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ABSTRACT

This paper presents applications of stochastic control theory in determining an
insurer's optimal reinsurance and rating policy. Optimality is defined by means
of variances of such variables as underwriting result of the insurer, solvency
margins of the insurer and reinsurer and the premiums paid by policy-
holders.
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INTRODUCTION

The problem of optimal reinsurance has been widely discussed in risk-
theoretical literature. This problem has several answers depending on the
optimality criteria used and assumptions on random variables involved.
However, from the theoretical point of view a marked simplification is
possible. It has been shown e.g. by BORCH (see GERBER 1979) p. 95) that for
every pair of concave utility functions of the cedant and reinsurer the optimal
reinsurance arrangement can be found among those where the reinsurer's share
of the claims s a function of the total claims amount only; dependence on
individual risks or claim sizes is not needed. In PESONEN (1984), Theorem 10.5,
a method for constructing an optimal reinsurance form is also presented when
the utility functions are known but arbitrary. Usually the problem of optimal
reinsurance is treated as a static one; i.e. the problem is to divide the total
claims amount of a fixed time period, e.g. one year, into cedant's and
reinsurer's components in an optimal way. In this paper a longer perspective is
taken by assuming that

a) a reinsurance contract between two insurance companies (the cedant and
reinsurer) has been made for a fairly long period and both parties will look for
an arrangement which would be optimal (under some criterion) over a longer
term.

This assumption justifies among other things the use of asymptotic methods.
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Moreover, we assume that
b) the reinsurer's annual share of the total claims amount is a function of
present and past annual total claim amounts only (i.e. reinsurance does not
depend on individual risks);

and

c) the reinsurer's share is a linear function.

Assumption (b) is motivated by the above-mentioned theorem of BORCH.
The linearity assumption (c) allows us to use the methods of linear stochastic
control theory. It has been shown by PESONEN (1984), Theorem 10.13, that
linear functions are optimal if the utility functions of the cedant and the
reinsurer are linear functions of each other.

It is obvious that the three parties involved, the policy-holders, the cedant
and the reinsurer, have conflicting interests. Each of them desires to have as
small a share as possible of the total variation emerging from claims occur-
rences. It is in the interest of policy-holders that fluctuation in the premium
rates be only moderate. The cedant and the reinsurer put value on smooth
flows of underwriting results and solvency margins. In this paper we attempt to
find a balance between these different interests by stating the optimality criteria
in terms of the variances of the main variables. Examples are minimization of
the variance of the total claims amount retained, subject to a constraint on the
variance of the reinsurer's accumulated profit; or minimization of the variance
of the premiums collected by the cedant, subject to a constraint on the sum of
the variances of cedant's and reinsurer's accumulated profits.

The basic model is introduced in Section 1. Section 2 studies a simple case
where both cedant's and reinsurer's premiums are assumed to be constants. In
that section we use a technique of Box-JENKINS (1976), Section 13.2; see also
RANTALA (1984). In Section 3 a more general case is considered. It is then
assumed that the premiums paid by policy-holders to the cedant company are
also a controllable variable. This introduces an experience rating aspect into
the model. The numerical solutions are relatively easy to find with the aid of
the Kalman filter technique (see also RANTALA (1986)).

The main purpose of this paper is more to show a feasible way to attack the
problems of reinsurance than to give explicit results directly applicable in
practice. Related works are among others those by BOHMAN (1986), (who also
considers the reinsurance contract on a long-term basis), GERBER (1984) and
LEMAIRE-QUAIRIERE (1986) (who consider reinsurance chains).

1. The Basic Model

Consider two insurance companies. The variables relating to company
j(i =1,2) are labelled with the subscript / Company 1 is called the cedant and
company 2 the reinsurer. All variables are measured as proportions of a joint
basic volume measure V(t). This may be taken as e.g. the sum of insurance
sums, payroll, a suitable monetary index multiplied by the number of policies,
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or it may be some measure which is a basis for tariffication. Thus the variables
may be termed rates (claims rate, premium rate etc.)- Moreover, all variables
refer to that part of the portfolio which is covered by the reinsurance
agreement in question.

We assume that V(t) progresses according to equation

(1.1) V(t) = rg{t)rx(t)V(t-l).

