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Abstract

For the fourth-order linear difference equation A*u,_, = b,u,, with b, > 0 for all n,
generalized zeros are defined, following Hartman [5], and two theorems are proved
concerning separation of zeros of linearly independent solutions. Some preliminary results
deal with non-oscillation and asymptotic behavior of solutions of this equation for various
types of initial conditions. Finally, recessive solutions are defined, and results are
obtained analogous to known results for recessive solutions of second-order difference
equations.

1. Introduction

In a recent paper [5] Hartman introduced the concept of a generalized zero of a
solution of an nth order linear difference equation and discussed disconjugacy
and non-oscillation of solutions of such equations. In this paper we consider
generalized zeros and oscillation and asymptotic properties of solutions of
fourth-order linear difference equations. In particular, we discuss discrete ana-
logues for certain results of Leighton and Nehari [8] on oscillation and separation
of zeros of solutions of a fourth-order differential equation.
Specifically, we consider here the fourth-order linear difference equation
A*u, ,=bu, n=23,4,..., (1.1)

where b = {b,}, n = 2,3,4,..., is a given infinite sequence of positive numbers,
A is the forward difference operator defined as Au, = u, ., — u,, and

Azun = A(Au,,) = Uy~ 2U,py T Uy,

ABun = A(Azun) FUpe3z T 3un+2 + 3un+1 — U,

4 _ 3 —
Au, = A(Mu,) =u,,s— du,, 3+ 6u,,,—du,, +u, (1.2)
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21 A fourth order linear difference equation 311

By a solution of (1) we mean a real sequence u = {u,}, n=0,1,2,..., which
satisfies (1.1).

One possible application of our results would be in the numerical approxima-
tion of solutions of the fourth-order differential equation y” “(t) — b(¢) y(t) = 0,
b(t) > 0. This follows from the fact that the operator given by (1.1) is stable in
the sense defined by Dahlquist [1, page 19], where the # in [1, page 6] can be
thought of as 1. Another possible application lies with the numerical approxima-
tion of recessive type solutions discussed in Section 5. In the second-order case,
the concept of recessive solutions has been important in the numerical approxi-
mation of certain types of special functions ([9]).

Difference equations also arise directly in mechanics (see Fort [2] and Green-
span [4]), in biology ([3]), and in the theory of codes ([12]), although these are more
typically first and second order difference equations.

Before proceeding, we note that the letters i, j, m, n, M, N, P, O, R will be
used below only as nonnegative integer variables. We occasionally write WLOG
for “without loss of generality”. By the graph of a solution u of (1.1) we will mean
the graph consisting of the line segments connecting successive points (n, u,,) and
(n+1lu, . )n=012....

In Section 2 we define generalized zeros and discuss uniqueness of solutions of
(1.1) satisfying certain initial value properties. In section 4, several theorems
culminating in two separation of zeros theorems are presented. Theorems 4.3 and
4.4 are discrete analogues of Theorems 2.6 and 3.1 of Leighton and Nehari [8],
and the sequence of Lemmas in Section 3 is somewhat analogous to the corre-
sponding chain of results of Leighton and Nehari.

In Section 5 we discuss existence of positive decreasing solutions (recessive
solutions) of (1.1).

2. Definitions and preliminary results

It is readily verified from (1.2) that the fourth-order forward difference
operator may be written in the form

Du, y=tppy = Uy — Bu, — Bu,  — Nu,_,, (2.1)
and so (1.1) may be written as
Uy, =0Nu, ,+ANu, ,+Au,+u,,,+bu,. (2.2)
Also, from (1.2) we may write (1.1) in the alternate form

(2.3)

3
\%
=

Upyg=3U,,; -(6 - bn+2)un+2 +4u,,.,—u

n?
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From (2.3) it follows inductively that all solutions of (1.1) are defined for all
n = 0, and that a unique solution of (1.1) is determined if any four successive
values uy, uy,q, Uy, Uy, are given. In particular, the following uniqueness
property is clear.

LEMMA 2.1. If u is a solution of (1.1) with uy = upy 1= Uy, , = Uy,.3 =10 for
some N > 0, thenu, = 0 foralln > 0.

We now define a “generalized zero” for a solution of (1.1) as follows:

DEFINITION. Let u = {u,},n = 0,1,2,..., be a solution of (1.1). Then n > 0 is
a generalized zero if one of the following holds:
u,=0; (2.4)
n>0 and u,_ju,<0; (2.5)
n>1,

and there exists an integer k, 1 < k < n, such that
(—l)kun—kun > 0’ and un-—l = un—2 = = un—k+1 = 0 (26)

This is essentially the definition given by Hartman [5]. To this we add the
following terminology:

A generalized zero of a solution u of (1.1) is said to be of order 0,1, or k > 1,
according to whether condition (2.4), (2.5), or (2.6), respectively, holds. In
particular, a generalized zero of order 0 will simply be called a “zero”, and a
generalized zero of order one will be called a “node”, as in Fort [2] and Hartman
[5]

We note also that if 4 has a generalized zero of order k at n, then u necessarily
has k consecutive generalized zeros at n — k + 1,...,n. Figure 1 illustrates
generalized zeros of order 0, 1,2 and 3 respectively, at n. It will be shown below in
Theorem 4.1 that a solution of (1.1) cannot have a generalized zero of order
k > 3. We know already from Lemma 2.1 that a nontrivial solution of (1.1) can
have zeros at no more than three consecutive values of n. However, a solution of
(1.1) can have arbitrarily many consecutive nodes, as exhibited by the sequence
u, = (-1)", which is a solution of A%u,_, = 16u,,.

