
Psychological Medicine

cambridge.org/psm

Original Article

Cite this article: Ma Y et al (2024). Reciprocal
relationships between stress and depressive
symptoms: the essential role of the nucleus
accumbens. Psychological Medicine 54,
1045–1056. https://doi.org/10.1017/
S0033291723002866

Received: 26 January 2023
Revised: 12 July 2023
Accepted: 5 September 2023
First published online: 26 September 2023

Keywords:
depressive symptoms; multimodal
neuroimaging; nucleus accumbens; reward
processing; stress; UK Biobank; ventral
striatum

Corresponding author:
Yizhou Ma;
Email: yizhou.ma@som.umaryland.edu

© The Author(s), 2023. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Reciprocal relationships between stress and
depressive symptoms: the essential role of the
nucleus accumbens

Yizhou Ma1 , Peter Kochunov1, Mark D. Kvarta1, Tara LeGates2,

Bhim M. Adhikari1, Joshua Chiappelli1, Andrew van der Vaart1,

Eric L. Goldwaser3, Heather Bruce1, Kathryn S. Hatch4, Si Gao1, Shuo Chen1,

Ann Summerfelt1, Thomas E. Nichols5 and L. Elliot Hong1

1Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine,
Baltimore, MD, USA; 2Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD,
USA; 3Department of Psychiatry, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, NY, USA;
4School of Medicine, University of California, San Diego, CA, USA and 5Department of Statistics, Big Data Science
Institute, University of Oxford, Oxford, UK

Abstract

Background. Stress and depression have a reciprocal relationship, but the neural underpin-
nings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate
the reciprocity between stress and depressive symptoms.
Methods. In total, 22 195 participants (52.0% females) from the population-based UK
Biobank study completed two visits (initial visit: 2006–2010, age = 55.0 ± 7.5 [40–70] years;
second visit: 2014–2019; age = 62.7 ± 7.5 [44–80] years). Structural equation modeling was
used to examine the longitudinal relationship between self-report stressful life events (SLEs)
and depressive symptoms. Cross-sectional data were used to examine the overlap between
neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138
multimodal imaging phenotypes.
Results. Longitudinal data were consistent with significant bidirectional causal relationship
between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly
associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of
the forceps major. Depressive symptoms were significantly associated with extensive white
matter hyperintensities, thinner cortex, lower subcortical volume, and white matter micro-
structural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal
volume were the only imaging phenotypes with overlapping effects of depressive symptoms
and SLEs (B =−0.032 to −0.023, p = 0.006–0.034). Depressive symptoms and SLEs signifi-
cantly partially mediated the effects of each other on left and right nucleus accumbens volume
(proportion of effects mediated = 12.7–14.3%, p < 0.001−p = 0.008). For the left nucleus
accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity
with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10−5) in participants
with high v. no SLEs.
Conclusions. The nucleus accumbens may play a key role in the reciprocity between stress
and depressive symptoms.

Introduction

Depression is a leading cause of disability worldwide with over 10% of the population experi-
encing one or more major depressive episodes in their lifetime (Bromet et al., 2011; World
Health Organization, 2020). A well-known risk factor for depression is stress: individuals
with a history of childhood adversity, stressful life events (SLEs), or trauma are more likely
to develop depression, relapse, and become treatment resistant (Amital, Fostick, Silberman,
Beckman, & Spivak, 2008; Chapman et al., 2004; Kendler, Karkowski, & Prescott, 1999;
Widom, DuMont, & Czaja, 2007). The tie between stress and depression is also reciprocal:
individuals with depression are at a higher risk of encountering stress in part due to their
experience with depression and its sequelae including functional impairment (Conway,
Hammen, & Brennan, 2012; Hammen, 1991, 2006; van Os & Jones, 1999). Despite this bidir-
ectional relationship, the underlying neural substrates remain unclear. Identifying the neural
basis of this reciprocal and potentially reinforcing loop may help develop more effective inter-
ventions that build resilience against both stress and depression.