In equation (1.1) the total growth of the volume V(t) is attributed to two
factors: the growth in number of policies or risks units described by rg(t) and
the growth due to inflation described by rx{t).

Now the accumulated profit (rate) Uj(t) of company j satisfies equation (see
BEARD-PENTIKAINEN-PESONEN (1984), Section 6.5)

(1.2) Uj{t) = rj(t) uj(t-

where pj{t) is the rate of the premiums and Xj(t) the rate of the total claims
amount retained by company j , rj(t) = ri}(t)lrg{t) rx(t) and r,•,•(*) is the
interest coefficient of company j and ry(?) may be called the relative interest
rate of company/ The nature of ry(?)'s is stochastic, but for simplicity they are
in the following taken as time-independent non-random constants
ry (y=1.2).

Note that even if there is variation in /•,-,(?) and rx(t), coefficient r,(0 will be
fairly stable if rij(t)jrx(t) and rg(t) are stable as can often be assumed. In
general, values of rj-.s around 1.0 are perhaps the most usual.

In addition, Xj(t)'s and pj (ffs must satisfy the equations

(1.3)

where p(t) is the total premium rate paid by the policy-holders and x(t) is the
total claims rate.

Another form of (1.2) and (1.3) which better brings out the control-theoretic
aspects is

fui(t) = r ,K,(r-
(1-4) \

[ = r2w2(f-

where yi(t) = P\{t) —X\(t) is the cedant's underwriting result in the year t.
The controllable variables in (1.4) are yl (t) (both throughpx (t) and X[ (?)) andp(t).

We study first in Section 2 a simpler case where premium rates p(t), Pi(0
and ^2(0 are kept as constants and the problem is only do divide x{t) into
cedant's and reinsurer's shares.

2. The case of constant premium rates

Assume that Ex(t) is known and both the total premium rate p(t) and the
reinsurer's premium rate p2(t) are constants. In order to prevent Uj(t):s from

https://doi.org/10.2143/AST.19.2.2014906 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.2.2014906


156 JUKKA RANTALA

unlimited asymptotic behaviour it has to be assumed that rj < 1 (which has
generally been the case in many countries due to rapid growth in business
volume and high inflation). This assumption can be relaxed when premium
control is also introduced in Section 3. Moreover, to simplify notation we
consider only deviations from corresponding expectations and thus take
Ex(t) = 0. Hence the premium rates are in fact the corresponding safety
loadings. Determination of their rational magnitude can be based on the
variances of M,-(0'S but is omitted here (see however Example in Sec-
tion 2.1).

Thus the accumulated profits are governed by the equations

f M , ( 0 = r ,u , (r
(2-1) \

{ "2(0 = r2u2(t-l)+p2-(x(t)-Xl(t)).

In the following we briefly sketch the method for finding the optimal linear
reinsurance policy

(2.2) xl(t) = aox(t) + a]x(t-l)+ ...,

when optimality is defined to mean

(a) minimization of Z)x, when Du2 is restricted to a given value (or vice
versa)

(b) minimization of D(Ax{) when Du2 is restricted to a given value (or vice
versa),

where D denotes standard deviation (i.e. D2 is the variance operator) and A is
the difference operator: Ax(t) = x{t) — x{t—\).

The former criterion aims at restricting the variation range (i.e. minimums
and maximums) of the cedant's annual profit, whereas the latter stresses more
its smooth flow from year to year. Variation in the reinsurer's accumulated
profit can be controlled by the choice of the admissible value for Du2. If the
safety margin p2 in ceded premiums is an increasing function of Du2, criteria
(a) and (b) also give the answers to the problem: minimize loading p2 for given
DX] or DAx\.

