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CCR on Fock space

This chapter is devoted to the study of the Fock representation of the canonical
commutation relations. This representation is used as the basic tool in quan-
tum many-body theory and quantum field theory. Unlike the Schrödinger CCR
representation, it allows us to consider phase spaces of infinite dimension.

Throughout this chapter, Z is a Hilbert space. This space will be called the
one-particle space. The Fock CCR representation will act in the bosonic Fock
space Γs(Z).

As in Sect. 1.3, we introduce the space

Y = Re(Z ⊕ Z) := {(z, z) : z ∈ Z},

which will serve as the dual phase space of our system. It will be equipped with
the structure of a Kähler space consisting of the anti-involution j, the Euclidean
scalar product · and the symplectic form ω:

j(z, z) := (iz, iz), (9.1)

(z, z) · (w,w) := 2Re(z|w), (9.2)

(z, z)·ω(w,w) := 2Im(z|w) = −(z, z) · j(w,w). (9.3)

In principle, we can identify Z with Y by

Z � z �→ 1√
2
(z + z) ∈ Y, (9.4)

but we choose not to do so.
CY is identified with Z ⊕ Z by the map

CY � (z1 , z1) + i(z2 , z2) �→ (z1 + iz2 , z1 − iz2) ∈ Z ⊕ Z.

The complexifications of (9.1), (9.2) and (9.3) are

jC(z1 , z2) = (iz1 ,−iz2),

(z1 , z2) ·C (w1 , w2) = (z1 |w1) + (w2 |z2), (9.5)

(z1 , z2)·ωC(w1 , w2) =
1
i
(
(z1 |w1)− (w2 |z2)

)
. (9.6)

Y# , the space dual to Y, is canonically identified with Re(Z ⊕ Z) by using the
scalar product (9.2), and CY# is identified with Z ⊕ Z.
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9.1 Fock CCR representation 213

9.1 Fock CCR representation

9.1.1 Field operators on Fock spaces

Consider the bosonic Fock space Γs(Z). Recall that, for z ∈ Z, a∗(z), resp. a(z)
denote the corresponding creation, resp. annihilation operators.

Definition 9.1 For w = (z1 , z2) ∈ Z ⊕ Z we define the unbounded operator

φ(w) := a∗(z1) + a(z2) with domain Γfin
s (Z).

Proposition 9.2 (1) For w ∈ Z ⊕ Z, Γfin
s (Z) is an invariant subspace of entire

analytic vectors for φ(w).
(2) The operators φ(y) for y ∈ Re(Z ⊕ Z) are essentially self-adjoint. We will

still denote by φ(y) their closures.
(3) The operators φ(w) for w ∈ Z ⊕ Z are closable. We will still denote by φ(w)

their closures.
(4) The map Z ⊕ Z � w �→ φ(w) is C-linear on Γfin

s (Z).
(5) For w1 , w2 ∈ CY, we have

[φ(w1), φ(w2)] = iw1 ·ωCw21l on Γfin
s (Z). (9.7)

(6) If w = y1 + iy2 with y1 , y2 ∈ Y, then Dom φ(w) = Dom φ(y1) ∩Dom φ(y2).

Proof Let Ψ ∈ Γfin
s (Z). From Thm. 3.51 we obtain

‖φ(w)Ψ‖ ≤ ‖w‖‖(N + 1l)
1
2 Ψ‖.

By induction on n we obtain then that

‖φ(w)nΨ‖ ≤ ‖w‖n‖( (N +n)!
N ! )

1
2 Ψ‖. (9.8)

This proves (1).
Now (2) follows from Nelson’s commutator theorem; see Thm. 2.74 (1).
To prove (3) note that φ(w) ⊂ φ(w)∗. So φ(w) is closable.
(4) and (5) follow by direct computation. (6) follows from (5) by repeating the

argument of the proof of Prop. 8.31. �

Corollary 9.3 Let z ∈ Z. Then a(z), a∗(z) are closable. Denoting their closures
with the same symbols, for y = (z, z), we have

a∗(z) =
1
2
(
φ(y)− iφ(jy)

)
, a(z) =

1
2
(
φ(y) + iφ(jy)

)
,

Dom a∗(z) = Dom a(z) = Dom φ(y) ∩Dom φ(jy).

Remark 9.4 We have seen in Subsect. 1.3.9 that the map (9.4) is unitary. Using
this identification, one can parametrize field operators by vectors of Z instead of
vectors of Y = Re(Z ⊕ Z). This leads to the definition

φ(z) :=
1√
2

(
a∗(z) + a(z)

)
, z ∈ Z,
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214 CCR on Fock space

which is commonly found in the literature. In most of our work we will try to
avoid this definition.

9.1.2 Weyl operators on Fock spaces

Theorem 9.5 (1) If w1 , w2 ∈ CY and Ψ ∈ Γfin
s (Z), then the relationship

eiφ(w 1 )eiφ(w 2 )Ψ = e−
i
2 w 1 ·ωCw 2 eiφ(w 1 +w 2 )Ψ (9.9)

holds, where the exponentials are defined in terms of the power series and
all the series involved in (9.9) are absolutely convergent.

(2) Set

W (y) := eiφ(y ) , y ∈ Y.

Then the map

Y � y �→ W (y) ∈ U
(
Γs(Z)

)
(9.10)

is a regular irreducible CCR representation, if we equip Y with the symplectic
form ω defined in (9.3).

(3) If p ∈ U(Z), (z, z) ∈ Y, we have

Γ(p)W (z, z) = W (pz, pz)Γ(p).

(4) The map (9.10) is strongly continuous if we equip Y with the norm topology.

Definition 9.6 (9.10) is called the Fock CCR representation on Γs(Z).

Proof To prove (1), we use the Baker–Campbell formula, which says the fol-
lowing: if A, B are operators such that [A,B] commutes with A and B,
then

eAeB = e
1
2 [A,B ]eA+B (9.11)

as an identity between formal power series. We apply this formula to A = iφ(w1),
B = iφ(w2), using (9.7). We use (9.8) to prove the norm convergence of the series
appearing in (9.11).

Let us now prove (2). For y1 , y2 ∈ Re(Z ⊕ Z), both sides of (9.9) extend to
unitary operators, so (9.9) is valid on the whole space Γs(Z). Therefore, (9.10)
is a CCR representation. Since W (y) = eiφ(y ) , this representation is regular.

Let us prove that it is irreducible. Let P be an orthogonal projection acting
on Γs(Z) such that [P,W (y)] = 0 for all y ∈ Re(Z ⊕ Z). Then [P, φ(y)] = 0 on
Γfin

s (Z) for all y ∈ Re(Z ⊕ Z), and hence [P, a∗(z)] = [P, a(z)] = 0 for all z ∈ Z.
It follows that a(z)PΩ = 0. Hence, by (3.25), PΩ = 0 or PΩ = Ω. By (3.26) and
the fact that [P, a∗(z)] = 0, we obtain that P = 0 or P = 1l.

To prove (4), we first see using the CCR that it suffices to prove the continuity
of (9.10) at y = 0. Now, for Ψ ∈ Γfin

s (Z) we have

‖(W (y)− 1l)Ψ‖ ≤ ‖φ(y)Ψ‖ ≤ ‖y‖‖(N + 1l)
1
2 Ψ‖. �
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9.1 Fock CCR representation 215

Recall that we defined the parity operator as I := (−1)N in (3.10). If Y is
finite-dimensional, we defined the parity operator as I := Op(πdδ0) in (8.46).

Proposition 9.7 In the finite-dimensional case, the definitions of the parity
operator of (3.10) and of (8.46) coincide.

9.1.3 Exponentials of creation and annihilation operators

Theorem 9.8 Let z ∈ Z.

(1) The operators eφ(z ,z ) are essentially self-adjoint on Γfin
s (Z).

(2) ea∗(z ) and ea(z ) are closable operators on Γfin
s (Z) and their closures have the

domains

Dom ea∗(z ) = Dom ea(z ) = Dom e
1
2 φ(z ,z ) .