Both depression and stress involve neurobiological pathways in the limbic, paralimbic, and
prefrontal structures and their orchestrated regulation of stress-related hormones and
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neurotransmitters (Godoy, Rossignoli, Delfino-Pereira,
Garcia-Cairasco, & Umeoka, 2018; Gold, Machado-Vieira, &
Pavlatou, 2015; Maletic et al., 2007). Neuroimaging meta-analyses
show that both major depression and stress-related conditions
(e.g. childhood adversity, post-traumatic stress disorder) are asso-
ciated with lower hippocampal volume, lower paralimbic cortical
thickness or volume, reduced white matter integrity in the corpus
callosum, and altered connectivity in frontostriatal, orbitofrontal,
and limbic networks (Bao et al., 2021; Calem, Bromis, McGuire,
Morgan, & Kempton, 2017; Dennis et al., 2021; Drysdale et al.,
2017; Kraynak, Marsland, Hanson, & Gianaros, 2019; Lim,
Howells, Radua, & Rubia, 2020; Lim, Radua, & Rubia, 2014;
Logue et al., 2018; Schmaal et al., 2017, 2016; van Velzen et al.,
2020; Wang et al., 2021). Despite these overlaps, few human stud-
ies have directly compared the neural correlates of stress and
depression in the same individuals.

In rodents, stress-induced depressive-like behavior has been
linked to neurobiological changes in regions such as the hippo-
campus, amygdala, and ventral striatum (Brenes, Rodríguez, &
Fornaguera, 2008; Hollis, Wang, Dietz, Gunjan, & Kabbaj, 2010;
Zan et al., 2021). In humans, history of stress is found to inde-
pendently contribute to hippocampal, prefrontal, temporal, and
white matter alterations in depression (Chaney et al., 2014;
Frodl, Reinhold, Koutsouleris, Reiser, & Meisenzahl, 2010;
Kronmüller et al., 2008; Meinert et al., 2019; Tozzi et al., 2020;
van Harmelen et al., 2010; Vythilingam et al., 2002). However,
a prevailing focus of existing neurobiological research is the uni-
directional effect of stress on depression, while the reverse is over-
looked where depression increases the vulnerability to stress. To
our knowledge, no studies have attempted to identify overlapping
brain regions in stress and depression and their role in the recip-
rocal stress–depression relationship. In this study, we explored
this question in a large sample of community adults. We chose
to study depressive symptoms, rather than clinical depression,
as it can be measured continuously and fluctuate in individuals
regardless of a diagnosis of depression. We hypothesized that
SLEs experienced by individuals would predict their depressive
symptoms over time and vice versa. We conducted brain-wide
association analyses across multimodal neuroimaging phenotypes
to capture brain structures shared between SLEs and depressive
symptoms. Based on the literature, we predicted that SLEs and
depressive symptoms would share neuroimaging correlates in
structures including the hippocampus, amygdala, hypothalamus,
ventral striatum, and prefrontal cortex (Brenes et al., 2008;
Chaney et al., 2014; Frodl et al., 2010; Hollis et al., 2010;
Kronmüller et al., 2008; Meinert et al., 2019; Tozzi et al., 2020;
van Harmelen et al., 2010; Vythilingam et al., 2002; Zan et al.,
2021), which may be the key region(s) to understand their
reciprocity.

Materials and methods

Participants

In total, 22 195 community adults (52.0% female) in the UK
Biobank (UKBB)’s neuroimaging data release version 1.6 were
included. We used data from the initial assessment visit (v0,
2006–2010) and the second visit with brain imaging (v2, 2014–
2019). The first repeat assessment visit (v1), completed by only
24.5% participants, was not used. Participants’ age was 55.0 ±
7.5 (range 40–70) years on v0 and 62.7 ± 7.5 (44–80) years on
v2. Interval between visits was 7.7 ± 1.5 (4–12) years. Behavioral

and neuroimaging protocols were previously described (Miller
et al., 2016; Sudlow et al., 2015). The UKBB was approved by
the North West Multi-center Research Ethics Committee. All par-
ticipants provided written informed consent. We received
approval from the UKBB to access and analyze the data. The
authors assert that all procedures contributing to this work com-
ply with the ethical standards of the relevant national and institu-
tional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2008.

Stressful life events (SLEs)

The UKBB does not use a validated inventory for SLEs but
includes a screening question on stressful events such as illness,
injury, and bereavement. On both visits, participants reported if
they experienced the following in the last two years: ‘serious ill-
ness, injury, or assault to yourself’, ‘serious illness, injury, or
assault of a close relative’, ‘death of a close relative’, ‘death of a
spouse or partner’, ‘marital separation/divorce’, and ‘financial dif-
ficulties’. Research in the UKBB showed that SLEs measured by
this question was significantly positively associated with psycho-
pathology and chronic pain (Davis et al., 2020; Macfarlane,
Beasley, & Macfarlane, 2014). Following a previous study
(Macfarlane et al., 2014), we defined SLEs as the number of events
reported, and recoded values larger than 3 as 3 to reduce right
skewness. Alternatively, we used log transformation to reduce
skewness and reported findings in online Supplementary
Results. In total, 97.1% of the participants had data for both visits.

