evolving round jet flow at Re = 3500 with a box length of z/D = 75. The
statistics were averaged over 75 000D/Ub time units, achieving an unsurpassed quality of
DNS statistics for turbulent round jets. Notably, this DNS consists of a periodic turbulent
pipe flow DNS as an inlet that ran simultaneously with the round jet DNS. Velocity
moments up to the third order, and in a related publication (Nguyen & Oberlack 2024b) up
to order ten, have been extracted, showing self-similarity, and probability density functions
(PDFs) of the axial velocity over various radial distances from the centreline have also
been collected.

However, given that DNS was not feasible until the 1980s, many researchers opted
for experimental approaches instead. In a notable study, Birch et al. (1978) conducted
experiments measuring the turbulent concentration parameters of a free round methane jet
up to the fourth moment. Their results revealed a departure from Gaussianity in the mean
passive scalar concentration along the centreline, as indicated by the negative skewness
of the PDF. Dowling & Dimotakis (1990) present an experimental investigation of the
turbulent concentration field formed when a free turbulent jet at Re = 5000, 16 × 103,
40 × 103 mixes with gas entrained from a quiescent reservoir at a Prandtl number
Pr = 1−1.2. Laser-Rayleigh scattering measurements taken in the range z/D = 20−90
show a nearly independent behaviour with respect to the Reynolds number near the
centreline of the jet for the scaled PDF of the jet fluid concentration. Antonia & Mi
(1993) have measured the average temperature dissipation using parallel cold wires at
Re = 19 × 103 and a Péclet number of Pe = 83 at a distance of z/D = 30 from the
orifice. The resulting components of the average temperature dissipation, particularly
the radial and azimuthal values were found to be nearly equal, and only slightly larger
than the axial component. The deviation from isotropy of the temperature dissipation
was small, especially when compared with results in other free shear flows. In the
work of Panchapakesan & Lumley (1993b), flying hot-wire measurements of a helium
jet were made up to third-order moments, including mixed moments measured in the
range z/D = 50−120. The measurements, consistent with earlier studies of helium jets,
provided insights into the mean velocity field, the concentration decay constant and the
radial profiles of mean velocity and mean concentration. More recently, Darisse, Lemay
& Benaïssa (2015) studied a slightly heated turbulent round air jet at Re = 14 × 103

using temperature as a passive scalar. Laser Doppler velocimetry and laser Doppler
velocimetry cold-wire thermometry measurements were performed for the variance, third-
order moments and mixed moments at z/D = 30. This allows the investigation of all
passive scalar transport budget terms except the dissipation term, which is derived by
closing the balance. While previous studies, such as Birch et al. (1978), have ventured into
the investigation of moments up to the fourth order in turbulent round jets, the investigation
of moments beyond the third order has been relatively uncharted territory.

Turbulent scaling laws for higher-order moments can be systematically derived by
applying symmetries in the underlying equations, a method known as Lie-symmetry
analysis. In the pioneering work of Oberlack (2001), he used Lie-symmetry analysis in
turbulence to generate invariant solutions, which are synonymous to turbulent scaling
laws. Initially limited to the mean velocity, this approach was later expanded upon by
Oberlack & Rosteck (2010). Their work recognised that the multi-point moment equations
(MPMEs) harbour Lie symmetries not present in either the Euler or the Navier–Stokes
equations, leading to the term ‘statistical symmetries’. This extension broadens the scope
of Lie-symmetry analysis and allows for a more comprehensive understanding of higher-
order moments in turbulent flows. In the realm of turbulence statistics, the commonly
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employed Reynolds decomposition

Ui = Ui + ui (1.1)

prevails, where (·) signifies time averaging, Ui represents the mean velocity and ui
embodies turbulent fluctuations. This decomposition is equally applicable to the passive
scalar concentration

Θ = Θ + θ. (1.2)

Within the Reynolds-averaged Navier–Stokes model, the instantaneous moment Hi j =
UiU j undergoes a decomposition

Hi j = UiU j + ui u j , (1.3)

leading to the emergence of the Reynolds stress tensor Ri j = ui u j . The introduction
of Hi j and Ri j distinguishes two distinct approaches: the omission of the Reynolds
decomposition is called the H -approach, while the conventional method is denoted as
the R-approach. Analogously, the decomposition of the passive scalar concentration
extends to

HΘΘ = Θ
2 + RΘΘ, (1.4)

or mixed moments denoted by

HiΘ = Ui Θ + RiΘ, (1.5)

where RΘΘ = θ2 and RiΘ = uiθ . Focusing on the MPMEs based on instantaneous
velocities yields an infinite set of linear equations, where coupling occurs only between
‘neighbouring’ equations. The identification of symmetries within the MPMEs allows for
the derivation of invariant solutions, providing a rigorous basis for turbulent scaling laws.
Notably, in the works of Sadeghi et al. (2018, 2021), this method has demonstrated success
not only for velocity moments but also for passive scalar moments up to the second order
in temporally evolving turbulent plane jets. Recent contributions by Oberlack et al. (2022)
extended the application of this methodology, deriving turbulent scaling laws for moments
of arbitrary order in the log and the core region of a turbulent channel flow. The derived
laws were successfully validated through a new DNS of a Poiseuille channel flow at a
friction Reynolds number of 104. Alcántara-Ávila et al. (2024) expanded on this with
symmetry-based turbulent scaling laws for streamwise velocity and temperature moments
of arbitrary order for the core region of a turbulent channel which have been validated by
DNS of various Reynolds numbers. In it, the authors also derived the MPMEs for a scalar
and for mixed scalar–velocity moments for the first time, which are also used here.

In our recent work (Nguyen & Oberlack 2024b), we applied Lie-symmetry analysis to a
spatially evolving turbulent round jet flow, where we were able to derive turbulent velocity
scaling laws up to an arbitrary order and validate them against DNS data of velocity
moments of up to tenth order. Furthermore, it was found that the effects of intermittency
are hidden in the symmetries of the governing equations, highlighting the importance of
Lie-symmetry analysis in improving our understanding of turbulence.

In this work, DNS data on a passive scalar shall be presented and made available to the
community. In addition, this versatile method of Lie-symmetry analysis is intended to be
applied to the multi-point scalar equation and the multi-point velocity–scalar equation for a
turbulent round jet flow. Although DNSs are computationally expensive, they are required
to compute high-quality moments of higher order. A LES, although less expensive, and
therefore allowing for higher Reynolds numbers, does not fulfil this requirement.
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2. Governing equations
The governing equations for the present study are the Navier–Stokes equations (NSEs)
describing incompressible flow. They are composed of the continuity equation

∇ · U = 0, (2.1)

and the momentum balance equations

∂U
∂t

+ (U · ∇) U = −∇ P + 1
Re

∇2U, (2.2)

where U , P and t represent the velocity vector, pressure and time, respectively, and the
Reynolds number is defined as

Re = Ub D

ν
, (2.3)

where Ub, D and ν are the bulk velocity at the orifice, the diameter at the orifice and the
kinematic viscosity, respectively. In addition, a convection–diffusion equation governs the
behaviour of a passive scalar

∂Θ

∂t
+ (U · ∇) Θ = 1

Pe
∇2Θ, (2.4)

where Θ denotes the passive scalar, and Pe is the Péclet number, defined as the product
of the Reynolds number and the Prandtl number, i.e. Pe = Re Pr . Here, Θ is bound by
the boundary and initial conditions of a given physical problem.