(3) In the sense of quadratic forms, we can write

W (−iz, iz) = e−
1
2 z ·z ea∗(z )e−a(z ) . (9.12)

(4)

(Ω|W (z, z)Ω) = e−
1
2 z ·z . (9.13)

Proof (1) Using the exponential law in Prop. 3.56, it suffices to consider the
case when dimZ = 1. For z ∈ Z, we consider the unique conjugation τ such that
τz = z and introduce the associated real-wave representation defined in Thm.
9.20. This allows us to identify Γs(Z) with L2(R, (2π)−

1
2 e−

1
2 x2

dx), Γfin
s (Z) with

the space of polynomials, and φ(z, z) with the operator of multiplication by αx

for some α ∈ R. Then (1) is equivalent to the fact that the space of polynomials
is dense in L2(R,dμ) for dμ = (2π)−

1
2 (1 + eαx)2e−x2 /2dx, which is well known.

(2) We have

ea(z ) ⊂ (ea∗(z ))∗, ea∗(z ) ⊂ (ea(z ))∗.

Hence ea∗(z ) and ea(z ) are closable on Γfin
s (Z). Next we use the Baker–Campbell

formula (9.11) on Γfin
s (Z) to get

ea(z )ea∗(z ) = e
1
2 z ·z eφ(z ,z ) , ea∗(z )ea(z ) = e−

1
2 z ·z eφ(z ,z ) .

Thus, for Ψ ∈ Γfin
s (Z),

‖ea∗(z )Ψ‖2 = e
1
2 z ·z‖e 1

2 φ(z ,z )Ψ‖2 , ‖ea(z )Ψ‖2 = e−
1
2 z ·z‖e 1

2 φ(z ,z )Ψ‖2 .

Then we apply (1).
(3) follows from (9.11) and implies (4). �
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216 CCR on Fock space

9.1.4 Gaussian coherent vectors on Fock spaces

Let z ∈ Z.

Definition 9.9 We define

Ωz := W (−iz, iz)Ω = e−
1
2 z ·z ea∗(z )Ω = e−

1
2 z ·z

∞∑
n=0

z⊗n

√
n!

. (9.14)

The vectors Ωz will be called Glauber’s or Gaussian coherent vectors. Let Pz be
the orthogonal projection onto Ωz , so that

Pz = W (−iz, iz)|Ω)(Ω|W (iz,−iz).

Note that (−iz, iz) = −ω−1(z, z). Hence, in the notation of Sect. 8.5, Ωz equals
Ψz ,z for Ψ0,0 = Ω. Gaussian coherent vectors are eigenvectors of annihilation
operators. Besides, one can say that Ωz is localized in phase space around (z, z).
This is expressed in the following proposition:

Proposition 9.10 Let w, z ∈ Z. Then a(w)Ωz = (w|z)Ωz . Therefore,

(Ωz |a∗(w)Ωz ) = (z|w),

(Ωz |a(w)Ωz ) = (w|z),(
Ωz |φ(w,w)Ωz

)
= 2Re(z|w) = (z, z) · (w,w).

9.2 CCR on anti-holomorphic Gaussian L2 spaces

Let Z be a separable Hilbert space. We will use z as the generic variable in Z.
Recall that if dimZ <∞, then (2i)−ddzdz is the volume form on ZR and

(2πi)−de−z ·zdzdz defines the Gaussian measure for the covariance 1l, which is a
probability measure on ZR. We can also define the corresponding Hilbert space
of anti-holomorphic functions, denoted L2

C
(Z, (2πi)−de−z ·zdzdz). Thus if F,G ∈

L2
C
(Z, (2πi)−de−z ·zdzdz), then their scalar product is given by

(F |G) := (2πi)−d

ˆ
F (z)G(z)e−z ·zdzdz.

Recall from Subsect. 5.5.4 that this Hilbert space has a natural generalization
to the case of an arbitrary dimension, denoted L2

C
(Z, e−z ·zdzdz) and called the

anti-holomorphic Gaussian L2 space over the space Z.
The bosonic Fock space Γs(Z) is naturally isomorphic to L2

C
(Z, e−z ·zdzdz).

This makes it possible to interpret Fock CCR representations in terms of oper-
ators acting on anti-holomorphic Gaussian L2 spaces.

This section can be viewed as a continuation of Sect. 5.5 on Gaussian measures
on complex Hilbert spaces.
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9.2.1 Bosonic complex-wave representation

Theorem 9.11 (1) The map T cw : Γs(Z) → L2
C
(Z, e−z ·zdzdz) given by

T cwΨ(z) :=
∞∑

n=0

1√
n!

(z⊗n |Ψ),

= e
1
2 z ·z (Ωz |Ψ), Ψ ∈ Γs(Z),

is unitary. (In the second line we use Gaussian coherent vectors Ωz .)
(2) For w ∈ Z we have

T cwΩ = 1,

T cwa∗(w) = w · z T cw ,

T cwa(w) = w · ∇z T cw ,

(T cwΓ(p)Ψ)(z) = T cwΨ(p# z), p ∈ B(Z), Ψ ∈ Γs(Z).

(3) We have a regular irreducible CCR representation

Re(Z ⊕ Z) � (w,w) �→ ei(w ·z+w ·∇z ) ∈ U(L2
C(Z, e−z ·zdzdz)). (9.15)

(4) The CCR representation (9.15) is equivalent to the Fock representation:

T cweiφ(w,w ) = ei(w ·z+w ·∇z )T cw , w ∈ Z.

(5) (9.15) acts on F ∈ L2
C
(Z, e−z ·zdzdz) as follows:

ei(w ·z+w ·∇z )F (z) = eiw ·z− 1
2 w ·w F (z + iw), w ∈ Z.

Proof (1) follows from Thm. 5.88. (2)–(4) follow immediately from Thm. 5.88
and Subsect. 3.5.2. To prove (5) we use the Baker–Campbell–Hausdorff formula.

�

Definition 9.12 Following Segal, we will call T cwΨ the complex-wave transform
of Ψ. (It is also sometimes called the Bargmann or Bargmann–Segal transform
of Ψ ∈ Γs(Z). Berezin calls it the generating functional of Ψ.)

(9.15) will be called the complex-wave CCR representation. (It is also called
the Bargmann or Bargmann–Segal representation.)

9.2.2 Coherent vectors in the complex-wave representation

Let w ∈ Z. The complex-wave transform of the Gaussian coherent vector Ωw is

T cwΩw (z) = e−
1
2 ww ez ·w .

As an exercise in the complex-wave representation let us calculate the scalar
product of two such vectors:

(Ωw 1 |Ωw 2 ) = (2πi)−d

ˆ
e−

1
2 |w 1 |2 − 1

2 |w 2 |2 +z ·w 1 +z ·w 2 −|z |2 dzdz

= e−
1
2 |w 1 |2 − 1

2 |w 2 |2 +w 1 ·w 2 .
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218 CCR on Fock space

Definition 9.13 Let dimCZ = d be finite. The Gaussian FBI transform is the
map T FBI : Γs(Z) → L2(Re(Z ⊕ Z)) defined by

Re(Z ⊕ Z) � (z, z) �→ T FBIΨ(z, z) := (2π)−
d
2 (Ωz |Ψ). (9.16)

Clearly, the Gaussian FBI transform is a special case of the FBI transform
defined in Subsect. 8.5.1, where we put Ψ0 = Ω.

By (9.16), in the finite-dimensional case we have the following simple relation-
ship between the Gaussian FBI transformation and the complex-wave transfor-
mation:

T FBIΨ(z, z) = (2π)
d
2 e−

1
2 z ·zT cwΨ(z). (9.17)

This gives the following alternative proof of the unitarity of T cw :

(Ψ1 |Ψ2) = i−d

ˆ
T FBIΨ1(z, z)T FBIΨ2(z, z)dzdz (9.18)

= (2πi)−d

ˆ
e−

1
2 |z |2 T cwΨ1(z)e−

1
2 |z |2 T cwΨ2(z)dzdz (9.19)

= (T cwΨ1 |T cwΨ2)L2
C
(Z,e−z ·z dzdz ) .

In (9.18) we used that i−ddzdz is the canonical measure on the symplectic space
Re(Z ⊕ Z) and that T FBI is isometric; see (8.53).