In what follows the derivation of the optimal coefficients aa,ax,... in (2.2) is
limited in case (a) to autoregressive claims rates x(t) of at most order two
(abbreviated as AR(2) processes and in case (b) for AR(1) claims rates. An
important special case of these, usually considered in traditional risk theory, is
the white noise process of identically and independently distributed (abbre-
viated i.i.d.) random variables. The motivation for considering AR claims
processes is the empirical observation (see BEARD-PENTIKAINEN-PESONEN

(1984), PENTIKAINEN-RANTALA (1982), RANTALA (1988)) that claims processes
are at least in some cases subject to cyclical variations. Such variations can be
generated by AR (2) processes by a suitable choice of parameters. AR (or more
generally ARM A processes) are also used in KREMER (1982) to find credibility
premiums. A natural way to introduce the AR component into the claims
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process is to assume that the structure variation (see BEARD-PENTIKAINEN-

PESONEN (1984), Section 2.7) of the claims process is of autoregressive
character and the process has also the usual Poisson "random noise".
However, this decomposition is not used in this paper so as not to overcom-
plicate the model-structure and the better to extract the relevant features of the
control problems.

In both cases (a) and (b) a modification of the method presented in BOX-
JENKINS (1976), Section 13.2 is used to find the optimal rules. Also the Kalman
filter technique to be presented in Section 3 could be used in Section 2.1, but
not in Section 2.2.

2.1. Minimization of Dxx(t) subject to a constraint on Du2(t)

The problem is (a): i.e. to minimize Dxx when Du2{t) is given. As stated above
we restrict our considerations to autoregressive processes of at most order two.
Solutions for more general processes could be found by solving the general
difference equations (A1.12)-(A1.13) in Appendix 1. Thus the claims rate
process is assumed to obey the difference equation

(2.1.1) x(t) = d>lx(t-\) + <fr2x(t-2) + e(t),

where e(t)'s are uncorrelated random variables with mean zero and with
variance aj. To have finite variance for x(t) coefficients <px and (j>2 must satisfy
the stationarity conditions

r 4 , + <i>2 < I
(2.1.2) \ (t>2-$x < 1

[ - 1 < d>2 < 1 .

The formulas become more handy if the so-called backward shift operator B
(e.g. Bx(t) = x(t— 1)) is taken into use. With this notation (2.1.1) can be
rewritten as

(2.1.3) 0(B)x(t) = e(t),

where

(2.1.4) <P{B) = X-^B-faB2.

It is shown in Appendix 1 that for this claims process the solution to problem
(a) is (see equations (A1.25)-(A1.26) in Appendix 1)

(2.1.5) xx{t) = [-(l-r2B)n(B)0(B)+\]x(t)

or equivalently

(2.1.6) xx(t) = [-(\-r2B)fi(B) + 0-l(B)]E(t),

where " ' denotes the inverse operator and

(2.1.7) ft(B) = A(l-z0B)-x+(Wi+ W2B)0~x{B)

and coefficients A, Wx, and W2 are given by equations (A1.14), (A1.21)-(A1.24)
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in Appendix 1 and z0 is that solution of (A 1.16) for which | z0 | < 1. Note
that the formulas do not depend on a2. The relevant parameters are <j>{, tj>2, r2

and the parameter v in (A 1.14) defining the ratio Du2\Dxx.
The reinsurance scheme (2.1.5) leads to the following equations for ux and

u2:

(2.1.8) (1-/-, B) «,(/)= -[-(l-r2B)n(B)0(B)+l]x(t)+Pl

and

(2.1.9) 0 - ' ( B ) M 2 ( O = -fi{B)x{t)+p2l{\-d>x-<t>2){\~r2).

The variances connected with these equations are fairly easy to calculate
from the ARM A presentations containing e(t)'s, which result when x(t) is
replaced by &~l(B)e(t) in (2.1.8) and in (2.1.9). The details are omitted here
(see e.g. BOX-JENKINS (1976) Section 3.4.2).

EXAMPLE. Take the classical case of risk theory that x(t):s are i.i.d. random
variables: <j>j = 0 for ; = 1, 2. Then K= Dj= W} = 0 ( ; = 1, 2) in equations
(A 1.24), and thus

(2.1.10)

where z0 is that root of r2z
2 — (1 +r2 + v)z + r2 = 0 whose modulus is less than

one. Here v is the parameter fixing the ratio Du2/Dx{. The optimal reinsurance
scheme is from (2.1.5) and (2.1.7)

(2.1.11) x,(f) = (l-z0By\l-r2-
[z0)x(t)

or equivalently

(2.1.12) * , ( / ) = z0xl(t-l) + (l-r2
lz0)x(t),

i.e. x{ (t) is calculated according to the classical exponential smoothing formula
of experience rating theory. The corresponding variance is

(2.1.13) D2x{ = D2x-(l-r2
lz0)

2/(l-zZ).