3. Direct numerical simulation details
The numerical solution of the NSEs is performed with Nek5000, a solver developed by
Fischer, Lottes & Kerkemeier (2008) based on a high-order spectral element method
outlined in Patera (1984). For optimal efficiency, a polynomial order of N = 7 is selected
and the backward differentiation formula of second order (BDF2) scheme is employed for
time stepping. The DNS of the turbulent round jet flow is conducted at Re = 3500, with a
box length of z/D = 75. A fully turbulent velocity profile of a pipe flow is imposed at the
inlet, and on-the-fly statistical averaging is performed for each time step over 75 000D/Ub
units. Despite the significantly larger box, this corresponds to nearly 200 passes of a
particle through the entire computational domain of the jet. A detailed description of the
DNS methodology can be found in Nguyen & Oberlack (2024a). In addition, a passive
scalar is solved using (2.4) for air at Pr = 0.71, which can be interpreted as the heat
conduction of air. Buoyancy effects have been explicitly excluded, i.e. this scalar can
be considered passive since the fluid is incompressible (ρ = const., where ρ denotes the
density) and hence unaffected by gravity. The passive scalar is introduced at the inlet as
a top-hat profile with Θ = 1. At z/D = 0 outside the jet inlet, the passive scalar is set to
zero. To avoid unphysical behaviour, the thermal open boundary condition, as introduced
in Liu, Xie & Dong (2020), is implemented for the passive scalar at the lateral boundaries
and at the jet outlet at z/D = 75.

4. Passive scalar statistics
In this section, we delve into a detailed investigation of the statistical properties associated
with the passive scalar concentration in turbulent round jet flows. Leveraging insights
from the DNS, we explore various facets of the passive scalar field, ranging from mean
concentration profiles to higher-order statistical moments and PDFs. Through rigorous
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0
/
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z/D

Figure 1. Mean inverse passive scalar concentration at the centreline over the distance of the orifice: Birch
et al. (1978) ( ), Babu & Mahesh (2005) ( ), Lubbers et al. (2001) ( ), present DNS ( ).

Reference Re Sc or Pr BΘ z0/D η1/2,Θ

Birch et al. (1978) 16 × 103 0.70 4.0 5.8 0.097
Babu & Mahesh (2005) 2400 1.0 — — —
Lubbers et al. (2001) 105 1.0 5.5 0.5 0.108
Present DNS 3500 0.71 4.9 −0.132 0.109

Table 1. Various jet parameters of DNS and experiments.

comparisons with previous experimental results, we aim to outline both agreements and
differences, providing a comprehensive view of the dynamics governing turbulent round
jet flows.

4.1. Mean passive scalar statistics
The mean passive scalar concentration Θc is scaled by the mean centreline concentration,
which is linearly related to the distance from the orifice

Θc(z)

Θ0
= BΘ D

z − z0
. (4.1)

From the present DNS, we deduce a decay constant of BΘ = 4.9 with a virtual origin at
z0/D = −0.132, which means the virtual origin is close to the virtual origin of the velocity
z0/D = 0 (Nguyen & Oberlack 2024a) taken from the classical velocity scaling (Boersma
et al. 1998)

U z,c(z)

U 0
= Bu D

z − z0
. (4.2)

This is compared with Lubbers et al. (2001), where they found z0/D = 0.5 for the
concentration and z0/D = 5.5 for the axial velocity. Figure 1 showcases a consistent and
smoother linear trend of the inverse passive scalar concentration up to z/D = 75 compared
with other experiments and DNS. A collection of the data from the experiments shown in
figure 1 can be found in table 1.

For the velocity the decay constant is Bu = 5.15 (Nguyen & Oberlack 2024a), implying
that Θc decays faster than the velocity. Lubbers et al. (2001) have observed the same, but
their virtual origins for the velocity and the passive scalar concentration were further apart.
The value of Θc reaches self-similarity at z/D = 15, as depicted in figure 2. This onset
occurs earlier than the assumed z/D = 20 in Lubbers et al. (2001). Upon comparing the
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0.1

η = r/(z – z0)

0.2 0.30

0.5

1.0

Θ
/
Θ

c

Figure 2. Mean passive scalar Θ scaled with the centreline passive scalar concentration Θc and plotted as a
function of the similarity coordinate η (see (5.20)) at different distances from the orifice: z/D = 15 ( ),
25 ( ), 35 ( ), 45 ( ), 55 ( ).

0.1 0.2 0.30

2

4

6

×10−2

R Θ
Θ
/
Θ

c2

η

Figure 3. Variance of the passive scalar fluctuations RΘΘ scaled with the centreline passive scalar
concentration Θ

2
c and plotted as a function of the similarity coordinate η at different distances from the orifice:

z/D = 25 ( ), 35 ( ), 45 ( ), 55 ( ).

profile of U z,c with that of Θc, the latter shows a slightly larger spreading rate. The Prandtl
number describes the relative thicknesses of the velocity and thermal boundary layers.
With Pr = 0.71, the thermal boundary layer is thicker than the velocity boundary layer,
leading to a larger spreading rate. The half-width of the mean passive scalar concentration,
η1/2,Θ = 0.109, exceeds that of the velocity, η1/2,u = 0.089, as reported in Nguyen &
Oberlack (2024a), where η = r/(z − z0) is the usual jet-type similarity coordinate, as
derived below in (5.20). Remarkably, η1/2,Θ closely aligns with the observation in Lubbers
et al. (2001), where η1/2,Θ = 0.108 in their DNS.

In summary, the characteristics of Θc are consistent with those observed by Lubbers
et al. (2001). The profiles exhibit self-similarity and a faster spread compared with the
velocity profile. Moreover, the virtual origins of concentration and velocity appear to have
shifted closer to each other compared with the DNS by Lubbers et al. (2001), which is
attributed to the turbulent pipe inlet.

4.2. Second-order passive scalar and mixed statistics
The variance of the passive scalar fluctuation RΘΘ is shown in figure 3 for different
distances z from the orifice. The value at η = 0 agrees with the results of Lubbers et al.
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10 20 30 40 50 60 700

0.1

0.2

0.3

0.4

z/D

√ R Θ
Θ
/
Θ

c

Figure 4. Centreline r.m.s. of the passive scalar fluctuation
√

RΘΘ scaled with the centreline mean passive
scalar concentration over the distance z from the orifice: Darisse et al. (2015) ( ), Birch et al. (1978) ( ), Babu
& Mahesh (2005) ( ), Lubbers et al. (2001) ( ), present DNS ( ).

(2001) and Darisse et al. (2015), both of which report values around 0.04 and slightly
above. However, the off-axis peak exceeds the value of 0.05 measured by Darisse et al.
(2015). The peak is at η = 0.082, which is slightly towards the centre of the inflection
point of the passive scalar profile in figure 2 at η = 0.089. The inflection point in the scalar
profile corresponds to the region where the scalar is being transported most effectively
from the jet core to the surrounding fluid. In turbulent round jet flows, turbulent eddies
begin to form at the edge of the jet inlet. These eddies grow and interact with the scalar
field as the jet develops. This process enhances the mixing of the scalar within the shear
layer between jet and the surrounding ambient fluid, leading to fluctuations in the scalar
field. The mixing begins slightly inside the region where the scalar gradient is steepest
which may lead to the peak in fluctuations on the centre-facing side of the inflection
point.