9.3 CCR on real Gaussian L2 spaces

If the complex dimension of Z is finite and equals the real dimension of X ,
then the Fock representation on Γs(Z) is unitarily equivalent to the Schrödinger
representation on L2(X ). In order to describe this equivalence, one needs to fix
a conjugation on the Kähler space Re(Z ⊕ Z), which allows us to separate field
operators into “momentum” and “position” operators. In addition, one needs
to fix a Euclidean structure on X , which allows us to distinguish the Gaussian
vector that is mapped to the Fock vacuum.

In the case of an infinite dimension we do not have a Schrödinger representa-
tion, since there is no Lebesgue measure on infinite-dimensional vector spaces.
However, in this case we have the so-called real-wave representations, which can
serve as a substitute for Schrödinger representations. Real-wave representations
will be the main topic of this section. They are CCR representations acting on
real Gaussian L2 spaces. They are unitarily equivalent to Fock representations.

Throughout this section, X is a real Hilbert space and c ∈ Bs(X ) is invertible
and positive. x will be used as the generic variable in X .

Recall that if dimX < ∞, then (2π)−
d
2 (det c)−

1
2 e−

1
2 x·c−1 xdx is a probability

measure on X . Thus we can define the corresponding Hilbert space

L2(X , (2π)−
d
2 (det c)−

1
2 e−

1
2 x·c−1 xdx).
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9.3 CCR on real Gaussian L2 spaces 219

As described in Def. 5.72, this can be generalized to the case of an arbitrary
dimension, and then it is called the Gaussian L2 space for the covariance c and
denoted

L2(X , e−
1
2 x·c−1 xdx). (9.20)

In this section we describe the real-wave representation acting on (9.20).
This section can be viewed as a continuation of Sect. 5.4 on Gaussian measures

on real Hilbert spaces.

9.3.1 Real-wave CCR representation

Let η, q ∈ X . We set

η · xrw := η · x,

q ·Drw := q · (1
i
∇x +

i
2
c−1x), as operators on L2(X , e−

1
2 x·c−1 xdx).

Theorem 9.14 (1) The operator η · xrw + q ·Drw is essentially self-adjoint on
CPols(X ).

(2) The map

X ⊕ X � (η, q) �→ ei(η ·xrw +q ·D rw ) ∈ U(L2(X , e−
1
2 x·c−1 xdx)) (9.21)

is an irreducible regular CCR representation.
(3) For F ∈ L2(X , e−

1
2 x·c−1 xdx) one has

ei(η ·xrw +q ·D rw )F (x) = e
i
2 q ·(η+ i

2 c−1 q)eix·(η+ i
2 c−1 q)F (x + q).

Proof We consider the one-parameter group

UtF (x) := e
i
2 t2 q ·(η+ i

2 c−1 q)eitx·(η+ i
2 c−1 q)F (x + tq), t ∈ R.

Let D := Span{ew ·x , w ∈ CX}. From Subsect. 5.2.5, we know that D is dense
in L2(X , e−

1
2 x·c−1 xdx). Clearly, D is invariant under Ut , and Ut is a strongly

continuous group of isometries of D, hence it extends to a strongly continuous
unitary group. D is included in the domain of its generator, which equals
η · xrw + q ·Drw on D. By Nelson’s invariant domain theorem, Thm. 2.74 (2),
we obtain that η · xrw + q ·Drw is essentially self-adjoint on D.

To show the essential self-adjointness on CPols(X ), we note that D is in the
closure of CPols(X ) for the graph norm: in fact, for w ∈ CX , the series

+∞∑
n=0

(w · x)n

n!

converges to ew ·x for the graph norm of η · xrw + q ·Drw . This proves (1) and
(3). (2) follows immediately from (3). �

Definition 9.15 The CCR representation (9.21) is called the real-wave repre-
sentation of covariance c.
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220 CCR on Fock space

Note that the operators xrw , Drw are examples of abstract position and
momentum operators considered in Subsect. 8.2.6.

We equip X ⊕ X with the complex structure

j =
[

0 −(2c)−1

2c 0

]
, (9.22)

which is Kähler. Thus X ⊕ X becomes a Kähler space with a conjugation.
Therefore, as in Subsect. 8.2.7, for w ∈ CX we can introduce the associated
Schrödinger-type creation and annihilation operators:

arw (w) = w · c∇x , a∗
rw (w) = w · x− w · c∇x .

Proposition 9.16 Let w,w1 , w2 ∈ CX .

(1) The operators arw (w) and a∗
rw (w) are closable on CPols(X ).

(2) We have

[arw (w1), a∗
rw (w2)] = (w1 |cw2)1l,

[arw (w1), arw (w2)] = [a∗
rw (w1), a∗

rw (w2)] = 0.

(3) F ∈ L2(X , e−
1
2 x·c−1 xdx) satisfies

arw (w)F = 0, w ∈ CX ,

iff F is proportional to 1.

Proof (1) follows from Prop. 8.31 and (2) is a special case of (8.30).
Let F be such that arw (w)F = 0 for w ∈ CX and (F |1) = 0. In particular, for

each G ∈ CPols(X ),

(a∗
rw (w)G|F ) = 0.

Clearly, the span of vectors of the form
n

Π
i=1

a∗
rw (wi)1 equals the space of polyno-

mials in CPol(X ) of degree greater than 1. So F is orthogonal to CPol(X ), and
hence F = 0, which proves (3). �

The usual choice is c = 1l, which leads to the complex structure

j =
[

0 − 1
2 1l

21l 0

]
.

Remark 9.17 The advantage of the real-wave representation is the fact that we
can make an identification

L2(X , e−
1
2 x·c−1 xdx) � L2(Q,μ)

for an L2 space over some true measure space (Q,S, μ). There is no unique
choice of the measure space (Q,S, μ), especially in the case of an infinite-
dimensional X , but it essentially does not matter which one we take. A class
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of possible choices is described in Subsect. 5.4.2: we can set Q = B
1
2 X , where

B > 0 is an operator on X with B−1 trace-class, but there are many others;
see the discussion in Simon (1974). Therefore, the real-wave representation is
sometimes called the Q-space representation of the bosonic Fock space.

9.3.2 Real-wave CCR representation in finite dimension

If the dimension of X is finite, then the real-wave representation is a special case
of a weighted Schrödinger representation with

m(x) = (2π)−
d
4 (det c)−

1
4 e−

1
4 x·c−1 x . (9.23)

(9.23) is the pointwise positive ground state of

H = −Δ +
1
4
x · c−2x− 1

2
Tr c−1 .

The Dirichlet form for (9.23) in the Hilbert space
L2
(
X , (2π)−

d
2 (det c)−

1
2 e−

1
2 x·c−1 xdx

)
equals

−Δ + x · c−1∇x .

The unitary operator

L2
(
X , (2π)−

d
4 (det c)−

1
2 e−

1
2 x·c−1 xdx

)
� F �→ T schF := m(x)F ∈ L2(X )

intertwines the Schrödinger and the real-wave representations:

ei(η ·x+q ·D )T sch = T schei(η ·xrw +q ·D rw ) .

9.3.3 Wick transformation

The real-wave representation on L2(X , e−
1
2 x·c−1 xdx) is unitarily equivalent to

the Fock representation on Γs(c−
1
2 CX ). This follows by a general argument from

Prop. 9.16 and the fact that polynomials are dense; see Subsect. 5.2.6.
In this subsection we will construct an explicit unitary transformation that

intertwines the real-wave representation and the Fock representation.

Definition 9.18 For F ∈ CPols(X ), we define

:F : = a∗
rw (F )1 ∈ CPols(X ).

The map F �→ :F : is called the Wick transformation w.r.t. the covariance c.

The following proposition shows how one can compute : G :.

Proposition 9.19 (1) For G ∈ CPols(X ), one has

:G(x): = e−
1
2 ∇x ·c∇x G(x) = e

1
2 x·c−1 xG(−c∇x)e−

1
2 x·c−1 x . (9.24)

(2) For G(x) ∈ CPols(X ), one has

G(x) = e
1
2 ∇x ·c∇x :G(x): = e−

1
2 x·c−1 x :G:(c∇x)e

1
2 x·c−1 x .
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222 CCR on Fock space

Proof Let w ∈ CX . The following operator identities are valid on CPols(X ):

a∗
rw (w) = w · x− w · c∇x

= e−
1
2 ∇x ·c∇x (w · x)e

1
2 ∇x ·c∇x = e

1
2 x·c−1 x(−w · c∇x)e−

1
2 x·c−1 x .