Y " / 3 n "
—t + -+ ¥ + + ¢
/ n n / n

Figure 1. Generalized zeros of order 0, 1, 2, and 3.
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3. Monotonicity properties

We begin with a preliminary lemma on the behavior of a sequence with a
nonnegative second difference.

LEMMA 3.1. If u is an infinite sequence satisfying A%u, > 0 for all n > K for some
K, then

u,>ug+ Aug(n—K), foralln>K. (3.1)

PrOOF. Since A%u, > 0 for n > K, Au_ is nondecreasing so
n n

n—1
u,—ug= 9 Au;> (n — K)Auy.
1=K

Our second lemma is a difference equation analogue of Lemma 2.1 of Leighton
and Nehari [8). Note that it is assumed here and throughout this paper that
b, > 0 for all n.

LEMMA 3.2. If u is a nontrivial solution of (1.1) and if

(a) u,>0,

(b) Au,>0, 32)
(c) Au,_,=>0, @.
(d) Au,_,>0,

for some n = N, N > 2, then (3.2) holds for all n > N, with strict inequality in
(3.2a) for all n > N + 2, strict inequality in (3.2b) for all n > N + 1, and strict
inequality in (3.2c) and (3.2d) for alln > N + 3. Furthermore

Au, ,>0, foralln> N, (3.2¢)

with strict inequality for alln > N + 2, and u,,, Au,, and A*u, all tend to + o as
n — oo.

PROOF. Given uy > 0, Auy > 0, A’uy_, > 0, and A’uy_, > 0, we immediately
have uy,, — uy = Au, > 0, hence
Uyp1 =ty 2 0.

From (2.2) we obtain

Duy,y =ty,y— Uy = Nuy o+ Aupy_ | + Auy + byuy. (3.3)
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Then (3.3) gives us
Aupy = Aupy, ) — Buy = Nuy_, + Nuy_, + byuy, (3.4)
and this in turn leads to
Nuy_ = Nuy — Nuy_ = Ouy_, + byuy. (3.5)

All the terms on the right-hand sides of (3.3), (3.4), and (3.5) are nonnegative, so
Auy,,, Auy, and Au,_, are nonnegative. Thus, assuming that conditions
(3.2a-d) hold for N implies that they also hold for N + 1. Proceeding in this way,
we see by mathematical induction that conditions (3.2a—d) hold for all n > N.
Condition (3.2¢) follows immediately from (1.1), since b, > 0 and u, > 0 for all
n>=N.

Since b, > 0, at least one term on the right in (3.3) must be positive, since
otherwise uy ., = uy = uy_, = uy_, = 0 by (1.2), hence u would be the trivial
solution of (1.1) by Lemma 2.1. Thus Auy,; > 0 and it follows that strict
inequality holds in (3.2b) for all » > N + 1. This implies that u, is strictly
increasing for n > N + 1, and since uy,, > 0, we then have u, > 0 for all
n = N + 2, as claimed. This in turn implies, by use of (1.1), that strict inequality
holds for (3.2€) for n > N + 2. Also, using (3.4) and (3.5), we may conclude that
A%u, > 0 and A%u,_, > O for all n > N + 2. Therefore strict inequality holds in
(3.2c)and (3.2d) foralln > N + 3.

To prove the last statement in the conclusion, we observe that the sequences
{u,), {v,} = {Au,}, and {w,) = {A%4,} all satisfy the hypotheses of Lemma
3.1 for any X > N. Applying Lemma 3.1 to these three sequences yields, respec-
tively,

u, > ug+ Aug(n—-K),
Au
Ay

> Aug + Nug(n—K),

n

> Nug+ Nug(n—K),

n

for all n > K. In particular, these inequalities are true for K = N + 2, and since
Au,, A%ug, and Aluy are all positive for K = N + 2, it follows that u,, Au,, and
A%y, tend to + o0 as n — oo, which completes the proof.

We note that the above theorem fails if the hypothesis u, > 0 is replaced by
uy,, > 0. This is shown by the example u, = (-1)"*!, which is a solution of
A%u,_, = 16u,. This sequence satisfies u; = 1 > 0, Au, =2 > 0, A’u, =4 > 0,
Auy=8 >0, but fails to have any of the monotonicity properties of the
conclusion of the lemma. It is interesting to note also that the initial conditions
given in the hypotheses of the lemma are not necessarily of “convex” type, i.e.,
the graph of a solution satisfying these conditions is not necessarily convex
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upward on the interval from N — 2 to N + 1. For example, a sequence u
satisfying u, = 0, u; = 1, u, = 0, u; = 1 satisfies the hypotheses of the lemma,
since u, = 0, Au, = 1 > 0, A%u; = 2 > 0, and A’uy = 4 > 0. However, the “con-
vex” conditions uy = 2, u; = 0, u, = 0, u; = 1, do not, since in this case u, = 0,
Au, =1, A%y, = 1, but Auy= -1.

The following lemma is a corollary of Lemma 3.2. It is essentially a special case
of Lemma 3.2, in a geometrical sense. That is, while the hypotheses of Lemma 3.2
allow a diversity of “shapes” in the graph of u# from N — 2 to N + 1, the
following lemma requires that the graph be convex upward on the interval from N
toN + 3.