As illustrated in online Supplementary Fig. S1, on both visits,
most participants reported no SLEs. On average, around 30% of
the participants reported one SLE; 8% reported two SLEs; and
1.5% reported three or more SLEs (3 SLEs: 1.3%, 4 SLEs: 0.2%,
5 SLEs: 0.01%). The two most reported SLEs were ‘death of a
close relative’ (around 20%) and ‘serious illness, injury or assault
of a close relative’ (around 13%). The least reported SLE was
‘death of a spouse or partner’ (less than 1.5%). On both v0 and
v2, more SLEs were associated with younger age (r = −0.11 and
−0.14, p < 2 × 10−16), female sex (B = 0.08 and 0.10, p < 2 ×
10−16), and non-White British ancestry (B = 0.06 and 0.04,
p = 0.0002 and 0.006).

Depressive symptoms

The UKBB does not use a validated tool to measure depressive
symptoms on each visit. Following a previous study
(Arnau-Soler et al., 2019), we measured participants’ depressive
symptoms over the preceding 2 weeks with four touchscreen
questions. Two questions were from the Patient Health
Questionnaire (PHQ)-2 (Kroenke, Spitzer, & Williams, 2003)
and measured core depressive symptoms of anhedonia (‘had little
interest or pleasure in doing things’) and depressed mood (‘felt
down, depressed, or hopeless’). One question was from the
PHQ-9 (Spitzer, Kroenke, Williams, & Group, 1999) and mea-
sured fatigue (‘felt tired or had little energy’). The last question
measured psychomotor agitation (‘felt tense, fidgety, or restless’).
On both visits, participants rated their symptoms over the past 2
weeks from ‘not at all’ to ‘nearly every day’ (0–3). Cronbach’s α
was 0.8 on v0 and 0.78 on v2. Following the previous study
(Arnau-Soler et al., 2019), we transformed the sum of depressive
symptoms to a four-point scale to correct for right skewness (0 =
0, 1 = 1–2; 2 = 3–5, 3 = 6 or more). Findings when log transform-
ation was used to correct for skewness were included in online
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Supplementary Results. In total, 88.4% of the participants had
data for both visits.

To further examine the validity of the depressive symptoms
measure, we compared depressive symptoms across participants
with different lifetime history of depression (Smith et al., 2013).
On both visits, participants with a history of probable recurrent
depression had significantly more depressive symptoms than par-
ticipants with a history of probable single episode depression, fol-
lowed by subclinical depression and mood disorder controls,
supporting the validity of the depressive symptoms measure.
Details of this analysis, including criteria used to determine life-
time history of depression, can be found in the online
Supplementary Methods.

Online Supplementary Fig. S3 illustrates the distribution of
depressive symptoms across the two visits. On average, around
42% of the participants reported no depressive symptoms; around
34% scored 1; 14% scored 2; and 3% scored 3. On both visits,
more depressive symptoms were associated with younger age
(r =−0.18 and −0.16, p < 2 × 10−16), female sex (B = 0.14 and
0.16, p < 2 × 10−16), and non-White British ancestry (B = 0.04
and 0.06, p = 0.04 and 0.007).

Adverse childhood experiences (ACEs)

As SLEs may be influenced by ACEs (Gheorghe, Li, Gallacher, &
Bauermeister, 2021), we considered ACEs reported by a sub-
sample of participants (71.3%). We measured ACEs as the
responses to the Childhood Trauma Screener (Glaesmer et al.,
2013; Witt et al., 2022), which surveys participants’ experiences
of emotional neglect, physical neglect, emotional abuse, physical
abuse, and sexual abuse in childhood. We dichotomized each
item and summed them to result in total ACEs ranging from 0
to 5 (Gheorghe et al., 2021).

Multimodal imaging phenotypes

All participants completed multimodal neuroimaging on v2.
Given that no neuroimaging was performed at v0, all analyses
involving neuroimaging were cross-sectional using v2 data. We
examined 138 imaging phenotypes generated by the UKBB
(online Supplementary Table S4), including (1) cortical thickness
(CT) of 68 regions; (2) intracranial volume; (3) subcortical vol-
ume (SV) of 14 structures; (4) total volume of white matter hyper-
intensities; and (5) weighted-mean fractional anisotropy (FA) and
mean diffusivity (MD) of 27 white matter tracts. Details of image
acquisition, quality control, and processing were previously
described (Alfaro-Almagro et al., 2018; Miller et al., 2016).
Briefly, participants completed T1-MPRAGE (voxel size = 1
mm3), T2-FLAIR (voxel size = 1.05 × 1 × 1mm3), and diffusion
(50 × b = 1000 and 2000 s/mm2, voxel size = 2mm3) magnetic res-
onance imaging (MRI). CT, SV, and intracranial volume were
derived from UKBB’s T1 pipeline (Alfaro-Almagro et al., 2018)
and generated with FreeSurfer (Desikan et al., 2006; Fischl
et al., 2004) and FSL’s FIRST tool (Patenaude, Smith, Kennedy,
& Jenkinson, 2011). White matter hyperintensities were derived
from UKBB’s T2 pipeline (Alfaro-Almagro et al., 2018). FA and
MD were derived from UKBB’s diffusion pipeline
(Alfaro-Almagro et al., 2018) and generated with FSL’s TBSS
tool (Smith et al., 2006). For each phenotype, observations outside
of six mean absolute deviations from the median were excluded.