This yields, for G ∈ CPols(X ), the operator identity

a∗
rw (G) = e−

1
2 ∇x ·c∇x G(x)e

1
2 ∇x ·c∇x = e

1
2 x·c−1 xG(−c∇x)e−

1
2 x·c−1 x .

By applying it to the polynomial 1, we obtain

:G: = a∗
rw (G)1 = e−

1
2 ∇x ·c∇x G = e

1
2 x·c−1 xG(−c∇x)e−

1
2 x·c−1 x ,

which proves (1). Clearly, (2) follows from (1). �

Note that the space CPols(X ) can be identified with Pols(CX ) (by analytic
continuation/restriction; see Subsect. 3.5.6). Let z denote the generic variable in
CX . The following theorem is immediate:

Theorem 9.20 (1) The map

Pols(CX ) � F �→ :F : ∈ CPols(X )

extends to a unitary map

L2
C(CX , e−z ·c−1 zdzdz) � F �→ :F : ∈ L2(X , e−

1
2 x·c−1 xdx). (9.25)

(2) (9.25) intertwines the complex-wave and real-wave CCR representations:

:ei(w ·z+w ·∇z )F : = ei(a∗
rw (w )+a rw (w )) :F :, F ∈ L2

C(CX , e−z ·c−1 zdzdz), w ∈ CX .

(3) For w ∈ CX , we have

:ew ·x : = ew ·xe−
1
2 w ·cw . (9.26)

Remark 9.21 (9.26) is often used as the definition of the Wick transformation.

Using Subsect. 9.2.1, we can unitarily identify the real-wave representation
on L2(X , e−

1
2 x·c−1 xdx) and the Fock representation on Γs(c−

1
2 CX ). This is

described in the next theorem.

Theorem 9.22 Set

Γs(c−
1
2 CX ) � Φ �→ T rwΦ := :T cwΦ: ∈ L2(X , e−

1
2 x·c−1 xdx). (9.27)

Then

(1) T rw is unitary.
(2) T rw is the unique bounded linear map such that

T rwΩ = 1, and T rw eia∗(η )+a(η ) = eiη ·xrw T rw , η ∈ c−
1
2 X .
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(3) T rw is the unique bounded linear map such that

T rwΩ = 1, and T rw n

Π
i=1

a∗(wi) =
n

Π
i=1

a∗
rw (wi)T rw , wi ∈ c−

1
2 CX .

Remark 9.23 In the case of a single variable, that is, X = R, and c = 1l, the
Wick transformation for monomials is the same as the Gram–Schmidt orthog-
onalization procedure with the weight e−

1
2 x2

. The polynomials :xn : are rescaled
Hermite polynomials. More precisely, if one adopts the following definition of
Hermite polynomials:

e2xt−t2
=:

∞∑
n=0

tn

n!
Hn (x),

then

:xn : =
√

2
n
Hn ( x√

2
).

9.3.4 Integrals of polynomials with a Gaussian weight

In this subsection, for simplicity, we assume that c = 1l.
In physics one often computes integrals of a polynomial times the Gaussian

weight. The Wick transformation helps to perform such an integral, as is seen
from (9.29):

Theorem 9.24 Let F ∈ CPols(X ). Thenˆ
X

F (x)e−
1
2 x2

dx =
(
e

1
2 ∇2

x F
)
(0), (9.28)

ˆ
X

:F (x):e−
1
2 x2

dx = F (0). (9.29)

Proof We can assume that X is of finite dimension. Recall the identity (4.14):

e
1
2 ∇2

x F (y) = (2π)−
d
2

ˆ
e−

1
2 (y−x)2

F (x)dx. (9.30)

In (9.30) we set y = 0, which proves (9.28).
To prove (9.29) we use (9.28) and Prop. 9.19. �

Note that the r.h.s. of (9.28) can be expanded in a finite sum and leads to the
well-known sum over all possible “pairings”. This is the simplest version of what
is usually called the Wick theorem.

A more complicated version of the Wick theorem is given below. It has a well-
known graphical interpretation in terms of diagrams, which we will discuss in
Chap. 20.
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Theorem 9.25 Let F1 , . . . , Fn ∈ CPols(X ). Then

:F1(x): · · · :Fn (x): (9.31)

= : exp
(∑

i<j

∇xi
∇xj

)
F1(x1) · · ·Fn (xn )

∣∣
x=x1 =···=xn

: ,

(2π)−
d
2

ˆ
:F1(x): · · · :Fn (x):e−

1
2 x2

dx (9.32)

= exp
(∑

i<j

∇xi
∇xj

)
F1(x1) · · ·Fn (xn )

∣∣
0=x1 =···=xn

.

Proof To prove (9.31), we write

:F1(x): · · · :Fn (x):

= e−
1
2 ∇2

x 1 F1(x1) · · · e− 1
2 ∇2

x n Fn (xn )
∣∣
x=x1 =···=xn

= :e
1
2 ∇2

x

(
e−

1
2 ∇2

x 1 F1(x1) · · · e− 1
2 ∇2

x n Fn (xn )
∣∣
x=x1 =···=xn

)
:

= :e
1
2 (∇x 1 +···+∇x n )2 − 1

2 ∇2
x 1

−···− 1
2 ∇2

x n F1(x1) · · ·Fn (xn )
∣∣
x=x1 =···=xn

:.

In the last step we used that

∇xf(x, . . . , x) = (∇x1 + · · ·+∇xn
)f(x1 , · · · , xn )

∣∣
x=x1 =···=xn

.

(9.32) follows from (9.31) and (9.29). �

9.3.5 Operators in the real-wave representation

Definition 9.26 For an operator a on X , we will write

Γrw(a) := T rwΓ(aC)T rw∗,

where we recall that aC denotes the extension of a to CX .

Suppose that c > 0 is an operator on X . Clearly,

Γrw (c−
1
2 ) : L2(X , e−

1
2 x2

dx) → L2(c−
1
2 X , e−

1
2 x·c−1 xdx)

is a unitary operator. Therefore, in what follows we will stick to the covariance
1l.

Recall from Remark 9.17 that L2(X , e−
1
2 x2

dx) can be interpreted as L2(Q,μ)
for some measure space (Q,μ). Let F be a bounded Borel function on Q. Then
one can define F (xrw ), which is a bounded operator on L2(X , e−

1
2 x2

dx). It can
be also interpreted as an element of L2(X , e−

1
2 x2

dx), and then it will simply be
written F . Clearly, F (xrw )1 = F .

Proposition 9.27 Let u be an orthogonal operator on X . Then

Γrw(u)F (xrw )Γrw (u)−1 = (Γrw(u)F )(xrw ). (9.33)
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Proof A dense set of vectors in L2(X , e−
1
2 x2

dx) is given by G(xrw )1 = G for G

bounded Borel functions on B
1
2 X . We have the commutation property

Γrw(u)F (xrw )Γrw (u)−1G(xrw ) = G(xrw )Γrw (u)F (xrw )Γrw (u)−1 . (9.34)

Hence, applying (9.34) to the vacuum 1 we obtain

Γrw(u)F (xrw )Γrw (u)−1G = G(xrw )Γrw (u)F = (Γrw(u)F )(xrw )G.

�

Proposition 9.28 Let X1 be a closed subspace of X . Let e1 be the orthogonal
projection on X1 . Let B1 be the sub-σ-algebra of functions based in X1 , and EB1

the corresponding conditional expectation. Then

EB1 = Γrw(e1).

Proposition 9.29 Let a ∈ B(X ). Then

(1) If ‖a‖ ≤ 1, Γrw(a) is doubly Markovian, hence it is a contraction on
Lp(Q,dμ) for all 1 ≤ p ≤ ∞.

(2) If ‖a‖ < 1, then Γrw(a) is positivity improving.