The resulting solvency rate of the cedant is, from (2.1.8),

(2.1.14) (l-rlB)(l-z0B)ul(t)= -(1 -r2~
lz0)x(t)+Pl(l -z0)

with variance

(2.1.15) D>Ul
( l - z 0 r 1 ) ( l - r 1

2 ) ( l - z 0
2 )

The solvency rate of the reinsurer is

(2.1.16) « 2 (0 = z0u2(t- \)-r2
lzQx{t)+p2 •

\-r2

and hence u2(t) is an AR(1) process with variance
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D2u2=D2x(r2
2z2

0/(l-z^).

159

The following figure gives the optimal combinations of Dux, Du2, Dxx and the
long-term safety loadings defined by Xx = 3 ( 1 - r x ) Dux, X2= 3(1 — r 2 ) Du2

and X = Xx + k2 as multiples of Dx when rx — r2 = 0.95.

0 0,05 0; 00 02 025 03 0,T3 0* a * 05 055 08 035 0,7 075 Ofl 035 09 035 0 0,05 01 OB 02 025 03 0J5 0* O.« 05 055 03 095 0.7 075 0 / 035 09 035

FIGURE 2.1.1. Optimal combinations of the main variables as multiples of Dx in Example 1 when
r, = r2 = 0.95.

Since an increase in z0 means that the ceded share of the business increases it
is quite natural that Dxx and Dux decrease and Du2 increases when z0 gets
larger. Intuitively it is not so obvious that the sum of the safety loadings has its
minimum when the whole risk is carried by one insurer only; i.e. if the risk is
shared by two companies the safety loading is higher than without risk sharing.
The reason is that in the case with reinsurance the total safety loading must
maintain two solvency margins, both of which have with high probability to be
positive: it is not sufficient that their sum is positive, as is in fact required in
the case of no risk-sharing.

2.2. Minimization of D(Axx(t)) subject to a constraint on Du2(t)

Now the problem is to minimize D{Axx(t)) when Du2(t) is given.
To simplify the formulas we restrict ourselves to AR(1) claims rate

processes; i.e. coefficient 02 is zero in (2.1.1). Thus

(2.2.1) JC(O =

where | (j> | < 1 and s(t)'s are a series of uncorrelated random variables with
mean zero and with variance a2. Moreover, let Eux(t) = Eu2{t) = 0.

As is shown in Appendix 2 (formulas A2.18-A2.21), the solution is

^Z.Z.ZJ Xx\t) — [—\\
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or

(2.2.3) x,(0 = [-(l-r2B)n(B) + (l

(2.2.4) (1-^5)11,(0= "* i (0 ,

(2.2.5) «2(0= -fi(B)e(t),

where n{B) is given by (A2.15) in Appendix 2. Thus processes ux (t), u2(t) and
x{ (0 are ARMA processes, whose variances are easy to compute from the
presentations containing e(O's (see BOX-JENKINS (1976), Section 3.4.2).

As a limiting case when <j> approaches 1 we obtain from (2.2.1) a random
walk process. This process also follows as a special case of an ARIMA (0, 1,1)
process:

(2.2.6) Ax(t) = (l-OB)e(t)

with e(O's uncorrelated and with 0 < 0 < 1.
Equation (2.2.6) has the interpretation that every year a shock e(t) is added

to the current "level" of the claims rate to produce a value x(t). However,
only a proportion 1 — 0 of the shock is actually absorbed into the level to have
lasting influence (see BOX-JENKINS (1976) Chapter 4).

In practice perhaps not every new shock changes the level; possible changes
occur only occasionally. Thus (2.2.6) may be regarded as a cautious "upper
limit)" for actual claims processes. Such changes in the claims level are to be
expected e.g. due to changed policy conditions or changes in claims settlement
practice. When 0-> 0 we obtain a random walk process; i.e. every new shock is
totally absorbed into the level, this being the most dangerous alternative. When
0 is put to one we arrive at the traditional white noise claims process.