Resting-state functional MRI (rsfMRI)

Participants completed 6 min of rsfMRI on v2 (TR = 735 ms, TE
= 39 ms, flip angle = 52°, voxel size = 2.4 mm3). Images acquisi-
tion, quality control, and processing were previously described
(Alfaro-Almagro et al., 2018; Miller et al., 2016), which included
artifact removal with FMRIB’s ICA-based X-noiseifier (Beckmann
& Smith, 2004; Griffanti et al., 2014; Salimi-Khorshidi et al.,
2014). We additionally completed the following in FSL: spatial
registration to the 2 mm MNI152 space, high-pass filtering
(FWHM= 2355 s), and spatial smoothing (FWHM= 4mm, iso-
tropic Gaussian kernel).

Statistical analysis

Figure 1a illustrates the data structure used to explore the longitu-
dinal reciprocity between stress and depressive symptoms. We
hypothesized that depressive symptoms on v0 would predict
more subsequent SLEs when controlling for previous SLEs (here
proxied by SLEs within 2 years before v2 and v0, respectively).
We also hypothesized that SLEs within 2 years before v2 would
predict more subsequent depressive symptoms when controlling
for previous depressive symptoms (here proxied by depressive
symptoms within 2 weeks before v2 and v0, respectively). We
implemented longitudinal structural equation modeling using
the lavaan package (Rosseel, 2012) in R (R Core Team, 2019),
with maximum likelihood estimation with robust standard errors
and Satorra-Bentler scaled test statistics.

We identified imaging phenotypes associated with SLEs on v2
by regressing each standardized imaging phenotype on SLEs in R,
correcting for 138 phenotypes with false discovery rate (FDR) q <
0.05 (Benjamini & Hochberg, 2000). The same analysis was
repeated for depressive symptoms. We then identified which
structure(s) were significantly associated with both SLEs and
depressive symptoms.

To examine whether imaging phenotypes significantly asso-
ciated with both SLEs and depressive symptoms were implicated
in their reciprocity, we tested two mediation models using v2
data. One model tested the effect of depressive symptoms mediat-
ing the relationship between SLEs and imaging phenotypes. The
other tested the effect of SLEs mediating the relationship between
depressive symptoms and imaging phenotypes. We used the
mediation package (Tingley, Yamamoto, Hirose, Keele, & Imai,
2014) in R with 1000 nonparametric bootstraps.

We further performed post-hoc resting-state functional con-
nectivity (rsFC) analysis on v2 using structures significantly asso-
ciated with both SLEs and depressive symptoms as seeds. RsFC
was the Fisher’s z transformed Pearson’s correlation between a
voxel’s timeseries and a seed’s mean timeseries. To reduce compu-
tational and storage burden, we selected a subsample a priori (N
= 1932) to form a balanced 2 × 2 factorial design between SLEs
and depressive symptoms. Specifically, we selected participants
with high SLEs (HS, when SLEs ≥ 2) v. no SLEs (NS) and high
depressive symptoms (HD, when depressive symptoms ≥ 2) v.
no depressive symptoms (ND). Among participants who com-
pleted rsfMRI, 483 were HS and ND, 509 HS and HD, 1498 NS
and HD, and 5795 NS and ND. The final subsample thus
included 483 participants from each group, with NS and HD
and NS and ND one-on-one matched to HS and ND for age
(±3 years) and sex. Because the HS and HD pool was small, we
could not fully match this group to HS and ND on age (HS
and ND = 60.9 ± 6.7 years, HS and HD = 58.0 ± 6.5 years, p =
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8.1 × 10−12) and sex (HS and ND = 59.0% female, HS and HD =
67.7%, p = 0.006), and we included age and sex as covariates. We
set threshold contrasts for SLEs and depressive symptoms with
the cluster command in FSL (voxelwise threshold: p = 0.001, clus-
terwise threshold: p = 0.05). A post-hoc power analysis suggested
that with the current sample size, the voxelwise power to detect
the main effect of SLEs or depressive symptoms on rsFC when
effect size was small (i.e. Cohen’s f = 0.1, equivalent to d = 0.2)
was 0.86.