Proof We drop rw from Γrw and xrw .
We first prove (1). We write a as j∗uj, where

X � x �→ j(x) := x⊕ 0 ∈ X ⊕ X
is isometric and

u =

[
a (1l− aa∗)

1
2

(1l− a∗a)
1
2 a∗

]
is orthogonal. Using Subsect. 5.4.3, we see that if we take (Q×Q,μ⊗ μ) as the
Q-space for X ⊕ X , then the map Γ(j) is

L2(Q,dμ) � f �→ f ⊗ 1 ∈ L2(Q,dμ)⊗ L2(Q,dμ) � L2(Q×Q,dμ⊗ dμ),

which is positivity preserving.
The map Γ(u) is clearly positivity preserving. In fact, recall that F (x) is the

operator of multiplication by a measurable function F on L2(Q,μ). By (9.33) and
the unitarity of u, (Γ(u)F )(x) = Γ(u)F (x)Γ(u)−1 . Since F ≥ 0 a.e. iff F (x) ≥ 0,
we see that Γ(u) is positivity preserving. Finally Γ(j∗) = Γ(j)∗ is also positivity
preserving by the remark after Def. 5.21. Hence Γ(a) is positivity preserving.
Since Γ(a) and Γ(a)∗ preserve 1, Γ(a) is doubly Markovian.

Let us now prove (2). We write Γ(a) = Γ(‖a‖)Γ(b), where a =: ‖a‖b. Then
‖b‖ ≤ 1, and thus Γ(b) is positivity preserving by (1). If f ≥ 0 and f �= 0, then´

Q
Γ(b)fdμ =

´
Q

fdμ > 0, so Γ(b) preserves the set of non-zero positive func-
tions. So it suffices to prove that Γ(‖a‖) is positivity improving.
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Let f, g ≥ 0 with f, g �= 0. The function F (t) = (f |Γ(e−t)g) is positive on R+

by (1). It tends to (1|f)(1|g) at +∞, since Γ(e−t) = e−tN , where N is the number
operator. Since F extends holomorphically to {z : Re z > 0}, it has isolated
zeroes in R+. Let t > 0 and 0 < t0 < t such that F (t0) > 0. Set f1 = Γ(e−t0 /2)f ,
g1 = Γ(e−t0 /2)g. Then f1 , g1 ≥ 0 and (f1 |g1) = F (t0) > 0. Therefore, f1g1 �= 0
and h = min(f1 , g1) �= 0. This yields

(f |Γ(e−t)g) = (f1 |Γ(e−(t−t0 ))g1)

≥ (h|Γ(e−(t−t0 ))g1) ≥ (h|Γ(e−(t−t0 ))h)

= ‖Γ(e−(t−t0 )/2)h‖2 > 0,

which completes the proof of (2). �

Below we recall Nelson’s famous hyper-contractivity theorem.

Theorem 9.30 Let a ∈ B(X ) and 1 < p < q < ∞. If

‖a‖ ≤ (p− 1)
1
2 (q − 1)−

1
2 ,

then Γrw(a) is a contraction from Lp(Q,dμ) to Lq (Q,dμ).

9.4 Wick and anti-Wick bosonic quantization

As elsewhere in this chapter, Z is a Hilbert space, Y = Re(Z ⊕ Z), Y# =
Re(Z ⊕ Z), CY = Z ⊕ Z and CY# = Z ⊕ Z. We recall from Subsect. 3.5.6 that
CPols(Y# ) is identified with Pols(CY# ). We can go from one representation to
the other by analytic continuation/restriction. Thus we will freely switch between
a polynomial in CPols(Y# ) and Pols(Z ⊕ Z):

Re(Z ⊕ Z) � (z, z) �→ b(z, z),

Z ⊕ Z � (z1 , z2) �→ b(z1 , z2).

We consider the Fock CCR representation

Y � y �→ eiφ(y ) ∈ U
(
Γs(Z)

)
.

Recall that CCRpol(Y) is the ∗-algebra generated by φ(y), y ∈ Y. It can be
faithfully represented by operators on the space Γfin

s (Z).
We will define and study the bosonic Wick and anti-Wick quantization. The

Wick quantization is the most frequently used quantization in quantum field
theory and many-body quantum physics.

9.4.1 Wick and anti-Wick ordering

Let b ∈ Pols(Z). Recall that in Subsect. 3.4.4 we defined the multiple creation and
annihilation operators a∗(b) and a(b). Note that the possibility of unambiguously
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9.4 Wick and anti-Wick bosonic quantization 227

defining a∗(b) and a(b) follows from the fact that Z and Z are isotropic subspaces
of CY for ωC.

Definition 9.31 For b1 , b2 ∈ Pols(Z) we set

Opa∗,a(b1b2) := a∗(b1)a(b2),

Opa,a∗
(b2b1) := a(b2)a∗(b1).

These maps extend by linearity to maps

CPols(Y# ) � b �→ Opa∗,a(b) ∈ CCRpol(Y),

CPols(Y# ) � b �→ Opa,a∗
(b) ∈ CCRpol(Y),

(9.35)

called the Wick and anti-Wick bosonic quantizations.

Definition 9.32 The inverse maps to (9.35) will be denoted by

CCRpol(Y) � B �→ sa∗,a
B ∈ CPols(Y# ),

CCRpol(Y) � B �→ sa,a∗
B ∈ CPols(Y# ).

The polynomial sa∗,a
B , resp. sa,a∗

B is called the Wick, resp. anti-Wick symbol of
the operator B.

Remark 9.33 Suppose that we fix an o.n. basis {ei : i ∈ I} in Z. Every poly-
nomial b ∈ Pols(Z ⊕ Z) can be written as∑

ν,β

bν,β zν zβ ,

where ν, β are multi-indices, that is, elements of {0, 1, 2, . . . }I . Then

Opa∗,a(b) =
∑
ν,β

bν,β a∗ν aβ , (9.36)

Opa,a∗
(b) =

∑
ν,β

bν,β aβ a∗ν . (9.37)

The r.h.s. of (9.36), resp. (9.37) is probably the most straightforward, even if
often somewhat heavy, notation for the Wick, resp. anti-Wick quantization.

More generally, one can assume that Z = L2(Ξ,dξ), where (Ξ,dξ) is a measure
space. Then polynomials on Z can be written as∑

n,m

ˆ
· · ·
ˆ

b(ξ1 , . . . ξn ; ξ′m , . . . , ξ′1)zξ1 · · · zξn
zξ ′

m
· · · zξ ′

1
,
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and one writes∑
n,m

b(ξ1 , . . . ξn ; ξ′m , . . . , ξ′1)a
∗
ξ1
· · · a∗

ξn
aξ ′

m
· · · aξ ′

1
instead of Opa∗,a(b),

∑
n,m

b(ξ1 , . . . ξn ; ξ′m , . . . , ξ′1)aξ ′
m
· · · aξ ′

1
a∗

ξ1
· · · a∗

ξn
instead of Opa,a∗

(b).

Thus a∗
ξ and aξ are treated as “operator-valued measures”, which acquire their

meaning after being “smeared out” with “test functions”.

The following theorem is the analog of Thm. 4.38 devoted to the x,D- and
D,x-quantizations.

Theorem 9.34 Let b, b−, b+ , b1 , b2 ∈ Pols(Z,Z).

(1) Opa,a∗
(b)∗ = Opa,a∗

(b) and Opa∗,a(b)∗ = Opa∗,a(b).
(2) For w ∈ Z,

Opa∗,a(wb) = a∗(w)Opa∗,a(b), Opa∗,a(wb) = Opa∗,a(b)a(w),

[Opa∗,a(b), a∗(w)] = Opa∗,a(w∇z b), [a(w),Opa∗,a(b)] = Opa∗,a(w∇z b).

(Ω|Opa∗,a(b)Ω) = b(0). (9.38)

(3) If Opa,a∗
(b−) = Opa∗,a(b+), then

b+(z, z) = e∇z ∇z b−(z, z)

= (2πi)−d

ˆ
e−(z−z1 )(z−z1 )b+(z1 , z1)dz1dz1 , if dimZ = d.

(4) If Opa∗,a(b1)Opa∗,a(b2) = Opa∗,a(b), then

b(z, z) = e∇z 1 ∇z 1 b1(z, z1)b2(z1 , z)
∣∣
z1 =z

= (2πi)−d

ˆ
e−(z−z 1 )(z−z1 )b1(z, z1)b2(z1 , z)dz1dz1 , if dimZ = d.

If Opa,a∗
(b1)Opa,a∗

(b2) = Opa,a∗
(b), then

b(z, z) = e−∇z 1
∇z 1 b1(z1 , z)b2(z, z1)

∣∣
z1 =z

.