Lubbers et al. (2001) notes in figure 4 that the normalised root mean square (r.m.s.) of
the passive scalar fluctuation

√
RΘΘ shows an increasing trend rather than a horizontal

line, the former indicating non-self-similarity. This trend can be attributed to the smaller
axial length of their computational box, as the present DNS shows a slight increase up to
z/D = 35. After this point, however,

√
RΘΘ stabilises around 0.22, supporting Dowling

& Dimotakis’s (1990) conclusion that
√

RΘΘ lies between 0.23 and 0.24, with the present
DNS slightly below this range.

The turbulent diffusive fluxes shown in figures 5 and 6 exhibit a close resemblance to the
radial profiles in Darisse et al. (2015). The measured maximum values for RrΘ/(U z,cΘc)

and RzΘ/(U z,cΘc) in Darisse et al. (2015) are 2.2 and 3, respectively, consistent with
the 2.2 and 3.2 values observed in figures 5 and 6. In addition, the value at η = 0 for
RzΘ/(U z,cΘc) is approximately 0.024 in Darisse et al. (2015), closely matching the range
of 0.025 − 0.026 in the present DNS.

4.3. Third-order mixed statistics
There are only quite few experimental data on the radial profiles of the third-order mixed
statistics RiΘΘ , due to their sensitivity to disturbances in experimental set-ups. In contrast,
the present DNS provides a well-converged data set, allowing a detailed examination of
these statistics. Comparable experiments are mainly the helium jet of Panchapakesan &
Lumley (1993b) and the heated jet by Darisse et al. (2015), which provide a basis for
validation. Notably, Antonia, Prabhu & Stephenson (1975) also contributed data for RiΘΘ ,
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0.1 0.2 0.30

1

2

×10−2

R r
Θ
/
(U

z, 
cΘ

c)

η

Figure 5. Turbulent heat flux RrΘ normalised with U z,cΘc at different distances from the orifice: z/D = 25
( ), 35 ( ), 45 ( ), 55 ( ).

0.1 0.2 0.30

1

2

3

×10−2

R z
Θ
/
(U

z, 
cΘ

c)

η

Figure 6. Turbulent heat flux RzΘ normalised with U z,cΘc at different distances from the orifice: z/D = 25
( ), 35 ( ), 45 ( ), 55 ( ).

although using a jet with a strong co-flow. Nevertheless, the shape of the data is similar
to the experiments of Darisse et al. (2015), but with different magnitudes. The radial
profiles of the normalised third-order mixed statistics of the present DNS are showcased
in figures 7 and 8 for RrΘΘ and RzΘΘ , respectively. Qualitatively, the shapes of the
aforementioned experiments are similar to those of the present DNS. While the maxima
of the present DNS closely match Darisse et al. (2015), the minima have slightly larger
magnitudes, and Panchapakesan & Lumley (1993b) presents an even larger minimum for
RrΘΘ .

4.4. Probability density functions
In figure 9, the PDFs of the passive scalar concentration on the centreline at different
orifice distances exhibit excellent collapse, closely resembling a Gaussian distribution. The
PDFs are slightly negatively skewed, which can also be read off in figure 11 at η = 0. The
negative skewness on the centreline for a passive scalar concentration was also observed
in the methane jet of Birch et al. (1978).
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0 0.1 0.2 0.3
−2

0

2

×10−3

η
R r

Θ
Θ
/
(U

z, 
cΘ

c2
)

Figure 7. Turbulent heat flux RrΘΘ normalised with U z,cΘ
2
c at different distances from the orifice: z/D = 25

( ), 35 ( ), 45 ( ), 55 ( ).
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Figure 8. Turbulent heat flux RzΘΘ normalised with U z,cΘ
2
c at different distances from the orifice: z/D = 25

( ), 35 ( ), 45 ( ), 55 ( ).
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Figure 9. Probability density functions of Θ(η = 0, z)/Θc(z) at z/D = 15 ( ), 25 ( ), 35 ( ), 45
( ), 55 ( ), 65 ( ) compared with a Gaussian ( ). Here, Θ/Θc(z) is also shown in terms of the
standard deviation σ = 0.215.
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Figure 10. Probability density functions of Θ(η, z)/Θc(z) for z/D = 28 ( ), 42 ( ), 56 ( ).
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Figure 11. Kurtosis K (above) and skewness S (below) of Θ(η, z)/Θc(z) for z/D = 28 ( ), 42 ( ),
56 ( ). Here, K = 3, S = 0 (dashed) are the Gaussian values.

Figure 10 depicts the radial PDF evolution at z/D = 28, 42, 56. As η increases,
significant deviations from Gaussian behaviour and the emergence of heavy and skewed
tails becomes apparent. The PDF approaches a delta distribution for large η due to the
passive scalar concentration being zero in the ambient region. Additionally, we can extract
that the PDFs collapse due to the scaling of η. Quantitative insights from figure 11 show the
collapse of skewness S and kurtosis K for z/D = 28, 42, 56. The Gaussian values, S = 0
and K = 3, serve as references. From figure 11 we can also see that the PDF becomes
more sub-Gaussian as η increases. This is consistent with the observations in Birch et al.
(1978), where the distribution becomes broader with increasing η. This is expected due to
intermittent mixing of the turbulent flow in the inner region and the ambient laminar fluid
in the outer region. For larger η, the mean value of Θ(η, z)/Θc(z) approaches zero. As a
result, the PDF can no longer be approximated by a Gaussian because it would require
negative values of Θ(η, z)/Θc(z) to maintain a Gaussian distribution. In Birch et al.
(1978), the distribution becomes bimodal and they interpret this as intermittency in the
flow. This is similar to what is observed in figure 12 at η = 0.139 for z/D = 28. As the
distance from the centreline increases to η = 0.149, the probability of zero passive scalar
concentration quickly becomes dominant.

5. Symmetry theory for a passive scalar in a round jet
For a detailed analysis of arbitrary mixed moments, we intend to apply Lie-symmetry
analysis to the multi-point velocity–scalar correlation equations (MPVSCEs). The
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Figure 12. Probability density functions of Θ(η, z = 28)/Θc(z = 28) for η = 0.139 (solid) and η = 0.149
(dashed).

MPVSCEs are a generalisation of the MPMEs and the multi-point scalar equations
(MPSEs) and will be derived in the following. Employing Lie-symmetry analysis, we
then construct self-similar (group-invariant) solutions i.e. the scaling laws of the passive
scalar and the mixed velocity–passive scalar moments and compare them with the DNS
data.