Table 1 summarizes the participants used in each analysis. All
statistical analyses controlled for age, age2, sex, and White British
ancestry. Models involving imaging also controlled for handed-
ness (left/right/mixed), scanning site, and x, y, and z head posi-
tions in the scanner. Additionally, CT analysis controlled for
whether T2_FLAIR was used with T1 in FreeSurfer preprocessing;
SV analysis controlled for intracranial volume; rsFC analysis

controlled for head motion. See details of covariates in online
Supplementary Table S4.

Results

Relationship between SLEs and depressive symptoms

Structural equation modeling revealed a significant bidirectional
relationship between SLEs and depressive symptoms (Fig. 1b).
Controlling for SLEs reported on v0, depressive symptoms on
v0 were positively associated with SLEs reported on v2 (β =
0.079, p < 0.001), suggesting that more severe depression predicted
more future SLEs. Conversely, controlling for depressive symp-
toms on v0, SLEs reported on v2 were positively associated with
depressive symptoms on v2 (β = 0.112, p < 0.001), suggesting
that past SLEs predicted depressive symptoms. An alternative

Figure 1. Relationship between SLEs and depressive symptoms based on structural equation modeling. (a) Timeline of repeated assessments across two visits and
four time windows. (b) Structural equation model showing bidirectional relationship between depressive symptoms and SLEs. SLEs: stressful life events. β, stan-
dardized coefficient; S.E., standard error; v0, initial assessment visit; v2, second visit that included brain imaging.
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model additionally supported a direct effect of SLEs reported on
v0 on depressive symptoms on v2, consistent with lasting effects
of SLEs on depressive symptoms (online Supplementary Fig. S4).

SLEs, depressive symptoms, and imaging phenotypes

More SLEs were associated with three imaging phenotypes (Fig. 2,
online Supplementary Table S5), including lower forceps major
FA (B =−0.039, pFDR = 0.023) and lower bilateral nucleus accum-
bens volume (left: B =−0.032, pFDR = 0.023; right: B =−0.030,
pFDR = 0.034; B: differences in standardized imaging phenotypes
when SLEs increased by 1). As expected, SLEs and ACEs were sig-
nificantly positively correlated (r = 0.074, p < 2 × 10−16). Among
the three imaging phenotypes associated with SLEs, more ACEs
were only associated with lower forceps major FA (B =−0.024,
p = 0.0007), not bilateral nucleus accumbens volume (left: B =
0.0002, p = 0.97, right: B =−0.006, p = 0.35). After controlling
for ACEs, the above effects of SLEs remained nominally

significant but did not survive FDR correction (forceps major FA:
B =−0.037, p = 0.003; nucleus accumbens volume left: B =−0.028, p
= 0.008, right: B =−0.025, p = 0.019). Controlling for ACEs led to a
reduction of the absolute B values by 5.7, 12.0, and 16.8%, respect-
ively, which was expected as more ACEs are known to be linked to
more SLEs in adulthood (Halonen et al., 2017) that is also supported
by their significant correlation in this cohort.

Higher depressive symptoms were associated with 44 imaging
phenotypes including (1) thinner cortex in 23 regions with the
strongest effects in the left rostral anterior cingulate and medial
orbitofrontal cortices; (2) smaller volume in six subcortical struc-
tures with the strongest effects in bilateral nucleus accumbens; (3)
higher MD in 11 tracts with the strongest effects in the bilateral
anterior thalamic radiation; (4) lower FA in three tracts with
the strongest effects in the bilateral posterior thalamic radiation;
and (5) higher total white matter hyperintensities (Fig. 2, online
Supplementary Table S5).

Lower bilateral nucleus accumbens volumes were the only
imaging phenotypes significantly associated with both depressive
symptoms (left: B =−0.026, pFDR = 0.006; right: B =−0.023, pFDR =
0.016) and SLEs (see above). This remained true when using log
transformation instead of the recoding method to correct for right
skewness in SLEs and depressive symptoms (online Supplementary
Results, Table S6).