Proof If we use the complex-wave representation, we see that the Wick, resp.
anti-Wick quantization can be viewed as the z,∇z , resp. ∇z , z quantization.
Therefore, we can apply the same combinatorial arguments as in the proof of
Thm. 4.38. �

Remark 9.35 The exponentials of differential operators in the above formu-
las can always be understood as finite sums of differential operators, since we
consider polynomial symbols. Note also that in the expression for the anti-Wick
symbol of a product of two operators there is no integral formula.
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The theorem that we state below is what is usually meant by Wick’s theorem.
We will discuss its diagrammatic interpretation in Chap. 20. It is an analog of
Thm. 4.39.

Theorem 9.36 Let b1 , . . . , bn , b ∈ CPols(Y# ) and

Opa∗,a(b) = Opa∗,a(b1) · · ·Opa∗,a(bn ).

Then

b(z, z) (9.39)

= exp
(∑

i<j

∇z i ·∇zj

)
b1(z1 , z1) · · · bn (zn , zn )

∣∣
z=z1 =···=zn

,

(Ω|Opa∗,a(b)Ω) (9.40)

= exp
(∑

i<j

∇z i ·∇zj

)
b1(z1 , z1) · · · bn (zn , zn )

∣∣
0=z1 =···=zn

.

Proof (9.39) is shown by the same arguments as Thm. 4.39. (9.40) follows from
(9.39) and (9.38). �

9.4.2 Relation between Wick, anti-Wick and

Weyl–Wigner quantizations

Let us assume that dimZ < ∞, so that the Weyl–Wigner quantization of a
polynomial in CPols(Y# ) is well defined.

The following theorem gives the connection between the Weyl–Wigner and the
Wick and the anti-Wick quantizations. We express these connections using two
alternative notations: either we treat them as functions of the complex variables
(z1 , z2) ∈ Z ⊕ Z, or we treat the symbols as functions of the real variable v ∈
Re(Z ⊕ Z).

Theorem 9.37 Let b−, b, b+ ∈ CPols(Y# ). Let

Opa∗,a(b+) = Op(b) = Opa,a∗
(b−).

(1) One can express the Wick symbol in terms of the Weyl–Wigner symbol:

b+(z, z) = e
1
2 ∇z ·∇z b(z, z)

= (πi)−d

ˆ
e−2(z−z 1 )·(z−z1 )b(z1 , z1)dz1dz1 ,

b+(v) = e
1
4 ∇2

v b(v)

= π−d

ˆ
e−(v−v1 )2

b(v1)dv1 .
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(2) One can express the Weyl–Wigner symbol in terms of the anti-Wick symbol:

b(z, z) = e
1
2 ∇z ·∇z b−(z, z)

= (πi)−d

ˆ
e−2(z−z 1 )·(z−z1 )b−(z1 , z1)dz1dz1 ,

b(v) = e
1
4 ∇2

v b−(v)

= π−d

ˆ
e−(v−v1 )2

b−(v1)dv1 .

Proof Let b1 , b2 ∈ Pols(Z), b+(z, z) = b1(z)b2(z). We have

Opa∗,a(b+) = a∗(b1)a(b2)

= Op(b1)Op(b2) = Op(b).

Using the formula for the product of two Weyl–Wigner quantized operators, we
obtain

b(z, z) = e
i
2 (∇z 1

,∇z 1 )·ω (∇z 2
,∇z 2 )b1(z1)b2(z2)

∣∣
(z ,z )=(z 1 ,z2 )

= e−
1
2 (∇z 1

·∇z 2 −∇z 2
·∇z 1 )b1(z1)b2(z2)

∣∣
(z ,z )=(z 1 ,z2 )

= e−
1
2 ∇z ·∇z b1(z)b2(z),

where in the second line we use the definition (9.6) of the symplectic form ω.
This proves the first formula of (1). The second follows from the first, using the
identities of Subsect. 4.1.9. (2) follows from (1) and Thm. 9.34 (3). �

9.4.3 Wick and anti-Wick quantization as covariant and

contravariant quantization

For z ∈ Z, we consider the Gaussian coherent vectors Ωz and the correspond-
ing projections Pz in Γs(Z), defined in Def. 9.9. We will show that the Wick,
resp. anti-Wick quantizations coincide with the covariant, resp. contravariant
quantization for Gaussian coherent vectors.

Theorem 9.38 (1) Let B ∈ CCRpol(Y). Then for all z ∈ Z, Ωz ∈ Dom B and

sa∗,a
B (z, z) = (Ωz |BΩz ), z ∈ Z. (9.41)

(2) Let b ∈ CPols(Y# ). Let the dimension of Z be finite. Then

Opa,a∗
(b) = (2πi)−d

ˆ
b(z, z)Pzdzdz. (9.42)

(The integral should be understood in terms of a sesquilinear form on an
appropriate domain.)

Proof Let b1 , b2 ∈ Pols(Z). Set

b(z, z) := b1(z)b2(z) ∈ Pols(Z ⊕ Z).

https://doi.org/10.1017/9781009290876.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.010


9.4 Wick and anti-Wick bosonic quantization 231

Then

(Ωz |Opa∗,a(b)Ωz ) = (Ωz |a∗(b1)a(b2)Ωz )

= (Ω|W (iz,−iz)a∗(b1)a(b2)W (−iz, iz)Ω)

=
(
Ω|(a∗(b1) + b1(z))(a(b2) + b2(z))Ω

)
= b1(z)b2(z) = b(z, z).

This proves (9.41). Next, we compute

Opa,a∗
(b) = a(b2)a∗(b1)

= (2πi)−d

ˆ
a(b2)Pza

∗(b1)dzdz

= (2πi)−d

ˆ
W (iz − iz)(a(b2) + b2(z))P0(a∗(b1)

+ b1(z))W (−iz + iz)dzdz

= (2πi)−d

ˆ
b2(z)b1(z)Pzdzdz = (2πi)−d

ˆ
b(z, z)Pzdzdz.

This proves (9.42). �

Remark 9.39 Thm. 9.38 (1) says that the Wick symbol coincides with the
covariant symbol defined with the help of Gaussian coherent states. Thus, using
the notation of Sect. 8.5, (9.41) can be denoted scv

B (z + z). (Strictly speaking,
however, operators in CCRpol(Y) are usually unbounded, so they do not belong
to the class considered in Sect. 8.5.)

Thm. 9.38 (2) says that the anti-Wick quantization coincides with the con-
travariant quantization for Gaussian coherent states. Thus, using the notation
of Sect. 8.5, (9.42) can be denoted Opct(b). (Strictly speaking, however, func-
tions in CPol(Y# ) usually do not belong to Meas1(Y# ) + L∞(Y# ), so they do
not belong to the class considered in Sect. 8.5.)

9.4.4 Wick symbols on Fock spaces

So far, we have defined the Wick symbol only for operators in CCRpol(Y). In
this case, it is a polynomial on Re(Z ⊕ Z).

We will now extend the definition of the Wick symbol to a rather large class
of quadratic forms on Γs(Z).

Definition 9.40 Let B be a quadratic form on Γs(Z) such that Ωz belongs to
its domain for any z ∈ Z. We define the Wick symbol of B as

sa∗,a
B (z, z) := (Ωz |BΩz ). (9.43)

By Thm. 9.38 (1), the above definition of the Wick symbol agrees with Def.
9.32 for B ∈ CCRpol(Y). In (9.43), the Wick symbol is viewed as a function
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232 CCR on Fock space

on Y# = Re(Z ⊕ Z). An alternative point of view on the Wick symbol uses
holomorphic functions on Z ⊕ Z.

Proposition 9.41 The holomorphic extension of (9.43) to Z ⊕ Z (see Def.
5.81) is

sa∗,a
B (z1 , z2) = e−z 1 ·z2 + 1

2 z 1 ·z1 + 1
2 z 2 ·z2 (Ωz1 |BΩz2 ).

Proposition 9.42 Let B be a positive closed quadratic form such that Γfin
s (Z) ⊂

Dom B and for each z ∈ Z the series
∞∑

n,m=0

1√
n!