5.1. Multi-point correlation equations for passive scalar and velocity moments
In the first step, our goal is to derive the MPSEs and then extend this derivation to the
MPVSCEs, which include both the MPMEs and the MPSEs. Similar to the MPMEs, the
MPSEs are derived by multiplying (2.4) with m − 1 passive scalars at m − 1 different
locations x(l) followed by statistical averaging. Both the MPSEs and MPVSCEs are an
infinite set of linear equations, analogical to the MPMEs. The resulting mth-order MPSE
is expressed as

∂ HΘ{m}
∂t

+
m∑

l=1

[
∂

∂xk(l)

[
HΘ{m+1}[Θ(m+1) �→k(l)]

[
x(m+1) �→ x(l)

]]− 1
Pe

∂2 HΘ{m}
∂xk(l)∂xk(l)

]
= 0,

(5.1)
for m = 1, . . . , ∞, where

HΘ{m} = Θ(x(1))Θ(x(2)) · . . . · Θ(x(m)), (5.2)

and

HΘ{m+1}[Θ(l) �→k(l)]
[
x(l) �→ x(p)

]
= Θ(x(1)) · . . . · Θ(x(l−1))Uk(l) (x(p))Θ(x(l+1)) · . . . · Θ(x(m+1)). (5.3)

A detailed derivation is available in Appendix A. In a similar approach, the MPVSCEs
can be derived with (2.2) and (2.4) giving
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∂ Hi{n}Θ{m}
∂t

+
n∑

l=1

(
∂

∂xk(l)

[
Hi{n+1}Θ{m}[i(n+m+1) �→k(l)]

[
x(n+m+1) �→ x(l)

]]

+ ∂ Ii{n−1}Θ{m}[l]
∂xi(l)

− 1
Re

∂2 Hi{n}Θ{m}
∂xk(l)∂xk(l)

)

+
n+m∑

l=n+1

(
∂

∂xk(l)

[
Hi{n+1}Θ{m}[i(n+m+1) �→k(l)]

[
x(n+m+1) �→ x(l)

]]− 1
Pe

∂2 Hi{n}Θ{m}
∂xk(l)∂xk(l)

)
= 0,

(5.4)

for n, m = 1, . . . , ∞, where

Hi{n}Θ{m} = Ui(1)
(x(1)) · . . . · Ui(n)

(x(n))Θ(x(n+1)) · . . . · Θ(x(n+m)), (5.5)

and the pressure correlation term is defined as

Ii{n−1}Θ{m}[l] = Ui(1)
(x(1)) · . . . · P(x(l)) · . . . · Ui(n)

(x(n))Θ(x(n+1)) · . . . · Θ(x(n+m)).

(5.6)

More details about the derivation can be found in Appendix B. Setting m = 0 yields the
MPMEs from (5.4), while n = 0 yields the MPSEs. The MPVSCEs (5.4) are a set of linear
differential equations, a crucial feature for the occurrence of the two statistical symmetries
(Wacławczyk et al. 2014) to be used below.

5.2. Symmetry-based scaling laws for a passive scalar
The methodology of Lie-symmetry analysis uses continuous transformation groups to
unify methods for solving differential equations and finds applications in various fields
of applied mathematics and theoretical physics. For a comprehensive understanding,
see Bluman, Cheviakov & Anco (2010). In the following, the concept of symmetries
of differential equations is briefly introduced. Symmetries in differential equations are
transformations that leave the form of the equations unchanged. Consider a system of
partial differential equations

F
(

x, u, u(1), . . . , u(p)
)

= 0, (5.7)

with a transformation

x∗ = φ(x, u; a), u∗ =ψ(x, u; a), (5.8)

where x, u, a are the independent variables, dependent variables and an arbitrary
continuous parameter a ∈R, respectively. The transformation is considered a symmetry
transformation if

F
(

x, u, u(1), . . . , u(p)
)

= 0 ⇐⇒ F
(

x∗, u∗, u∗(1), . . . , u∗(p)
)

= 0, (5.9)

1013 A33-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
23

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10236


C.T. Nguyen and M. Oberlack

where u(p) refers to the pth derivative of u. In this case, we consider (2.2) with Re−1 = 0,
which admits the following two-parameter symmetry:

t∗ = eaSt t, x∗ = eaSx x, U∗ = eaSx−aSt U, P∗ = e2(aSx−aSt ) P, aSx , aSt ∈R. (5.10)

If we now insert (5.10) into (2.2) under the frictionless assumption, we find the prefactor
e2aSt−aSx in front of each of the three terms, which can be cancelled out, and we get
((∂U∗)/(∂U t∗)) + (U∗ · ∇∗)U∗ = −∇∗ P∗. This proves the scaling symmetry. Two things
are important for the following analyses: (i) the scaling symmetries of (2.2) but also (2.4)
transfer to the moment equations; (ii) the scaling symmetry of time characterised by the
group parameter aSt is preserved for the stationary case of the Euler equation, because
the above-mentioned scaling factor does not change for this case, even if the unsteady
term is no longer included. This also remains the case if one considers a statistically
stationary flow for the present case, because the key variables such as velocity U and
pressure P apparently also contain time as a basic variable, and this applies equally to the
corresponding statistical moments.

The following set of selected symmetries are relevant for the derivation of the scaling
laws of a turbulent round jet, which have their origin in the NSEs and the passive scalar
equations. In the limit of Re → ∞ they are transferred to the H-approach, which consist
of a translation symmetry in space

T x : t∗ = t, x∗
i = xi + axi , Θ

∗ = Θ,

H∗
Θ{m} = HΘ{m}, H∗

i{n}Θ{m} = Hi{n}Θ{m}, (5.11)

and a scaling symmetry in space (aSx ), time (aSt ) and of the passive scalar (aSθ )

T S : t∗ = eaSt t, x∗
i = eaSx xi , Θ

∗ = eaSθ Θ,

H∗
Θ{m} = emaSθ HΘ{m}, H∗

i{n}Θ{m} = emaSθ+n(aSx−aSt )Hi{n}Θ{m} . (5.12)

It is noteworthy that the NSEs exhibit a restricted set of scaling symmetries compared with
the Euler equations, in particular aSt = 2aSx in the symmetry above which can be shown
by substituting the scaling symmetry (5.10) into the NSEs. For turbulent flows at higher
Re, viscosity dominates only on length scales between the Taylor and the Kolmogorov
length scales or the corresponding wavenumbers in spectral space. This is supported by
Oberlack (2000), where a boundary layer type of asymptotic expansion was performed
in correlation space. As a result, the multi-point equations for turbulent flows for large
scales admit the scaling symmetries of the inviscid form of the equation and, hence, to
leading order, no Re dependence is implied. In full analogy, this can also be shown for
the Pe number dependence. Additionally, a statistical symmetry on the basis of the linear
MPVSCEs in (5.4) is considered

T Ss : t∗ = t, x∗
i = xi , Θ

∗ = eaSs Θ, (5.13)

H∗
Θ{m} = eaSs HΘ{m}, H∗

i{n}Θ{m} = eaSs Hi{n}Θ{m},

which is a measure of intermittency. In Wacławczyk et al. (2014) this has been concluded
by analysing the PDF formulation of the moment equation known as the Lundgren–
Monin–Novikov hierarchy. In this formulation, the group parameter aSs of an equivalent
symmetry scales the shape of a PDF such that intermittency is characterised. This so-
called intermittency symmetry does not appear in either the NSEs or the passive scalar
equation. For the linear systems (5.1)–(5.6), there exists also the generic symmetry of
superposition, which does not play a role in the present subsection, however, and only
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comes into play in §§ 5.4. The combination of the symmetries (5.11)–(5.13) leads to the
characteristic condition for the invariant solution, i.e. turbulent scaling laws of the velocity
and passive scalar moments of a spatially evolving turbulent round jet. Although the
system (5.1)–(5.6) constitutes an arbitrary multi-point moments hierarchy, in the following,
we will only consider one-point statistics and scaling laws, i.e. x(1) = x(2) = . . . = x(n+m)

and therefore Hi{n}Θ{m} = U n
[i]Θm , where [ · ] means that no summation is implied. The

related characteristic condition reads

dr

aSxr
= dz

aSx z + az
= dU n

[i]Θm

[n(aSx − aSt ) + maSθ + aSs]U n
[i]Θm

= dΘ

[aSθ + aSs]Θ
= . . . = dΘm

[maSθ + aSs]Θm
. (5.14)