Mediation effects

Depressive symptoms partially and significantly mediated the
relationship between SLEs and bilateral nucleus accumbens vol-
ume (left: indirect effect =−0.004, p < 0.001, 95% confidence
interval [CI] −0.007 to −0.001, 12.8% of the total effect was
mediated; right: indirect effect = −0.004, p = 0.012, 95% CI
−0.006 to −0.001, 12.7% mediated) (Fig. 3a). Conversely, SLEs
also partially and significantly mediated the relationship between
depressive symptoms and bilateral nucleus accumbens volume
(left: indirect effect = −0.004, p = 0.002, 95% CI −0.006 to
−0.001, 14.3% mediated; right: indirect effect =−0.003, p =
0.008, 95% CI −0.006 to −0.001, 14.3% mediated) (Fig. 3b).

Table 1. Demographics of the participants included in each analysis

Analyses

Bidirectional relationship,
structural phenotypes,

mediation
Functional
connectivity

N 22 189 1932

Age (years, v2) 62.7 ± 7.5 58.8 ± 6.6

% Female 52.0% 65.6%

White British
ancestry (%)

86.1% 84.2%

College
education

47.7% 48.4%

Household
income

2.8 ± 1.1 2.8 ± 1.1

Note: Household income: (1) less than £18 000; (2) £18 000–£30 999; (3) £31 000–£51 999; (4)
£52 000–£100 000; (5) greater than £ 100 000.

Figure 2. Imaging phenotypes associates of depressive symptoms and SLEs. All p values were false discovery rate (FDR) corrected. Dashed line: −log( p) corre-
sponding to corrected p = 0.05. CT, cortical thickness; ICV, intracranial volume; SV, subcortical volume; WMH, white matter hyperintensities; FA, fractional anisot-
ropy; MD, mean diffusivity; SLEs, stressful life events. For names of the imaging phenotypes, see online Supplementary Table S4.
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The mediation effects in both directions accounted for similar
proportion of the total effects.

Ideally, the model in Fig. 3b would use depressive symptoms
reported immediately prior to SLEs, while we used depressive
symptoms on v2 as a proxy (Chiappelli, Nugent, Thangavelu,
Searcy, & Hong, 2014). However, when using depressive symp-
toms on v0 instead, the mediation effects remained largely the
same (left: indirect effect = −0.003, p < 0.001, 95% CI −0.005 to
−0.001, 14.5% mediated; right: indirect effect =−0.003, p =
0.004, 95% CI −0.004 to −0.001, 11.5% mediated), supporting
that longitudinally experienced depressive symptoms may have
influenced the nucleus accumbens via increased occurrences of

SLEs. To further test this hypothesis, we tentatively categorized
SLEs based on their likelihood to be a consequence of depressive
symptoms (Brown & Harris, 1978; Paykel, 1987). Independent
SLEs (iSLEs), or events that are more likely independent from
depressive symptoms, were ‘serious illness, injury, or assault of
a close relative’, ‘death of a close relative’, and ‘death of a spouse
or partner’. Dependent SLEs (dSLEs), or events that are more
likely partly dependent on depressive symptoms, were ‘marital
separation/divorce’ and ‘financial difficulties’. ‘Serious illness,
injury, or assault to yourself’ was excluded as it could be either
an iSLE or dSLE. Consistent with our hypothesis, dSLEs signifi-
cantly mediated the relationship between depressive symptoms

Figure 3. Mediation effects. (a) Depressive symptoms
significantly mediated the relationship between SLEs
and bilateral nucleus accumbens volume. (b) SLEs sig-
nificantly mediated the relationship between depressive
symptoms and bilateral nucleus accumbens volume.
Depressive symptoms and SLEs were measured at v2.
All paths controlled for age, age2, sex, and White
British ancestry. Paths involving the nucleus accumbens
volume additionally controlled for handedness, scan-
ning site, x, y, and z head positions in the scanner,
and intracranial volume. SLEs: stressful life events. L,
left; R, right; Vol, volume. B values may be slightly differ-
ent from those reported in online Supplementary
Table S5 due to slightly different numbers of cases
with complete data.
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and nucleus accumbens volume (left: indirect effect =−0.003,
p = 0.05, 95% CI −0.005 to −0.001, 10.2% mediated; right: indir-
ect effect = −0.003, p = 0.018, 95% CI −0.006 to −0.001, 13.3%
mediated), but not iSLEs (left: p = 0.130; right: p = 0.360).
However, caution must be taken to interpret this finding given
the putative classification of SLEs.

Nucleus accumbens functional connectivity

Post-hoc rsFC analysis revealed significantly lower rsFC in HS
than NS between the left nucleus accumbens seed and a clus-
ter in the left orbitofrontal cortex (OFC) (Fig. 4; cluster size =
83, clusterwise p = 5.4 × 10−5, peak F value = 21.34, MNI

coordinate = [−6, 62, −12]). No significant differences were
found between HD and ND or for the right nucleus accum-
bens seed.