LEMMA 3.3. If u is a nontrivial solution of (1.1) and if
(a) u,>0,
(b) Au,>0,
(c) &%,>0,
(@ Au,>0,
for some n = N, N > 0, then (3.6) holds for all n > N, with strict inequality in
(3.6a,b,d) foralln > N + 3, and in (3.6¢) for alin > N + 4. Furthermore
A*u, >0 foralln> N, (3.6¢)

with strict inequality for n > N + 2, and u,, Au,, and A’u, all tend to + o as
n — oo.

(3.6)

PRrROOF. Given a nontrivial solution u of (1.1) satisfying (3.6) forn = N > 0, let
M = N + 2. Then Au,,_, = Aup_, — Aup,_, > 0, 50
Nup_ 1 > B%uy,_, = Au, > 0.
Similarly, A’u,,_, > 0 implies Au,,_, > Au,,_, > 0, and A’u,,_, > 0 implies
Au,, > Auy,_y, hence
Aup > Aup > Auy_, > 0. (3.7)
This in turn implies
Uppa1l S Up = Upg_ 2 Up_, 2 0. (3.8)
Thus A’u,,_,, Auy,_,, Au,,, and u,, are all nonnegative, and it follows from
Lemma 3.2 that

(a) u,>0,
(b) Au, >0,
(c) A%u
(d Au,_,>
=

(e) A4un -2

: (3.9)
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for all n > M, with strict inequality in (3.9a,e) for n > M + 2, in (3.9b) for

> M + 1, and in (3.9¢,d) forn > M + 3. Also u,, Au,, and A?u, tend to + o
as n = oo. By shifting subscripts, and using M = N + 2, we may rewrite (3.9)
and the related statements about strict inequality as folows:

(a) >0,n>N+2 (>0forn>N+4),
(b) Au,,/ nzN+2 (>0forn>N+3),
(c) A%u n>0,n>N+1 (>0forn> N +4), (3.10)
(d) Au,>0,n>N (>0forn> N + 3),
() A*u,>0,n>N (>0forn> N +2)

Since M = N + 2, (3.7) and (3.8) immediately imply that «, > 0 and Au, > 0
hold also for n = N + 1 and n = N. Furthermore, (3.8) implies that if uy ., = 0,
then uy ;= uy,, = uy,, = uy =0, so u would be the trivial solution of (1.1).
Therefore uy, , ; > 0. Finally, A%u,, > 0 by hypothesis, and we have shown that all
of conditions (3.6) hold for n > N, with strict inequality as stated in the
conclusion.

We will need the following “backwards™ version of Lemma 3.2, which de-
scribes behavior of a solution of (1.1) for values of n less than some given N. Note
that, in contrast to Lemmas 3.2 and 3.3, the sense of the inequalities alternates in
conditions (3.11).

LemMMA 3.4. If u is a nontrivial solution of (1.1) with
(@) u,>0,

(b) Aun-l <

(C) Azun—l 2

<

(d) A:""rl—l

0,
(3.11)

0,
0,
for some n = N > 3, then u satisfies (3.11) for alln,2 < n < N, and

A*u, ,>0, 2<n<N. (3.11¢)

Furthermore ug > u; > 0, and Auy < 0. Strict inequality holds in (3.11a,¢) for
2<ngN-2(f N> 4), in (3.11b) for 2 < n < N — 1, and in (3.11c,d) for
2<ngN-3(ifN>

PROOF. Let u be a nontrivial solution of (1.1) satisfying (3.11) for some N > 3.
Let

v = Uy, Jj=0,1,...,2N.
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Then it is readily verified that
Al)j= —AuzN_j_l, j= 0,1,...,2N— 1,

Ny, = Nuyy_; 5, j=0,1,...,2N -2,

A3vj = —A’uzN_j_3, j=0,1,...,2N — 3, (3.12)
Ay = Auyy ;i 4, Jj=0,1,...,2N - 4.
In particular, since u is a solution of (1.1),
Ao,y =Byn_ _y=byy_jusy_;, j=2,3,...,2N — 2.
So v is a solution of
A_,=Bw, j=2,3,...,2N -2, (3.13)

where B, = b,y_; > 0,j = 2,3,...,2N — 2. Using (3.12) and the definition of v,,
we find that vy = uy, Avy, = -Au,_, = Auy_,, Ay _, and A, _, = -Auy ;.
It then follows from our hypotheses that v satisfies the hypotheses of Lemma 3.2,
which implies that
(@ y >0,
(b) Av, >
(c) A%w,_,
(d) A,_,
-2

e

=
\Y%

0, (3.14)
0,
0

v

J

(e) A%

V

>

for N < j < 2N — 2, with strict inequality holding as follows:

(a) v;>0, N+2<j<2N-2, (N=4),
(b) Av,>0, N+1<j<2N-2, (N3=3),
(¢) A,_,>0, N+3<j<2N-2, (N>5), (3.15)
(d) &%,;_,>0, N+3<j<2N-2, (N>5),
() A%,_,>0, N+2<j<2N-2, (N>4).
It follows from (3.12) and (3.14) that
(a) uyy_, >0,
(b) AuZN—j—l <0,
(c) Aupy_;-y 20, (3.16)

(d) Puyy <
0

(C) A42N—_/—2 >

https://doi.org/10.1017/50334270000004537 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004537