Symmetry breaking is introduced through flow-specific invariants for the turbulent jet, i.e.
the thermal energy conservation (Sadeghi, Oberlack & Gauding 2021)

IΘ =
∫ ∞

0
UzΘ r dr, (5.15)

and the generalised momentum integral as derived in Nguyen & Oberlack (2024b)

IO =
∫ ∞

0

[
U 2

z − 1
2

(
U 2

r + U 2
ϕ

)
+ 1

2
d
dz

(
UrUz r

)]
r dr. (5.16)

The group parameters of the symmetries are constrained through these invariants. The
symmetry breaking is induced by implementing the symmetries (5.11)–(5.13) in (5.15)
through UzΘ = e−(aSθ+aSx−aSt+aSs)UzΘ

∗
and r = e−aSx r∗, which gives

IΘ = e−(aSθ+aSx−aSt+2aSx+aSs)

∫ ∞

0
UzΘ

∗
r∗ dr∗, (5.17)

and in (5.16) through U 2
i = e−2(aSx−aSt )−aSs U 2

i

∗
and Ui

∗ = e−(aSx−aSt )−aSs Ui
∗
, we obtain

IO = e−4aSx+2aSt−aSs

∫ ∞

0

[
U 2

z
∗ − 1

2

(
U 2

r
∗ + U 2

ϕ

∗)+ 1
2

d
dz∗

(
UrUz

∗
r∗)] r∗dr∗. (5.18)

Inferring IΘ and IO are invariants, i.e. constants, results in the symmetry breaking aSθ +
3aSx − aSt + aSs = 0 and 4aSx − 2aSt + aSs = 0 to maintain invariance. When solved for
aSt and aSθ , we find

aSt = 2aSx + 1
2

aSs, aSθ = −aSx − 1
2

aSs . (5.19)

Under the consideration of the symmetry breaking (5.19), the turbulent scaling laws can
be derived by integrating the characteristic condition in (5.14)

η = r

z − z0
, (5.20)
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˜U n
i Θm(η)eci,nm(n+m) = U n

i Θm(r, z)

(z − z0)
−(n+m)(1+ 1

2 a∗
Ss)+a∗

Ss

, (5.21)

Θ̃m(η)ecmm = Θm(r, z)

(z − z0)
−m(1+ 1

2 a∗
Ss)+a∗

Ss

, (5.22)

where z0 = −az/aSx is the virtual origin and a∗
Ss = aSs/aSx . The variables marked with

(̃ · ) are the invariants i.e. the similarity variables.
In Nguyen & Oberlack (2024b), we found that the statistical symmetry (5.13), giving

a measure of intermittency (Wacławczyk et al. 2014), allows for a possible variation
of the turbulent decay behaviour of the moments in the z-direction agreeing with the
hypothesis of George (1989). However, this observation stands despite the present DNS
data showing that, for the intermittency symmetry (5.13), we have aSs = 0. Nevertheless,
the intermittency reappears in the reduced equations of the MPMEs through the scaling
laws. Subsequently, it is shown that this also applies to passive scalars as detailed in § 5.4.

The invariant η is received by integrating the first two terms of (5.14) and (5.21) results in
the integration of the second and third terms and finally (5.22) emerges after integrating the
second and the remaining terms in (5.14). The integration constants ci,nm and cm emerge
from the integration and move into the exponent after exponentiation. From (5.21), we see
not only the turbulent scaling law of the mixed moments but also a generalisation of the
velocity and passive scalar scaling laws. For m = 0, the velocity scaling laws are received
as derived in Nguyen & Oberlack (2024b), while for n = 0 we obtain the passive scalar
scaling law (5.22).

5.3. Validation of the scaling laws
Just as in Nguyen & Oberlack (2024b), a∗

Ss generates a one-parameter family of scaling
laws which, as conjectured by George (1989), may be induced by a variation of the inflow
condition. However, the purely hydrodynamic turbulence DNS in Nguyen & Oberlack
(2024b) has already shown that a∗

Ss = 0 and we find this result confirmed by the coupling
of the NSEs (2.1) and (2.2) with the scalar equation (2.4). Furthermore, it can be inferred
that a∗

Ss does not differ for the passive scalar scaling law compared with the velocity
scaling law. As a∗

Ss = 0 is dependent on the velocity field and also appears in the mixed
velocity–scalar moments, the passive scalar cannot have an effect on a∗

Ss . Physically, this
makes sense, since a passive scalar has no effect on the velocity field.

The validation of the scaling laws (5.20)–(5.22) is first conducted on the centreline,
where r = 0. To facilitate a comparison with the DNS results, the scaling laws presented
in (5.21) and (5.22) are expressed as

Θm(r = 0, z) = Θ̃m(η = 0)αΘ,mecmm

(z − z0)m
, (5.23)

where αΘ,m is extracted so that Θ̃m(η = 0) = 1 and

U n
i Θm(r = 0, z) =

˜U n
i Θm(η = 0)αiΘ,nmeci,nm(n+m)

(z − z0)n+m
, (5.24)

where we again extract αiΘ,nm so that the invariant ˜U n
i Θm(η = 0) = 1. These formulations

allow for a direct comparison between the scaling laws and the DNS data at the centreline.
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Figure 13. The exponential prefactor αzΘ,nmecz,nm (n+m) ( ) from (5.24) determined with the DNS data for
mixed moments up to n + m = 6 ( ), for Θ moments up to m = 10 ( ) and Uz moments up to n = 10 ( ) is
shown. Additionally, (5.24) is highlighted for m = 0 ( ) and n = 0 ( ).

Analysing the DNS data shown in figure 13, we conclude that for n = 0 we obtain cm =
c = 1.755 and αΘ,m = αΘ = 0.722 for the purely passive scalar scaling (5.22). Note that
both constants are independent of the moment order m. This implies that c is an invariant
with respect to m. So far, this cannot be derived directly from symmetry theory, but support
is essentially from the DNS data.

Extending this to the scaling law of the mixed moments for i = z in (5.24), it can be
observed that the constants in figure 13 span a plane. For i = r, ϕ, a ‘discrete’ plane
is formed because the moments are zero for odd n on the centreline in figure 14. This
results, as explained in Nguyen & Oberlack (2024b), from the fact that the pure velocity
scaling law for i = r, ϕ (m = 0) is described by a centred Gaussian process. Since the
analysis is performed on the centreline, the scaling law (5.24) gives the same values for
i = r, ϕ due to symmetry. Therefore, only i = r will be considered in the following. The
prefactors of the scaling law in (5.24) can be characterised by an arithmetic weighing of the
moments with

αiΘ,nm = nαi,n + mαΘ

n + m
, (5.25)

and

ci,nm = nβi + mc

n + m
, (5.26)

where αz,n = αz = 0.673, βz = 2.123, αr,n = √
2e [1.81(n − 1)]n/2 and βr = −0.5 are

taken from Nguyen & Oberlack (2024b).