Replication after excluding neurological cases

Finally, we repeated our analyses after excluding participants with
neurological conditions (N = 448, 2.0% of the total sample; online
Supplementary Table S7). Bilateral nucleus accumbens volume
remained the only imaging phenotypes significantly and nega-
tively associated with both SLEs and depressive symptoms (online
Supplementary Table S8). Conclusions from the rsFC and medi-
ation analyses were not affected.

Figure 4. SLEs were associated with lower resting-state
functional connectivity (rsFC) between the left nucleus
accumbens region-of-interest (green) and the left orbi-
tofrontal cortex (red). Voxel-wise threshold, p = 0.001,
cluster-wise threshold, p = 5.4 × 10−5. Imbedded box is
the plot comparing rsFC in the high SLEs (HS) and no
SLEs (NS) groups. RsFC values are residuals after regres-
sing out age, age2, sex, and White British ancestry, hand-
edness, scanning site, x, y, and z head positions in the
scanner, and head motion. L, left; R, right; SLE, stressful
life event.
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Discussion

We examined the brain structures implicated in the reciprocal
relationship between stress and depressive symptoms by studying
SLEs and depressive symptoms in a large community sample. We
replicated the bidirectional relationship between SLEs and depres-
sive symptoms reported by prior studies (Amital et al., 2008;
Chapman et al., 2004; Conway et al., 2012; Hammen, 1991;
Kendler et al., 1999; van Os & Jones, 1999; Widom et al.,
2007). Neuroimaging correlates of SLEs included three structures
and functional connectivity between the left nucleus accumbens
and the left OFC. Neuroimaging correlates of depressive symp-
toms included widespread morphological and white matter
microstructural changes. Bilateral nucleus accumbens were the
only regions with overlapping effects of SLEs and depressive
symptoms, and SLEs and depressive symptoms partially mediated
the effect of each other on nucleus accumbens volume. The
nucleus accumbens may be a neurobiological nexus for the bidir-
ectional relationship between stress and depressive symptoms.

Stress exposure has long been recognized as a risk factor for
depression (Amital et al., 2008; Chapman et al., 2004; Kendler
et al., 1999; Widom et al., 2007). Reciprocally, the stress gener-
ation hypothesis posits that depressive symptoms put an individ-
ual at a higher risk for stressful experiences due to
depression-related symptoms, behaviors, characteristics, and
social context (Hammen, 1991, 2006). Structural equation model-
ing of longitudinal data was consistent with this reciprocity
between SLEs and depressive symptoms. Bidirectional causal rela-
tionship is difficult to test because the proposed causal event, by
definition, can be affected by the proposed consequence. Using a
longitudinal design allowed this reciprocity to be examined.

We found SLEs to be associated with lower white matter integ-
rity in the forceps major, a tract that involves the splenium part of
the corpus callosum. Disruptions in the macro- and microstructure
of the corpus callosum are well documented in stress and trauma
(De Bellis & Keshavan, 2003; De Bellis et al., 2002; Dennis et al.,
2021; Jensen et al., 2018). One mechanism can be stress-induced
glucocorticoid increase that affects myelination (Huang, Harper,
Evans, Newnham, & Dunlop, 2001). We also found SLEs to be
associated with weaker rsFC between the left nucleus accumbens
and the left OFC, an area central to emotion regulation and deci-
sion making (Bechara, Damasio, & Damasio, 2000). OFC alteration
has been previously reported in stress (Hanson et al., 2010;
Muhammad, Carroll, & Kolb, 2012) and reduced coordination
between the OFC and the nucleus accumbens may reflect impaired
self-regulation after stress exposure (Meyer & Bucci, 2016).

We replicated widespread alterations associated with depres-
sive symptoms reported by previous studies (Milak et al., 2005;
Schmaal et al., 2017, 2016; Shen et al., 2020; van Velzen et al.,
2020). Some discrepancies, such as significantly lower hippocam-
pal volume in recurrent depression (Schmaal et al., 2016) but not
in the current sample, may be explained by our focus on depres-
sion symptomatology as opposed to diagnosis in an older, mostly
subclinical population. Most of the imaging associates of depres-
sive symptoms were not significantly associated with SLEs, which
is expected as depressive symptoms can result from various fac-
tors other than SLEs (Saveanu & Nemeroff, 2012). One caveat
though is that the brief UKBB SLEs assessment could not have
captured all sources of stress, and additional brain correlates of
stress may not have been discovered.