318 John W. Hooker and William T. Patula [9]

for N € j < 2N — 2, with strict inequality for the same values of j as given in
(3.15). If weletinn = 2N — j, we may rewrite (3.16) as

(@) u,>0,

(b) Au,
(c) Au, ,>0, (3.17)
(d) A%, , <0,

>0

(e) A%, ,
for 2 < N, which proves that (3.11) holds as claimed. The values of n which
give strlct mequahty in (3.17), as claimed in the conclusion of the lemma, follow
immediately by letting j = 2N — n in the j-intervals stated in (3.15). To complete
the proof we need to extend the domain of (3.17a,b) by showing u, > u; > 0,
and Au, < 0. To do this, we first observe that (3.15b) implies v,5_; — Uyy_2 =
Av,n_, > 0s0

0,

v A

ki

u = U2N—l > UZN—Z = O. (3.18)
Also, v is a solution of (3.13) and we may rewrite (3.13), as in (2.2), as
Vs =& _,+ A%;_, + Au + v, + B, (3.19)

In particular,
Uan = B0y _4 + My 3+ Avyy_y + 0y 1 + Byy_stan—y,  (3.20)
from which it follows by (3.14b, ¢, d) with j = 2N — 2, and by (3.18), that
‘ uy = v,5 > 0. (3.21)
Similarly (3.14) and (3.20) imply
Avyy_1 = Upy = Uyny
=Ny s+ A0yn_3 + Boyy 3+ Byy_s0an_2>0,  (3.22)
hence Au, = —Av,,_; < 0, hence u; < u,, which completes the proof.

We end this section with another lemma which describes the monotonicity of a
solution which actually assumes the value zero. This result will be utilized
extensively in the next section.

LEMMA 3.5. Let N > 2. If u is a solution of (1.1) with uy =0, uy_, 20,
Uye1 20, uy_y and uy,  not both O, then at least one of the following conditions
must be true.

(a) Either u,, > O foralln > N + 1, or

®)u,>0foralln<N-1,n>0.

In particular, u cannot have generalized zeros of any order at both R and S, where
R < N—-1<N+1<S8. An analogous statement holds for the hypotheses u, _,
< 0anduy,, <0.
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ProOF. From the hypotheses, we have

uy =20,
Auy=uyy —uy=uy; 20,
Quy_y=uy—uy_;=-uy_ <0,

2 = _
Auy_y=uy,1 —2uy+uy_,>0.

If A%u,_, >0, then Lemma 3.2 applies, and we can conclude u, > 0 for all
n> N + 2. On the other hand, if A’u,_, <0, then (1.1) implies Au,_, —
Nuy_, = A%y _, = byuy =0, hence Auy_, = Auy_, > 0. If N > 3, then the
hypotheses of Lemma 3.4 are satisfied, hence u, > Oforalln < N — 2.

If N = 2, then Auy_, = u; — 3u, + 3u; — u,. Since uy = u, = 0 and Au,_,
= Auy_, < 0, we have that u; + 3u; < u,. Since u; and u, are nonnegative and
are not both equal to zero, it must be true that u, > 0, which is part (b) of our
conclusion for N = 2.

4. Separation theorems

In this section, we present several theorems dealing with the location and
separation of zeros and generalized zeros. Before proceeding, we note again that
the term “generalized zeros” includes both zeros and nodes, although we occa-
sionally mention all three terms for emphasis.

THEOREM 4.1. If u is a nontrivial solution of (1.1) with zeros at three consecutive
values of n, say N, N+ 1 and N + 2, then u has no other generalized zeros. If
Uni3 >0 (<0), then Au,>0 (< 0) for all n, and the inequality is strict if
n>N+2o0rn< N-1Inparticular,p < Nandq > N + 2 imply u,u, < 0.

PRrOOF. Clearly Auy = A%u) = 0. Since u is nontrivial, W.L.O.G. we may
assume u,_,; > 0. Thus A’uy = up,; > 0, and Lemma 3.3 implies u is positive
and strictly increasing forn > N + 3.

Next, let v = —u. Then vy,, = 0, Avy =0, A%y, = 0 and A%, < 0. If N > 2,
then Lemma 3.4 implies that v is positive and strictly decreasing for 0 < n < N.
(Note that N in Lemma 3.4 is replaced here by N + 1.) Thus u is negative and
strictly increasing for 0 < n < N. If N =1, we again assume uy,; = u, > 0.
Then by (1.1), A*ug = byu, = 0. But A*ug = u, + uy by (1.2), so ug = —u, <0
and Auy = u; — uy > 0, as claimed. If N = 0, the part of the conclusion concern-
ing n < N — 1 is vacuous, so this completes the proof.
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Notice that Theorem 4.1 confirms the remark made at the end of Section 2;
i.e., the highest possible order of a generalized zero for a solution of (1.1) is 3.
Moreover, our next theorem implies that if a solution of (1.1) has a generalized
zero of order 3, then it can have no other zeros or generalized zeros (except, of
course, for the two adjacent zeros which are included in the definition of a
generalized zero of order 3).

THEOREM 4.2. Let N > 1. Suppose u is a solution of (1.1) withu,, = 0, up,, = 0,
Uni2# 0, but N + 2 is a generalized zero for u. Then u has no other generalized
zeros. If uy,, > 0 (<0), then Au, > 0 (< 0) for all n, with strict inequality if
n>N+2o0rn< N -1 Inparticular,p < Nandq > N + 1 imply u,u, < 0.