5.4. Gaussian behaviour of the higher passive scalar moments
Interestingly, the passive scalar moments behave similarly to the axial velocity moments.
The higher instantaneous H -moments of the passive scalar exhibit a Gaussian-like
behaviour in η, similar to what is observed for the axial velocity moments. By analysing the
scaled higher moments of the passive scalar according to (5.22), we find that a Gaussian
function provides a highly accurate representation for these moments. The Gaussian
function is expressed as

Θm

Θm
c

= Θ̃m(η) = e−γmη2
, (5.27)
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Figure 14. The exponential prefactor αrΘ,nmecr,nm (n+m) ( ) from (5.24) determined with the DNS data for
mixed moments up to n + m = 6 ( ), for Θ moments up to m = 10 ( ) and Ur moments up to n = 10 ( ) is
shown. Additionally, (5.24) is highlighted for m = 0 ( ) and n = 0 ( ).

where η represents the dimensionless radial coordinate as defined in (5.20). This
Gaussian function captures the characteristic distribution of the passive scalar, showing
a rapid decrease in amplitude as the distance from the central region increases. One
consequence of representing moments in its H form is the dominance of the mean over the
fluctuations R. While it may be tempting to assume Θm ≈ Θ

m , implying that γm is linear
and thus trivial due to the strong dominance of the mean passive scalar concentration Θ

over the fluctuations, our analysis demonstrates that γm does not behave linearly for larger
moments, as is already implied by figure 3 for RΘΘ . Employing (5.27) in (1.4), we find
that only for γ2 = 2γ1 could the Gaussian curve be factored out. For this reason, the higher
moments of the fluctuations do not have a simple relationship, e.g. RΘΘ has an off-axis
peak (see figure 3) instead of behaving like a Gaussian curve. In figure 15, we observe the
self-preservation of six selected moments of the passive scalar, ranging up to order ten,
at multiple stages along the spatial domain (z/D = 25−55). Except for the central region,
there is a collapse of the data when normalised using the scaling law described in (5.23).
This collapse suggests a universal scaling behaviour for the moments of the passive scalar,
reinforcing the idea of self-preservation. Additionally, the Gaussian-like curves become
progressively narrower as the moment order increases. The DNS data up to the tenth axial
moment are presented in semi-log scaling in figure 16, demonstrating a parabolic trend,
suggesting a strong agreement with (5.27), although the specific value of γm remains
undetermined. The deviation of the DNS data from the parabolic curve at the edge is
likely attributed to external intermittency, as seen in figure 10. Further, Θ

m is shown
for m = 2 to m = 10, i.e. γm = mγ1, where the discrepancy discloses that γm is indeed
nonlinear. A comparison between figures 15 and 16 reveals that the turbulent scaling laws
hold true within the fully turbulent regime. It is important to note that turbulent scaling
laws are usually only valid within the confines of a fully turbulent regime and become less
applicable as we move into the ambient environment. The estimation of γm in m for the
passive scalar moments can be obtained from figure 17 through a straightforward nonlinear
fitting procedure. The resulting fit yields

γm = −1.27m2 + 37.52m + 27.34, (5.28)

with a coefficient of determination of R2 = 0.99, clearly showing that Θm �≈ Θ
m and

therefore strong non-Gaussian fluctuations and hence higher moments in general cannot
be ignored. In the present DNS γ1 = 73.59 agrees well with the experiment by Birch
et al. (1978) at γ1 = 73.6. Lubbers et al. (2001) found γ1 = 59.1, which means a wider
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Figure 15. The radial profiles of the mth axial moment normalised with the scalings in (5.22) at different
distances from the orifice: z/D = 25 ( ), 35 ( ), 45 ( ), 55 ( ). The black solid lines indicate
the Gaussian from (5.27) using λm from (5.28).

0 0.05 0.10 0.15 0.20
10−13

10−9

10−5

10−1

Θm

η

Figure 16. The radial profiles ( ) of the first (top) up to the tenth (bottom) axial moment and the
corresponding Gaussian ( ) from (5.27) shown in a semi-logarithmic plot at z/D = 45. Here, Θ

m ( )
is depicted from m = 2 to m = 10.

passive scalar profile. It is interesting to note that Birch et al. (1978) utilised a fully
developed pipe profile as an inlet, which is similar to the fully developed turbulent pipe
profile that is presently used. On the other hand, Lubbers et al. (2001) employed a top-
hat velocity profile, implying that inlet conditions affect the width of the passive scalar
profile.

To get a first hint towards the understanding of the emergence of (5.27) as a
function of the radial coordinate η, the MPSE (5.1) is transformed into cylindrical
coordinates. Subsequently, the scaling laws (5.20)–(5.22) are introduced into the
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Figure 17. Constants γm from (5.27) are shown for each moment up to order n = 10 determined by fitting to
the DNS, yielding the following fit: γm = −1.27m2 + 37.52m + 27.34.

cylindrical-transformed MPSE, yielding

∂ H̃Θ{m}
∂ t̃

+
m∑

l=1

[
1

η(l)

∂

∂η(l)

[
η(l) H̃Θ{m+1}[Θ(m+1) �→r(l)]

[
x̃(m+1) �→ x̃(l)

]]

−x̃k(l)

∂

∂ x̃k(l)

[
H̃Θ{m+1}[Θ(m+1) �→z(1)]

[
x̃(m+1) �→ x̃(1)

]]]

+
m∑

l=2

[
1

η(l)

∂

∂ϕ̃(l)

[
H̃Θ{m+1}[Θ(m+1) �→ϕ(l)]

[
x̃(m+1) �→ x̃(l)

]]

+ ∂

∂ z̃(l)

[
H̃Θ{m+1}[Θ(m+1) �→z(l)]

[
x̃(m+1) �→ x̃(l)

]]]

−
[
(m + 1)

(
1 + 1

2
a∗

Ss

)
− a∗

Ss

]
H̃Θ{m+1}[Θ(m+1) �→z(1)]

[
x̃(m+1) �→ x̃(1)

]= 0,

(5.29)

for m = 1, . . . , ∞ and x̃k(l) �= ϕ̃(l) with a reference point x̃(1)

x̃(1) = (
η(1), 0, 0

)T =
(

r(1)

z(1) − z0
, 0, 0

)T

, (5.30)

and the points x̃(l)

x̃(l) = (
η(l), ϕ̃(l), z̃(l)

)T =
(

r(l)

z(1) − z0
, ϕ̃(l),

z(l)

z(1) − z0

)T

, (5.31)

for l = 2, . . . , ∞ and where t̃ emerges from (5.12) as

t̃ = t

(z − z0)
2+ 1

2 a∗
Ss

. (5.32)

Detailed steps for obtaining (5.29) and (5.32) can be taken from Appendix C. It is
important to note that x̃(l) must contain ϕ̃(l) to ensure their unique definition. Equation
(5.29) has been reduced by one independent variable through the scaling laws. After a
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symmetry reduction, the symmetry properties change in relation to the original equation.
In particular, scaling symmetries can disappear, but various symmetries are also inherited.
Presently, symmetries admitted by (5.29) include

T̃ S : t̃∗ = eãSt t̃, η∗
(·) = eãSη(·), ϕ̃∗

(·) = ϕ̃(·), z̃∗
(·) = z̃(·),

H̃∗
Θ{m} = emãSθ−ãS H̃Θ{m}, H̃∗

r{1}Θ{m} = emãSθ−ãSt H̃r{1}Θ{m},

H̃∗
ϕ{1}Θ{m} = emãSθ−ãSt H̃ϕ{1}Θ{m}, H̃∗

z{1}Θ{m} = emãSθ−ãS−ãSt H̃z{1}Θ{m}, (5.33)

with H̃Θ{m+1}[Θ(m+1) �→i(l)] = H̃i{1}Θ{m} and i(l) = r(l), ϕ(l), z(l). However, caution is
necessary regarding the scaling symmetries given here, because although inserting (5.33)
into (5.29) seems to prove the symmetry properties, the symmetries (5.33) are not
necessarily symmetries of the complete system (5.4) in reduced form. Therefore, we are
dealing with a kind of partial invariance, which is not to be confused with the mathematical
concept of partially invariant solutions (see e.g. Meleshko 2005). The statistical symmetry
(ãSs) is inherited from (5.13)