Animal models of post-traumatic stress disorder and major
depression overlap extensively in hippocampus, ventral striatum,

PFC, and hypothalamic-pituitary-adrenal axis pathology (Ploski
& Vaidya, 2021). Here, we found that the nucleus accumbens
was the only brain region associated with both SLEs and depres-
sive symptoms. Notably, both the left and right nucleus accum-
bens showed overlapping effects of SLEs and depressive
symptoms after multiple comparison correction, suggesting that
this finding is unlikely fortuitous. Moreover, SLEs partially
mediated the effect of depressive symptoms on bilateral nucleus
accumbens volume and vice versa. While neuroimaging studies
have shown that the brain abnormalities in depression can be
attributed to previous history of stress (Meinert et al., 2019;
Vythilingam et al., 2002), to our knowledge this is the first
study to show the reverse, i.e. the neural associates of stress
may be accounted for by preexisting depressive symptoms.
Furthermore, we show that the mediation effect of SLEs was stable
using depressive symptoms measured across two visits several
years apart and was only significant for SLEs that are more likely
influenced by depressive symptoms (i.e. dSLEs). Thus, our results
are consistent with the stress generation theory of depression.

There are strong neurobiological and psychopathological bases
for why the nucleus accumbens stood out as a brain structure
involved in stress, depressive symptoms, and their reciprocity.
The nucleus accumbens has been associated with stress and
depression in humans (Edmiston et al., 2011; Gheorghe et al.,
2021; Liu et al., 2021; Wacker, Dillon, & Pizzagalli, 2009; Walsh
et al., 2014; Whittle et al., 2014). It plays a central role in the
brain’s mesolimbic neurotransmission pathways (Baik, 2020;
Fox & Lobo, 2019) by receiving dopaminergic, GABAergic, and
glutamatergic projections from the ventral tegmentum, amygdala,
and other areas for salience, reward, and punishment processing
(Bongioanni et al., 2021; Kohls et al., 2013; Lowes et al., 2021).
It is connected to essentially all limbic areas for emotional/motiv-
ational responses (Floresco, 2015; Saddoris, Cacciapaglia,
Wightman, & Carelli, 2015). The nucleus accumbens is therefore
a hub for converging neural processes that regulate stress response
and depression formation and the impact of stress (depressive
symptoms) on this region increases the vulnerability to the
other. Smaller nucleus accumbens volume may be the macro-
scopic manifestation of these underlying processes.

This study has several limitations. First, the measures of SLEs
and depressive symptoms have not been previously validated and
are susceptible to recall bias (Monroe, 1982; Monroe, Slavich,
Torres, & Gotlib, 2007) (although both have been used in previ-
ous studies, see Arnau-Soler et al. [2019]; Davis et al. [2020];
Harshfield et al. [2020]; Lehto et al. [2020]; Macfarlane et al.
[2014]). Moreover, given restraints imposed by the UKBB design,
we could only probe the longitudinal effects between SLEs and
depressive symptoms with proxy measures. These issues, although
practical for a very large sample, have likely introduced noises and
compromised the size of relationships that could be observed,
which cannot be fully compensated for by sample size. Second,
while we used longitudinal analysis to probe the relationship
between SLEs and depressive symptoms, it cannot be taken as dir-
ect evidence of causality. Similarly, our neuroimaging findings
used cross-sectional data and can only be interpreted as correl-
ational. Third, the 138 imaging phenotypes surveyed in our ana-
lyses were not exhaustive and additional shared neural correlates
between SLEs and depressive symptoms may exist, such as rsFC
phenotypes. Machine-learning approaches with unsupervised
learning may be better suited to identify distributed networks
that link SLEs and depression (Genon, Eickhoff, & Kharabian,
2022; Marek et al., 2022). Fourth, the effect sizes were small,
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and the SLEs findings did not survive FDR correction after con-
trolling for ACEs, suggesting that findings in this study may
also be partly attributed to early stressful experiences. Fifth, our
analyses did not account for factors such as medication use, psy-
chotherapy, and physical comorbidity. Last, the UKBB sample was
predominantly healthy white volunteers (Fry et al., 2017), and
generalizability to groups with more pathology and lower socio-
economic status is unclear.

To summarize, a reciprocal relationship between SLEs and
depressive symptoms was supported using a longitudinal epi-
demiological dataset, and this bidirectional susceptibility was
found to be associated with the nucleus accumbens. To our
knowledge, this is the first study to identify the neural underpin-
nings of the bidirectional stress–depressive symptoms relationship
in humans. Further research may be important for developing
new therapeutics to disrupt this relationship and increase resili-
ence for both stress-induced depressive symptoms and depressive
symptoms-related stressful experiences.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723002866.
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