PROOF. Since uy,, # 0, we may assume W.L.O.G. that u,_, , > 0. Since
uy =uy,, =0, N + 2 cannot be a generalized zero of order 1 or 2, and Theorem
4.1 implies that the order cannot be greater than 3. Thus N + 2 is a generalized
zero of order 3, which implies that #,,_, < 0. From (1.1), we have

Uney —duyn,, +6uy, —duy+uy_  =byquy,,, or
Uniy =AUy, p— Uy
This implies

3. — _ -
Nuy=uy,3—3uy,,+3uy,; —uy

Quy,,—uy_y — 33Uy, +3uy, —uy
=Uyiy— Uy >0

Clearly, A’u,, > 0, Aupy = 0 and u, = 0. We may now apply Lemma 3.3 and
conclude that u is positive and strictly increasing forn > N + 3.

Forn < N, let v = —u. Then vy, = 0, Avy_, <0, A%,,_, > 0 and A%, _, < 0.
If N > 3, an application of Lemma 3.4 yields the result, just as in Theorem 4.1. If
N =2,thenu, = u; =0, u; <0, u, >0, and Au, > 0. By (1.1) we have A%y, =
b,u, = 0. But

A'ug=u, — duy +6u, — du; + uy=u, — du, + ug,
and so 4u; — uy, = u, > 0. Hence uy < 4u;, <0, and vy — u, < 3u; < 0. There-
fore uy <0 and uy, > 0, as claimed. If N =1, then u;, = u, =0, u; # 0, and
N + 2 =3 is a generalized zero. It follows from the definition of a generalized

zero that this must be a generalized zero of order 3, so that if u, > 0 then uy < 0.
Hence Auy > 0, which completes the proof.

COROLLARY 4.1. If u is a nontrivial solution of (1.1) with generalized zeros at M

and Panda zeroat NNM +1 <N < P —1,thenuy_quy,., < 0. In particular, u
does not have a generalized zero at N + 1.
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ProoOF. Since M + 1 < N < P — 1, it follows immediately from Theorem 4.1
that u,_, and u, _, cannot both equal 0. If uy, ,uy_, > 0, Lemma 3.5 implies
that u cannot have generalized zeros at both M and P, a contradiction. Thus,
Uy qUpysg < 0.

COROLLARY 4.2. If u is a nontrivial solution of (1.1) with up, = uy = up =0,
M<N<P-1,thenuy,, # 0.

PROOF. If N = M + 1, the corollary follows immediately from Theorem 4.1. If
N > M + 1, it follows from Corollary 4.1.

COROLLARY 4.3. If a nontrivial solution u of (1.1) has a zero at M and a
generalized zero at P, where M < P, then u cannot have consecutive zeros at N,
N+ 1, where M < N<P -1.

PROOF. Let u be a nontrivial solution of (1.1) with zeros at M, N, N + 1 and a
generalized zero at P, where M < N < P — 1. Theorems 4.1 and 4.2 imply that
wemust have M <N—1land P> N+ 2,i.e, M+ 1 < N < P — 1. Corollary
4.1 implies u,_,uy,, < 0, contradicting u, ., = 0.

We remark that Corollary 4.3 says that if a solution u has four or more zeros,
no two zeros can occur at consecutive values of n, unless they are the first two
zeros or the last two zeros. For example, consider the sequence
{-4,0,0,-1,0,1,0,0,4,15,...}. This satisfies A*u,_, = 5u,, with u; = -4. That
this sequence is positive and increasing for n > 9 follows from Lemma 3.2 with
N = 7. Note also that the terms u, through u, illustrate Corollary 4.1.

THEOREM 4.3. If two nontrivial solutions u and v of (1.1) have three zeros in
common, then u and v are linearly dependent, i.e., specifying any three zeros (not
generalized zeros) uniquely determines a nontrivial solution up to a multiplicative
constant.

ProOF. We will consider two cases. First, assume u,, = uy = iy, = Uy = Uy
=vyn,1 =0, for some M and N, 0 < M < N. Then uy,, # 0 and vy, # 0 by
Theorem 4.1. Define w, = vy, ,u, — Uy, ,U,. Since w, is a linear combination of
u, and v,, it is a solution of (1.1). However, w,, = wy = wy,, = Wy, = 0, and
so w must be the trivial solution by Theorem 4.1. Since u,_, and v, , are
nonzero, this means u and v are constant multiples of each other.

Next, suppose uy, =uy=up=0and vy, =vy=vp, =0, where M <N < P
— 1. Then uy,, # 0 and vy,, # 0 by Corollary 4.3. Define w, = vy, u, —
up 0, Clearly, w,, = wy, = w,,, = wp =0, which contradicts Corollary 4.2
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unless w, = 0. This means « and v are constant multiples of each other and
completes the proof.

Our next theorem is a separation of zeros theorem for independent solutions of
(1.1). When we say that P and Q, P < Q, are consecutive generalized zeros of u,
we mean that ¥ has no generalized zero N such that P < N < Q.

THEOREM 4.4. Let u and v be nontrivial solutions of (1.1) with u,, = vyy=uy =
vy = 0. Suppose u has consecutive generalized zeros at P and Q, where M < P < Q
< N.IfM + 1 < P, then either

vp_10p <0, or (4.1)
UUps1 <0 forsomek, P<k< Q-1 (4.2)

IfM+1=Pandup=0,then (42)holds. If M + 1 = Pandup+ 0,but Pisa

generalized zero for u, then either (4.2) holds, or
vp # 0 and v has a generalized zero at P. (4.3)
In any case, therefore, v has a generalized zero for some Z, where P < Z < Q.