T̃ Ss : x̃∗
(·) = x̃(·), H̃∗

Θ{m} = eãSs H̃Θ{m}, H̃∗
i{1}Θ{m} = eãSs H̃i{1}Θ{m}, (5.34)

and the superposition symmetry of linear systems is presently given by

T̃S : t∗ = t, x̃∗
(·) = x̃(·), H̃∗

Θ{m} = H̃Θ{m} + H̃ ′
Θ{m},

H̃∗
i{1}Θ{m} = H̃i{1}Θ{m} + H̃ ′

i{1}Θ{m}, (5.35)

where the prime quantities are any additional independent solution of (5.29). Here, the
superposition symmetry (5.35) plays a crucial role, as will be explained later. With the
symmetries (5.33)–(5.34), a characteristic condition is, once again, derived

dη

ãSη
= dH̃Θ{m}

(mãSθ − ãS + ãSs)H̃Θ{m}
= . . . , (5.36)

where non-relevant terms have been omitted. Integrating the characteristic condition (5.36)
leads to

H̃Θ{m} = Cmηq , (5.37)

where Cm is the integration constant and

q = m
ãSθ

ãS
+ ãSs

ãS
− 1. (5.38)

For the connection of (5.27) to (5.37), the superposition symmetry (5.35) reveals its
importance, allowing for a superposition of (5.37). The Taylor series of (5.27)

e−γmη2 = 1 − γmη2 + 1
2

(
γmη2

)2 − 1
6

(
γmη2

)3 + . . . , (5.39)

shows that (5.37) are the basis functions of (5.27). Therefore, the sum of the basis functions
(5.37) can be written as

H̃Θ{m} =
∞∑

i=0

Cmiη
qi , (5.40)
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Figure 18. The radial profiles (blue, dashed) of m = 1 (top) up to the n + m = 6 (bottom) axial mixed moment
U n

z Θm and the corresponding Gaussian (black) from (5.27) shown in a semi-logarithmic plot at z/D = 45.

where

Cmi = (−γm)i

i ! , qi = 2i, (5.41)

showing the importance of the intermittency symmetry and the superposition symmetry,
which are both only admitted by the equations in the H -formulation and not by the Euler
or NSEs.

5.5. Gaussian behaviour of the higher mixed moments
We have gathered data for higher mixed moments up to n + m = 6, aiming to demonstrate
their composition as a combination of axial velocity and passive scalar moments, similar
to § 5.3.

As illustrated in figure 18, we observe that the mixed moments also exhibit Gaussian
behaviour at high precision. This characteristic is attributed to both the higher axial
velocity and passive scalar moments displaying similar trends. In our recent study (Nguyen
& Oberlack 2024b) for the axial velocity moments, we established

U n
z

U n
z,c

= Ũ n
z (η) = e−γnη2

, (5.42)

where the Gaussian coefficient γn was approximated by

γn = −1.54n2 + 61.95n + 27.10. (5.43)

From (5.27) and (5.42) we may invoke

Ũ n
z Θm(η) = e−γnmη2

. (5.44)
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Figure 19. Constants γnm from (5.44) are shown for pure moments up to order n, m = 10 and mixed moments
up to order n + m = 6 determined by fitting to the DNS yielding the following fit: γnm = −1.51n2 − 1.29m2 −
0.03nm + 61.2n + 37.34m + 30.75.

The subsequent approximation is a nonlinear n-m surface fit to the DNS data, as shown in
figure 18, and is

γnm = −1.51n2 − 1.29m2 − 0.03nm + 61.2n + 37.34m + 30.75, (5.45)

presented in figure 19 with a coefficient of determination of R2 = 0.99. The Gaussian
coefficients γn and γm in (5.43) and (5.28) respectively may be compared with γnm

in (5.45) by tentatively assuming Ũ n
z Θ̃m ≈ Ũ n

z Θm , which implies γn + γm ≈ γnm .
Comparing the Gaussian coefficients of (5.28), (5.43) and (5.45) reveals an approximate
halving of the constant terms and the emergence of a small cross-product term,
while the remaining terms only differ by 2 %. This observation suggests that the
moments are coupled and demonstrate some degree of cross-correlation. Nevertheless,
the approximation (5.45) reduces approximately to the special forms (5.28) and (5.43) in
the limit cases n = 0 and m = 0.

6. Conclusion
This study has two integral components: a comprehensive DNS investigation of a turbulent
round jet flow including a scalar and the derivation of group invariant solutions using
Lie-symmetry analysis applied to the MPVSCEs, validated by the DNS.

The DNS effort yielded new and detailed data on the passive scalar concentration
up to the tenth-order moments for a turbulent round jet at Re = 3500 and Pr = 0.71.
Additionally, previously unreported mixed velocity–passive scalar moments up to the
sixth order were extracted. The highly converged data, averaged over 75 000D/Ub time
units, exhibited a remarkable collapse in radial profiles for various statistics in z/D = 10
intervals in the range z/D = 15−55.

Lie-symmetry analysis has been applied to a system of differential equations consisting
of the MPSE and the multi-point velocity–passive scalar equations, a combination of
the MPSE and MPMEs. Both have been derived in their H -form (instantaneous form)
from which, using their symmetries, a set of self-similar solutions, also called turbulent
scaling laws, have been derived. The resulting scaling laws are then validated against the
aforementioned DNS, demonstrating a remarkable agreement up to the tenth order and
for mixed moments up to the sixth order, linking the scaling laws for the velocity and
passive scalar moments. The group parameter of the statistical scaling symmetry, allowing
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a possible variation of the turbulent decay behaviour in turbulent round jets, is uniquely
defined by the inflow condition.

An intriguing observation emerged from the study of the pure instantaneous passive
scalar moments, revealing a Gaussian-like behaviour found in the radial direction only in
statistical symmetries, similar to the pure axial velocity moments. The higher moments
were accurately represented by Gaussian functions linked by a nonlinear coefficient γm ,
challenging the assumption of linear behaviour due to the dominance of the mean. This
nonlinear behaviour, exemplified by the parameter γm and in the Gaussian function,
signifies intermittency, reinforcing the findings in the PDF and higher standardised
moments. Furthermore, the Gaussian behaviour extends to mixed axial velocity–scalar
moments, where the coefficient γnm indicates that the axial velocity and the scalar exhibit
a clear correlation.
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Appendix A. Derivation of the multi-point scalar equations
This appendix shows the derivation of the MPSE. The starting point is the passive scalar
equation at one point x ∈R3

S(x) = ∂Θ(x, t)

∂t
+ Uk(x, t)

∂Θ(x, t)

∂xk
− 1

Pe

∂2Θ(x, t)

∂xk∂xk
= 0. (A1)

The two-point passive scalar equation can then be received through statistically averaging
the cross-multiplication of (A1) and the passive scalar at different points x and y ∈R3

S2 = S(x)Θ( y) + S( y)Θ(x) = 0, (A2)

leading to

S2 = ∂ HΘΘ(x, y)
∂t

+ ∂ HΘΘk(x, y, x)