(z⊗n |Bz⊗m )
1√
m!

is absolutely convergent. Then the Wick symbol of B and its holomorphic exten-
sion are

sa∗,a
B (z, z) = e−z ·z

∞∑
n,m=0

1√
n!

(z⊗n |Bz⊗m )
1√
m!

, (9.44)

sa∗,a
B (z1 , z2) = e−z1 ·z2

∞∑
n,m=0

1√
n!

(z⊗n
1 |Bz⊗m

2 )
1√
m!

. (9.45)

Proof Recalling that

Ωz = e−
1
2 z ·z

∞∑
n=0

z⊗n

√
n!

,

and using that B is closed, we see that Ωz ∈ Dom B and (Ωz |BΩz ) is given by the
convergent series in (9.44). Applying the Cauchy–Schwarz inequality, we obtain
that the series in the r.h.s. of (9.45) is absolutely convergent. Then we use Prop.
9.41. �

In the following proposition we compute the Wick symbol of various operators
in the sense of Def. 9.40:

Proposition 9.43 (1) For h ∈ B(Z), we have sa∗,a
dΓ(h)(z, z) = z·hz.

(2) If p is a contraction on Z, we have sa∗,a
Γ(p)(z, z) = e−z ·z+z ·pz .

Example 9.44 The anti-Wick, Weyl–Wigner and Wick symbols of P0 = |Ω)(Ω|
(the projection onto Ω) are given below (compare with Examples 4.42 and 8.74):

sa,a∗
P0

(z, z) = (2π)dδ0 ,

sP0 (z, z) = 2de−2z ·z ,

sa∗,a
P0

(z, z) = e−z ·z .
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9.4.5 Wick quantization: the operator formalism

Recall from Subsect. 8.5.3 that in general it is easier to find the covariant symbol
of an operator than to compute the covariant quantization of a symbol. This
remark applies to the Wick quantization. In this subsection we will describe this
more difficult direction.

It is convenient to represent Wick symbols as operators acting on the Fock
space. We need, however, to restrict ourselves to a rather small class of such
operators.

Recall that N is the number operator and 1l{n}(N) is the orthogonal projection
from Γs(Z) onto Γn

s (Z).

Definition 9.45 For b ∈ B
(
Γs(Z)

)
, set bn,m := 1l{n}(N)b1l{m}(N). Let

Bfin(Γs(Z)
)

:=
{
b ∈ B

(
Γs(Z)

)
: there exists n0 such that bn,m = 0 for n,m > n0

}
.

Definition 9.46 Let b ∈ Bfin
(
Γs(Z)

)
. Then we define its Wick quantization,

denoted by Opa∗,a(b), as the quadratic form on Γfin
s (Z) defined for Φ,Ψ ∈ Γfin

s (Z)
as

(Φ|Opa∗,a(b)Ψ) =
∞∑

n,m=0

min(m,n)∑
k=0

√
n!m!
k!

(Φ|bn−k,m−k ⊗ 1l⊗k
Z Ψ),

=
∞∑

n,m=0

∞∑
k=0

√
(n + k)!(m + k)!

k!
(Φ|bn,m ⊗ 1l⊗k

Z Ψ).

The above definition is essentially an extension of Def. 9.31.

Proposition 9.47 Let b ∈ Bfin
(
Γs(Z)

)
. Set B = Opa∗,a(b), with the Wick quan-

tization defined as in Def. 9.46. Then the Wick symbol of B in the sense of Def.
9.40 and its holomorphic extension are

sa∗,a
B (z, z) =

∞∑
n,m=0

(z⊗n |bz⊗m ), (9.46)

sa∗,a
B (z1 , z2) =

∞∑
n,m=0

(z⊗n
1 |bz⊗m

2 ). (9.47)

Consequently, if b ∈ CPols(Y# ) � Pol(Z ⊕ Z) is identified with b ∈ Bfin
(
Γs(Z)

)
with the help of (9.46) or (9.47), then Def. 9.31 coincides with Def. 9.40.
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Proof B clearly satisfies the hypotheses of Def. 9.40, since b ∈ Bfin
(
Γs(Z)

)
.

Using (9.44), we obtain

sa∗,a
B (z, z)ez ·z =

∞∑
n,m=0

1√
n!

(z⊗n |Bz⊗m )
1√
m!

=
∞∑

n,m=0

min(n,m )∑
k=0

1
k!

(z⊗n |bn−k,m−k ⊗ 1l⊗k
Z z⊗m )

=
∞∑

n,m=0

min(n,m )∑
k=0

1
k!

(z·z)k (z⊗(n−k) |bn−k,m−k z⊗(m−k))

=
∞∑

n,m=0

∞∑
k=0

1
k!

(z·z)k (z⊗n |bn,m z⊗m ) =
∞∑

n,m=0

(z⊗n |bn,m z⊗m )ez ·z .

�

In the following identities it is convenient to use the new, more general defini-
tion of the Wick quantization:

Proposition 9.48 In the following identities b ∈ Bfin
(
Γs(Z)

)
, h ∈ B(Z) ⊂

Bfin
(
Γs(Z)

)
, p ∈ B(Z1 ,Z2).

Opa∗,a(h) = dΓ(h);

[dΓ(h),Opa∗,a(b)] = Opa∗,a([dΓ(h), b]);

Γ(p)Opa∗,a (bΓ(p)) = Opa∗,a(Γ(p)b)Γ(p);

Γ(p)Opa∗,a(b) = Opa∗,a (Γ(p)bΓ(p∗)) Γ(p), if p is isometric;

Γ(p)Opa∗,a(b)Γ(p∗) = Opa∗,a (Γ(p)bΓ(p∗)), if p is unitary.

The following proposition describes the special class of particle preserving
operators:

Proposition 9.49 If b ∈ B
(
Γm

s (Z)
)
, then

1
m !

(
Φ|Opa∗,a(b)Ψ

)
=

∞∑
k=1

(m+k)!
m !k ! (Φ|b⊗ 1lkZΨ)

=
∞∑

k=1

∑
1≤i1 < ···<im ≤m+k

(Φ|bm+k
i1 ,...,im

Ψ).

The operators bm+k
i1 ,...,im

∈ B
(
Γm+k

s (Z)
)

are defined as follows:

bm+k
i1 ,...,im

:= Θ(σ) b⊗ 1l⊗k
Z Θ(σ)−1 ∈ B

(
Γm+k

s (Z)
)
,

where σ ∈ Sn is any permutation that transforms (1, . . . ,m) onto (i1 , . . . , im ).
Thus bm+k

i1 ,...,im
is the “m-body interaction” acting on the i1-th,.. through im -th

particles.
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9.4.6 Estimates on Wick polynomials

Let b ∈ B
(
Γq

s (Z),Γp
s (Z)

) ⊂ Bfin
(
Γs(Z)

)
for p, q ∈ N. The following estimates are

known as Nτ estimates.

Proposition 9.50 Let m > 0 be a self-adjoint operator on Z. Then for all Ψ1 ,
Ψ2 ∈ Γs(Z) one has ∣∣∣(dΓ(m)−p/2Ψ1 |Opa∗,a(b)dΓ(m)−q/2Ψ2

)∣∣∣
≤ ‖Γ(m)−

1
2 bΓ(m)−

1
2 ‖‖Ψ1‖‖Ψ2‖. (9.48)

In particular, Opa∗,a(b) extends to an operator on Γs(Z) with domain
Dom N (p+q)/2 .

Proof Noting that NOpa∗,a(b) = Opa∗,a(b)(N + p− q), we see that the second
statement follows from the first for m = 1l.

To prove the first statement, we will assume for simplicity that Z is separable
(the non-separable case can be treated by the same arguments, replacing
sequences by nets). It clearly suffices to prove (9.48) for Ψ1, Ψ2 such that Ψi =
Γ(π)Ψi , where π is a finite rank projection. Moreover, if (πn ) is an increasing
sequence of orthogonal projections with s − lim πn = 1l, and if bn = Γ(πn )bΓ(πn ),
it suffices to prove (9.48) for Opa∗,a(bn ). Therefore, we may assume that Z is
finite-dimensional. Let (e1 , . . . , en ) be an o.n. basis of eigenvectors for m and
mk = (ek |mek ). For �k = (k1 , . . . , kd) ∈ Nd , we define e�k as in Subsect. 3.3.5. We
set

f�k :=

√|k|!√
�k!

e�k .