ProoOF. Consider the generalized zero of u at P. Then (2.4), (2.5) or (2.6) must
hold forn = P.

First, assume that (2.4) holds, i.e., up, = 0, and suppose P — 1 > M. Then we
must have up_,up,, # 0, otherwise we contradict Corollary 4.3. If up_,up,, > 0,
then Lemma 3.5 is contradicted. Thus P — 1 > M implies up_,up,; < 0. This is
listed as possibility (4.5) below. If P —1 = M, thenu,_, =up,=0,and P + 1is
not a generalized zero, since otherwise either Theorem 4.1 or Theorem 4.2 would
contradict the fact that u,, = 0. This is listed as (4.6) below.

Next, if (2.5) holds, then u,_;up < 0, hence P — 1 > M and condition (4.4)
below must hold.

Finally, suppose that (2.6) holds. If £ = 3 (the highest value allowed, by the
remark following Theorem 4.1), there would be two consecutive zeros of u
followed by a generalized zero. Theorem 4.2 implies u, # 0, a contradiction.
Thus P cannot be a generalized zero of order 3. Now suppose k = 2. If
P — 2> M, we may assume up, > 0, up_; =0 and u,_, > 0. Lemma 3.5 then
implies that u,, and u,, cannot both equal 0, a contradiction. If P — 2 = M and
k = 2, then u,, # 0, a contradiction. Suppose P —2 <M. Then P=M + 1,
up_,=0and upup_, = upu,,_, > 0. This possibility can occur and is listed as

(4.7) below.
Therefore, if u has a generalized zero at P, one of the following occurs:
M+1<P and wup_up<0, (4.4)
M+1<P, up=0, and wup_jup,, <0, (4.5)

M+1=P, up,=0, and P + 1isnot a generalized zero, or  (4.6)
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M+1=P, up#0 and wupu,_,>0. (4.7)

A similar analysis holds for the generalized zero at Q. However, it will be
sufficient for us to note that if u,_;u, > 0 then Q cannot be a generalized zero,
so it must be true that

ug_ g < 0. (4.8)

Suppose that (4.4) holds for u, and neither (4.1) nor (4.2) is true for v.
W.L.O.G., we may assume u,_; > O0andu, < 0. Thenu, <OforP<n< Q@ —1,
since P and Q are consecutive generalized zeros for u. We may also assume
vp_y > 0and v, > 0 for P < n < Q. Let w, be defined by:

W, = U, 1 — UUp_1- (4.9)
Clearly, wp > 0. Consider wy,. If w, > 0, since vy > 0, vy_; > 0, and u,_, <0,
we must conclude ug < 0. However, if ug and ugy_, are both negative, u does not
have a generalized zero at Q. Thus, wp < 0. Since wp, > 0 and wo < 0, there exists
a first integer R, P < R < Q — 1, such that wy > 0 and wy_; < 0. Let s, be a
solution of (1.1) defined by

S5, = Ugly_1 — URD,_;- (4.10)
Note that sz =wgp >0, sg,.;, =0 and sg,, = -wg,; = 0. Then Lemma 3.5
implies that s,,,, and sy, cannot both equal 0, a contradiction. Thus, if (4.4)
holds for u, then v satisfies (4.1) or (4.2), so v has a generalized zero for some Z,
P<Z<Q.

Suppose now that (4.5) holds for ¥ and that neither (4.1) nor (4.2) is true for v.
W.L.O.G,, assume up_; >0 and u,,, < 0. We may also assume u, < 0 for
P+1<n<Q@-—1and v,>0 for P<n< Q. Define w as in (4.9). Then
wp > 0. Arguing as we did above, we again arrrive at a contradiction.

Suppose that (4.6) holds for u and that (4.2) is not true for v. Then we may
assume v, >0, P<n< Q, where P —1= M. WL.O.G, assume u, ., <O.
Then wp,; > 0. An application of the same argument as above, with P replaced
by P + 1, leads to a contradiction.

Finally, suppose that (4.7) holds for u but that neither (4.2) nor (4.3) is true for
v. Then we may assume u, <0 for P<n< Q—1, uy,_, <0, and v, > 0 for
P <n< @Q,and M + 1 is not a generalized zero for v. Since v,, = 0, it follows
from the definition of a generalized zero that v,,_; < 0. As before, define w, by
(4.9). Clearly w, = 0, so we consider w,_ ;. Suppose wp,; > 0. As above, we can
then conclude that wy, < 0, and the same argument as in the preceding case leads

to a contradiction. Next, assume wp,, < 0. Let s, be a solution of (1.1) defined
by

S, = Vpl,_y — Upl,_,. (4.11)

Then sp,, =0 and s,,,,=0 since P=M+1, and 54,3 = -wp,, > 0. If
wp,; = 0, the solution s has three consecutive zerosat M + 1, M + 2, M + 3 and

https://doi.org/10.1017/50334270000004537 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004537

324 John W. Hooker and William T. Patula {15]

another zero at N + 1, a contradiction of Theorem 4.1. Thus w,,_; <0 and
therefore s,,,; > 0. This means that s,, > 0, because if s5,, < 0 Theorem 4.1 or
Theorem 4.2 would again contradict s, , = 0. However, s5,, > 0 implies vpu,,_,
> upbp_q- Since vy, <0 and u, <0, this means vpu,_; > 0. This is a
contradiction, since vp > 0 and u,,_, < 0. This proves the theorem.