∂xk
+ ∂ HΘΘk( y, x, y)

∂yk

− 1
Pe

(
∂2 HΘΘ(x, y)

∂xk∂xk
+ ∂2 HΘΘ(x, y)

∂yk∂yk

)
= 0, (A3)

where HΘΘ(x, y) = Θ(x)Θ( y) and HΘΘk(x, y, x) = Θ(x)Θ( y)Uk(x). This can be
extended up to an arbitrary order m by introducing the MPSE

Sm =
m∑

a=1

S
(
x(a)

) m∏
b=1,b �=a

Θ
(
x(b)

)= 0, (A4)
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where Θ(x(i)) is a passive scalar at different points x(i) ∈R3. Plugging (A1) into (A4)
then yields

Sm = ∂ HΘ{m}
∂t

+
m∑

l=1

[
∂

∂xk(l)

[
HΘ{m+1}[Θ(m+1) �→k(l)]

[
x(m+1) �→ x(l)

]]− 1
Pe

∂2 HΘ{m}
∂xk(l)∂xk(l)

]
= 0

for m = 1, . . . , ∞. (A5)

Appendix B. Derivation of the multi-point velocity–scalar equations
In this appendix, the derivation of the MPVSCEs is shown. With (A1) and the moment
(2.2)

Mi (x) = ∂Ui (x, t)

∂t
+ Uk(x, t)

∂Ui (x, t)

∂xk
+ ∂ P(x, t)

∂xi
− 1

Re

∂2Ui (x, t)

∂xk∂xk
= 0, (B1)

the two-point velocityscalar correlation equations can be derived with

TiΘ =Mi (x)Θ( y) + Ui (x)S( y), (B2)

which, by inserting (A1) and (B1), can be extended to

TiΘ = ∂ HiΘ(x, y)
∂t

+ ∂ HiΘk(x, y, x)

∂xk
+ ∂ HΘik( y, x, y)

∂yk

+ ∂ P(x)Θ( y)
∂xi

−
(

1
Re

∂2 HiΘ(x, y)
∂xk∂xk

+ 1
Pe

∂2 HiΘ(x, y)
∂yk∂yk

)
= 0. (B3)

Similarly to (A4), two-point velocity–scalar correlation equations can be extended to the
MPVSCEs for n velocities at n different points and m passive scalars at m different
points

Ti{n}Θ{m} =
n∑

a=1

Mi(a)
(x(a))

n∏
c=1,c �=a

Ui(c) (x(c))

n+m∏
d=n+1

Θ(x(d))

+
n+m∑

a=n+1

S(x(a))

n+m∏
c=n+1,c �=d

Θ(x(c))

n∏
d=1

Ui(d)
(x(d)) = 0. (B4)
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By introducing (B1) and (A1) into (B4), we receive the MPVSCEs

Ti{n}Θ{m} = ∂ Hi{n}Θ{m}
∂t

+
n∑

l=1

(
∂

∂xk(l)

[
Hi{n+1}Θ{m}[i(n+m+1) �→k(l)]

[
x(n+m+1) �→ x(l)

]]

+ ∂ Ii{n−1}Θ{m}[l]
∂xi(l)

− 1
Re

∂2 Hi{n}Θ{m}
∂xk(l)∂xk(l)

)

+
n+m∑

l=n+1

(
∂

∂xk(l)

[
Hi{n+1}Θ{m}[i(n+m+1) �→k(l)]

[
x(n+m+1) �→ x(l)

]]− 1
Pe

∂2 Hi{n}Θ{m}
∂xk(l)∂xk(l)

)
= 0,

(B5)

The MPVSCEs (B5) are therefore a generalisation of the MPMEs and the MPSEs. The
MPMEs can be obtained for m = 0, while the MPSEs arise for n = 0.

Appendix C. Reduction of the multi-point scalar equation
This appendix shows a step-by-step derivation of the reduced MPSE in cylindrical
coordinate form. For this, the MPSE (5.1) is transformed to cylindrical coordinates while
considering Re−1, Pe−1 = 0 has been employed, yielding

∂ HΘ{m}
∂t

+ 1
r(1)

∂

∂r(1)

[
r(1)HΘ{m+1}[Θ(m+1) �→r(1)]

[
x(m+1) �→ x(1)

]]
+ ∂

∂z(1)

[
HΘ{m+1}[Θ(m+1) �→z(1)]

[
x(m+1) �→ x(1)

]]
+

m∑
l=2

[
1

r(l)

∂

∂r(l)

[
r(l)HΘ{m+1}[Θ(m+1) �→r(l)]

[
x(m+1) �→ x(l)

]]
+ 1

r(l)

∂

∂ϕ(l)

[
HΘ{m+1}[Θ(m+1) �→ϕ(l)]

[
x(m+1) �→ x(l)

]]
+ ∂

∂z(l)

[
HΘ{m+1}[Θ(m+1) �→z(l)]

[
x(m+1) �→ x(l)

]]]= 0, (C1)

where the reference point is

x(1) = (
r(1), 0, z(1)

)T
, (C2)

and

x(l) = (
r(l), ϕ(l), z(l)

)T
, (C3)

1013 A33-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
23

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10236


Journal of Fluid Mechanics

for l = 2, . . . , ∞. For the sake of completeness, the scaling of the time t shall be
considered. Using the symmetry (5.12), the characteristic condition (5.14) extends to

dt

aSt t
= dr

aSxr
= dz

aSx z + az
= . . . . (C4)

By considering the symmetry breaking (5.19) and integrating the first and third terms of
(C4), the scaling law of the time t yields

t̃ = t

(z − z0)
2+ 1

2 a∗
Ss

. (C5)

In the next step, x is reduced by one independent variable by considering the scaling law
(5.20), leading to the reference point

x̃(1) = (η(1), 0, 0)T =
(

r(1)

z(1) − z0
, 0, 0

)T

, (C6)

and the points x̃(l)

x̃(l) = (
η(l), ϕ̃(l), z̃(l)

)T =
(

r(l)

z(1) − z0
, ϕ̃(l),

z(l)

z(1) − z0

)T

, (C7)

for l = 2, . . . , ∞. Finally, the scaling laws (C5) and (5.20)–(5.22) derived through Lie-
symmetry analysis are deployed into (C1), yielding the reduced MPSE

∂ H̃Θ{m}
∂ t̃

+
m∑

l=1

[
1

η(l)

∂

∂η(l)

[
η(l) H̃Θ{m+1}[Θ(m+1) �→r(l)]

[
x̃(m+1) �→ x̃(l)

]]

−x̃k(l)

∂

∂ x̃k(l)

[
H̃Θ{m+1}[Θ(m+1) �→z(1)]

[
x̃(m+1) �→ x̃(1)

]]]

+
m∑

l=2

[
1

η(l)

∂

∂ϕ̃(l)

[
H̃Θ{m+1}[Θ(m+1) �→ϕ(l)]

[
x̃(m+1) �→ x̃(l)

]]
+ ∂

∂ z̃(l)

[
H̃Θ{m+1}[Θ(m+1) �→z(l)]

[
x̃(m+1) �→ x̃(l)

]]]
−
[
(m + 1)

(
1 + 1

2
a∗

Ss

)
− a∗

Ss

]
H̃Θ{m+1}[Θ(m+1) �→z(1)]

[
x̃(m+1) �→ s̃x(1)

]= 0,

(C8)

and x̃k(l) �= ϕ̃(l).
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