Let us consider the operator

A :
Γs(Z) → Γs(Z)⊗Z,

Ψ �→∑n
i=1 a(ei)Ψ⊗ ei,

and define by induction

Aq :
Γs(Z) → Γs(Z)⊗⊗q

sZ,

Aq :=
(
A⊗ 1l⊗q −1

s Z
)
Aq−1 .

It is easy to verify that

AqΨ =
∑
|�l|=q

|�l|!
�l!

a(e�l)Ψ⊗ e�l =
∑
|�l|=q

a(f�l)Ψ⊗ f�l . (9.49)

Since {f�l}|�l|=q is an o.n. basis of ⊗q
sZ, we have

b =
∑

|�k |=p,|�l|=q

b�k,�l |f�k )(f�l |, b�k,�l = (f�k |bf�l),
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and hence

Opa∗,a(b) =
∑

|�k |=p,|�l|=q

b�k,�l a
∗(|f�k )

)
a
(
(f�l |
)
. (9.50)

From (9.49) and (9.50), we get that

Opa∗,a(b) = A∗
p

(
1lΓs (Z) ⊗ b

)
Aq . (9.51)

Inserting factors of Γ(m)
1
2 , we see that (9.48) follows if we prove that

‖1lΓs (Z) ⊗ Γ(m)
1
2 ApdΓ(m)−q/2‖ ≤ 1. (9.52)

To prove (9.52), we note that, first for α = 1 and then for any α ∈ R, one has

AdΓ(m)α =
(
dΓ(m)⊗ 1lZ + 1lΓs (Z) ⊗m

)α
A. (9.53)

Applying (9.53) for α = − 1
2 , we obtain by induction on q that

AqdΓ(m)−q/2

=
(
A⊗1l⊗q −1

s Z
) (

dΓ(m)⊗ 1l⊗q −1
s Z + 1lΓs (Z) ⊗ dΓq (m)

)− 1
2

Aq−1dΓ(m)−(q−1)/2 ,

and hence(
1lΓs (Z) ⊗ Γq (m)

1
2

)
AqdΓ(m)−q/2

=
(((

1lΓs (Z)⊗m
1
2
)
A
)
⊗1l⊗q −1

s Z
)(

dΓ(m)⊗ 1l⊗q −1
s Z + 1lΓs (Z) ⊗ dΓq−1(m)

)− 1
2

×
(
1lΓs (Z) ⊗ Γq−1(m)

1
2

)
Aq−1dΓ(m)−(q−1)/2 . (9.54)

As a special case of (9.51), we have

dΓ(b) = A∗ (1lΓs (Z) ⊗m
)
A,

which implies that ∥∥(1lΓs (Z) ⊗m
1
2
)
AdΓ(m)−

1
2
∥∥ ≤ 1.

Clearly, this implies that the first factor in the r.h.s. of (9.54) has norm less than
1, which implies (9.52). �

9.4.7 Bargmann kernel of an operator

Recall that in Def. 9.12 for any Ψ ∈ Γs(Z) we defined its complex-wave transform
T cwΨ ∈ L2

C
(Z, e−z ·zdzdz). In the context of the complex-wave transformation

one sometimes introduces the so-called Bargmann kernel of an operator, which
can be used as an alternative to its distributional kernel, and also to its Wick
symbol.

For simplicity, in (2) and (3) of Prop. 9.52 below we assume that the dimension
of Z is finite.
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Definition 9.51 Let B ∈ Bfin(Γs(Z)). We define the Bargmann or complex-
wave kernel of B as

Z ⊕ Z � (z1 , z2) �→ BBar(z1 , z2) :=
∞∑

n,m=0

(z⊗n
1

1√
n!
|B 1√

m!
z⊗m

2 )

= (ea∗(z1 )Ω|Bea∗(z2 )Ω).

Proposition 9.52 (1) The relationship between the Bargmann kernel and the
Wick symbol of an operator B on Γs(Z) is given by the following identity:

BBar(z1 , z2) = ez1 ·z2 sa∗,a
B (z1 , z2) = e

1
2 z 1 ·z1 + 1

2 z 2 ·z2 (Ωz1 |BΩz2 ).

(2) Let B ∈ Bfin(Γs(Z)), Ψ ∈ Γfin
s (Z). Then one has

(T cwBΨ)(z1) = (2πi)−d

ˆ
BBar(z1 , z2)T cwΨ(z2)e−z 2 ·z2 dz2dz2 . (9.55)

(3) Let B1 , B2 ∈ Bfin(Γs(Z)). Then

(B1B2)Bar(z1 , z2) = (2πi)−d

ˆ
BBar

1 (z1 , z0)BBar
2 (z0 , z2)e−z 0 ·z0 dz0dz0 .

(9.56)

Proof (1) is obvious. To prove (2) and (3) we use

1l = (2πi)−d

ˆ
Pzdzdz. (9.57)

We obtain

(Ωz1 |BΨ) = (2πi)−d

ˆ
(Ωz1 |BΩz2 )(Ωz2 |Ψ)dz2dz2 , (9.58)

(Ωz1 |B1B2Ωz2 ) = (2πi)−d

ˆ
(Ωz1 |B1Ωz0 )(Ωz0 |B2Ωz2 )dz0dz0 . (9.59)

Now (9.58) implies (2) and (9.59) implies (3). �

9.4.8 Link between the two Wick operations

In this subsection we use the conventions of Subsect. 9.3.1. In particular, we con-
sider a real Hilbert space X equipped with a positive operator c. We consider the
Kähler space with involution (2c)−

1
2 X ⊕ (2c)

1
2 X equipped with the Kähler anti-

involution j =
[

0 −(2c)−1

2c 0

]
(see (9.22)). Recall that the Wick transformation

w.r.t. the covariance c is given by

:G(x): = e−
1
2 ∇x ·c∇x G(x).

The following proposition explains the link between the Wick transformation on
functions on X and the Wick ordering of operators.
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Proposition 9.53 Let F ∈ CPols(X ). Then

Opa∗,a(F ) = :F (xrw ):,

where on the r.h.s. we use the functional calculus, as explained in Remark 8.27.

Proof From Thm. 9.37, we have Opa∗,a(F ) = Op(e−
1
4 ∇2

v F ). Setting ∇v =
(∇x ,∇ξ ), we have

∇2
v = ∇x · 2c∇x +∇ξ · (2c)−1∇ξ .

Thus, on a function that depends only on x, we have

e−
1
4 ∇2

v F (x) = e−
1
2 ∇x ·c∇x F (x) = :F (x):.

Furthermore, for such functions the Weyl–Wigner quantization coincides with
the functional calculus. �

It is often convenient to use multiplication operators expressed as :F (xrw ):, as
explained in Prop. 9.53. In particular, let w ∈ CX . Recall that

w · xrw = a∗(w) + a(w).

For later use let us note the identity

:(w · xrw )p : =
p∑

r=0

(
p

r

)
a∗(w)r a(w)p−r . (9.60)

9.5 Notes

The essential self-adjointness of bosonic field operators was established by Cook
(1953).

A modern exposition of the mathematical formalism of second quantization
can also be found e.g. in Glimm–Jaffe (1987) and Baez–Segal–Zhou (1991).

The complex-wave representation goes back to the work of Bargmann (1961)
and Segal (1963). Therefore, it is often called the Bargmann or Bargmann–Segal
representation. The name “complex-wave representation” was coined by Segal
(1978); see also Baez–Segal–Zhou (1991).

The name “real-wave representation” also comes from Baez–Segal–Zhou
(1991). The properties of second quantized operators in the real-wave repre-
sentation were first established by Nelson (1973). The proof of Prop. 9.29 (1)
follows Nelson (1973), and that of Prop. 9.29 (2) follows Simon (1974). Nelson’s
hyper-contractivity theorem, Thm. 9.30, is proven in Nelson (1973).

The Wick theorem goes back to a paper of Wick (1950) about the evaluation
of the S-matrix.

The “Nτ estimates” were used in constructive quantum field theory and are
due to Glimm–Jaffe (1985).

Wick quantization in the context of particle preserving Hamiltonians is used,
for example, in Dereziński (1998).
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