Concerning the hypotheses of Theorem 4.4, it seems reasonable to ask for two
solutions u, and v, both to have a zero at some specified value M; i.e. u,, = v,, =
0. However, examples indicate it may not always happen in this case that there
exists an N > M such that u, = v, = 0. It might be useful, therefore, to allow at
least one of the solutions, say v, to have a generalized zero at N > M. Given M
and N > M + 2, let u be a solution such that u,, = u,_, = u, = 0. It is easy to
argue that such a u exists, as follows. Let r be a solution of (1.1) such that
rv_;=Try_1=ry=0 and ry,, > 0. Let s be a solution such that s,_, <0,
Sy_1 = Sy = 0and sy, > 0. Theorems 4.1 and 4.2 apply to r and s, respectively,
and a suitable linear combination of them yields u. By Theorem 4.3, u is
essentially unique. We can now state the following separation theorem.

THEOREM 4.5. Suppose v is a nontrivial solution of (1.1) such that v,, = 0 and v
has a generalized zero at N > M + 2. Let u be the (essentially unique) solution such
that uy, = upy_, = uy = 0. Suppose u has consecutive generalized zeros at P and Q,
where M < P < Q < N. Then the same conclusions hold as in Theorem 4.4, so that
v has a generalized zerc at Z, where P < Z < Q. Similarly, if v has consecutive
generalized zeros at P and Q, then u has a generalized zero for some Z, P < Z < Q.

PrOOF. Aside from one or two differences, the proof is essentially the same as
that for Theorem 4.4. We arrive at (4.4), (4.5), (4.6), or (4.7) for the generalized
zero of u at P. At Q, u satisfies (4.8).

Suppose that (4.4) holds for ¥ and neither (4.1) nor (4.2) is true for v. We can
again assume u, < 0 for P < n < Q¢ — 1. Define w, as in (4.9). Arguing as before,
we find there exists an R, P < R < @ — 1, such that wy > 0 and wy,, < 0. Let
s, be defined by (4.10). Then sy = wgy > 0,55,; = 0,and 54, , = —wg,; > 0. We
must next consider the following two possibilities (which is not necessary in
Theorem 4.4, since there v, = 0, but here N is a generalized zero for v).

Possibility 1: Let R+ 1 =N —1, in which case R+ 1=Q =N -1, and
Spe2 = "Wpse1= —Wy_1 = —Uy_1Uy_,=>0. If -wg,, =0, since uy_, <0 we
have v, _, = 0, a contradiction. If —-wgz,,; > 0, since Q =N — 1 and u,_, <0,
we must have vy_; > 0. Also, Sg,3 = Uglipg,s — URUg,a = Uglly — Uy =
—uguy. Since s,,,, = 0, Lemma 3.5 implies sz, 3 = —uzvy > 0. Since uz < 0, we
have vy > 0. Thus vy and v, _, are both positive, which contradicts the fact that v
has a generalized zero at N.
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Possibility 2: Let R + 1 < N — 1. We again have sz > 0,5,,, = 0and sg,, =
~wg4, = 0. Since s,,,, = 0, Lemma 3.5 implies that s, > 0, foralln > R + 2. In
particular, s, > 0 and sy, > 0. However, sy = gy _| — Ugly_; = —URUN_1,
and sy,, = Ugliy — Uy = —UgUy. Since sy >0, sy, >0 and uy <0, we
conclude that v, _, and v, are both positive, again contradicting the assumption
that v has a generalized zero at N. Thus we have shown that if (4.4) holds for u,
then v satisfies (4.1) or (4.2).

Next, suppose that (4.5) holds for « and that neither (4.1) nor (4.2) is true for v.
We may assume up_, > 0 and u,,; < 0. Just as in Theorem 4.4, we can argue
that wp > 0. This means there is a first integer R such that wg > 0 and wy,; < 0.
Arguing as we did in the previous three paragraphs, we arrive at a contradiction.

Suppose (4.6) holds for v and (4.2) is not true for v. As in Theorem 4.4, we can
argue that w,,, > 0. Applying the same argument as we did for (4.4) and (4.5) in
the preceding parts of this proof yields a similar contradiction.

Finally, suppose (4.7) is true for u but that neither (4.2) nor (4.3) is true for v.
Then we may assumeu, <0,P<n< Q-1 uy_,<0,v,>0,P<n<Q,and
Up—1 < 0. Define w, by (4.9). Clearly wp = 0. If wp,, > 0, we reach the same
contradiction as we did for (4.4), (4.5) and (4.6). Thus, we assume wp__; < 0. Let s
be the solution defined by (4.11). Then s,,,; =0, 55,,, =0 and sp,, 3 = —-Wwp,,
> 0. If —wp,, = 0, s has three consecutive zeros at M + 1, M + 2 and M + 3.
Theorem 4.1 implies s is one sign, say positive, for all n > M + 3. In particular,
Sy = —UprUn—1 >0 and sy, = —up 0y > 0. This implies vy_vy >0, a
contradiction. Therefore, we assume -wp,; > 0 so that s,,, ;> 0. If 54, <0,
Theorems 4.1 or 4.2 imply s is of one sign for all n > M + 3 and we can again
arrive at the contradiction vy _,v, > 0. Thus, s,, > 0, which implies vpu,,_, >
UpUy_,- Since up < 0 and vy,_; < 0, we have vpu,,_, > 0. This is a contradic-
tion since vp > 0 and u,,_, < 0. Thus v, must have a generalized zero for some Z,
P<Z<Q.

If we assume v has consecutive generalized zeros at P and Q and try to show u
has a generalized zero for some Z, P < Z < Q, essentially the same proof works.
We omit the details.

5. Recessive solutions

Certain types of second order linear difference equations have so-called reces-
sive solutions [9]. Under certain conditions, it can be shown that these solutions
are positive and monotone decreasing [10]. Recessive solutions for second order
equations have been found useful for calculating certain types of special functions
[9]. In this section, we define recessive solutions for the fourth order linear
difference equation (1.1) and discuss some associated properties.
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DEFINITION. A solution u of (1.1) will be called recessive if there existsan M > 0
such that

u,>0, Au,<0, Au,>0 and ANu,<0, n>M. (5.1)

We will construct a recessive solution of (1.1) by modifying the technique used
in the second order case ([6], [11]). Let u* = {u*} be the solution of (1.1) such
that wf =wuf,, =uf,,=0 and uf, =1, k> 1. For each k, u* exists and is
unique. The existence is clear from Theorem 4.1 and a normalization, while the
uniqueness follows from Theorem 4.3. Note that by construction,

O<uf<l, O<n<k+2 (5.2)

n

Also, Theorem 4.1 implies that

uf > uf,, j=0. (5.3)

We now consider uf as a sequence in k. By (5.2), 0 < uf < 1, for all k. Thus
limsup, _, ., {uf} exists; call it u;. Then there exists a subsequence k;; of k such
that ufv — u, as i > oo. Next, consider u¥ as a sequence in k. By (5.2),
lim sup, _, , u%" exists; call it u,. Also, there exists a subsequence k,, of k,; such
that u%> — u, (and uf» > u;) as i > co. In a similar fashion, by considering u%,
we can arrive at a subsequence k5, and a limit u, such that uJ"J' - u;asi— oo,
1 <j < 3. Clearly ufs = 1, for all i.

Recall that by definition, for any n and any k,

uk,, — duk,  + 6uk— 4uk_| + uk_, = buk (5.49)
Consider (5.4) with n = 2 and k replaced by k,;. We can conclude lim,_,  u%>
exists; call it u,. Now replace n» by 3 in (5.4) and conclude the existence
lim;_, ., u%%; call the limit us. Proceeding inductively, we conclude that lim, _, ., uX>
exists for any n > 0, and we call the limit «,. Replacing k by k., in (5.4) and
letting i — oo, we can conclude that u,, is a solution of (1.1). Also,

>u,.,>0. (5.5)

This follows from (5.3) by replacing k by k;,, fixing j, and letting i = co. From
(5.5), we can conclude that

u,

lim u, exists; call it L. (5.6)

n—o0

We will now show u is a recessive solution of (1.1).

LEMMA 5.1. The solution u constructed above is a recessive solution of (1.1). In
addition, Au,,, Au, and A’u,, all monotonically approach zero as n — .

ProoF. We first show(5.1) is satisfied. By (5.3) and Theorem 4.1, u,’j;: +3<0.
Choose k;; > 3 and apply Lemma 3.4 with N = k,, + 1. We can conclude that
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for any n such that 2 < n < ky; + 1, Au¥»| <0, A%u¥», > 0 and Auf, < 0.
Letting i — oo implies u satisfies (5.1) for M = 1 and is recessive. We remark that
u also satisfies (5.1) for M = 0. Concerning the monotonicity, choose any n > 2
and any k,; > n. Then A2u*» | > 0, which means Au*s > u*»  hence 0 < —Auf»

< —Auk¥|. Taking the limit as i - oo implies that Au, is monotonically de-
creasing in absolute value. By (5.6), since u#, monotonically approaches a finite
limit, Au, — 0 as n = oo. The argument that A’u, and A’x, monotonically
approach zero is similar and will be omitted.

Using Lemma 5.1 and (1.1), we may deduce the following formulas for this
recessive solution u,,.

o0

= ) bu,. (5.7)

Nu, ,= ¥ (j—n+ )b, (5.8)
-Au,_, = g‘," [((j—n+1)(j-n+2)2]bu,. (5.9)
=L+ ji[(j —n+1)(j-n+2)(j—n+3)/6lbu. (510)

LemMMA 5.2. If £®n3b, = oo, then the recessive solution u constructed above
approaches zero as n = 0.

PrOOF. Since u is positive and monotone decreasing, the result follows directly
from (5.10).

In the second order case, it is known that this recessive solution u is unique,
once the starting value u, is specified [9]. It would be interesting to know under
what circumstances uniqueness holds for recessive solutions of (1.1). A lemma
that may be of some use in this respect is the following.

LEMMA 5.3. Suppose w and u are two recessive solutions of (1.1) such that
Wy =up Ifw, > u, foralln> M, thenw, = u,.

PROOF. Let W = lim,_, ,w,and L = lim,_, , u,. By hypothesis, W > L. Next,

define y, = w, — u,,. From (5.10) with n = M + 2 we have

0>WwW-L+ Y [(j-1j(j+1)/6]by >0
j=M+2

From this we can conclude w, = u,,.
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