WHITE NOISE CASE 0 = 1. As is shown in Appendix 2 (see equation (A2.27)),
the optimal reinsurance scheme is now

(2.2.7) {\-
def

= box(t),

where kQ and k{ are given by the procedure I-III in Appendix 2. The variance
of xx (t) is

(2.2.8) D x, = D x .
( l ^ H O f c ) 2 ^ 2 ]

with bx = 0.
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The accumulated process ux (t) is an ARMA process

161

( 2 . 2 . 9 ) ( l - B2)(l-rlB)ul(t)= - ( 1 - + r2'
2kl)x(t),

whose variance is readily calculable. Moreover, u2(t) is an ARMA (2, 1)
process

(2.2.10)
def

= (co + c,

whose variance is given by (2.2.8) when Z>'s are replaced by c's.
The following Figure 2.2.1 shows Dxx, Du, and Du2 for different values of

parameter v, when rx = r2 = 0.95. The curves should be compared to those of
figure 2.2.1. An increase in Dxx is reflected as an increase in Dux and as a
decrease in Du2. When v-» oo the total variation is shifted to ux, the cedant
then taking the whole risk. Naturally the minimum for Dxx and DAxx is zero,
which is achieved when v = 0. Then Du2 has its maximum.

Du2/Dx

FIGURE 2.2.1. Dx,, Du, and Du2 as a functions of parameter v, when rt = r2 = 0.95, x(t) is a white
noise process and DAx\ is minimized for given Du^.

RANDOM WALK CASE 9 = 0. As is shown in Appendix 2, u2(t) corresponding
to the optimal scheme is now an AR (2) process with variance (see (A2.27))

no in(2.2.11) u2 =
+A: , ) 2 -A : 2 ]
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The optimal reinsurance scheme itself is

(2.2.12) ( l ~ k 0 B + k x B 2 ) x x ( t ) = [ ( 1 - l 1

Thus x,(r) is a non-stationary process with infinite variance since the "driv-
ing" process x(t) on the r.h.s. of (2.2.12) is such. The variance of Axx is

(2.2.13) D\Axx) =
a

(l-kx)[(l+kx)
2-k2

0]
where wo= (\-r2~

lkx) and wx = r{xkx + kx-k0.
The corresponding ux (t) process obeys equation

(2.2.14) (\-r{B)(\-k0B+klB
2)ul(t) = [\-r2~

l kx + (r2
l kx + kx-kQ)B]x(t)

and is thus non-stationary, since x{t) is such a process.
Hence in the case of a random walk claims process the procedure produces

finite D{Axx) and Du2 but with constant px (t) Dux will be infinite. A finite Dux

can be achieved if px(t) is allowed to be non-stationary.
Although the cases considered in this section may be of some practical

interest, their applicability may be rather limited since the premium rate p{t) is
unrealistically kept as a constant. In reality premiums are obviously also
adjusted according to the observed claims experience. To obtain a more
realistic model the variable premium rates should be incorporated into
equations and the variation of the premium rate should also be regarded in
optimality criteria.

Another limitation to the model above is that the relative interest rates r,
have to satisfy | r,- | < 1 in order not to have infinite variances for M7-(/)'S. If
premium rate control is also introduced this assumption is not necessary.

3. The case where the premium rate may also vary

The technique of BOX-JENKINS used in the preceding section becomes rather
messy when the number of the control variables or the complexity of the claims
process increases. In the following the well-known Kalman filter is used
instead. However, we then obtain only numerical solutions, not analytic
expressions like (2.1.5) and (2.2.2). In addition, loss function (3.7) is not
suitable for such optimization as envisaged in Section 2.2, since the order of the
difference of p(t) which occurs in (3.7) is the same as the smallest difference
parameter d for the claims process (3.2) at which Adx(t) is stationary.

Since the premiums are usually charged at the beginning of the insurance
period, the optimal premium rate control scheme cannot utilize the most recent
x(t) to determine p(t); i.e. p(t) is a function x(t- 1), x(t-2),... In order to
keep the formulas as simple as possible, we then assume that the same set of
data is used to determine also the retained part xx{t) of the claims. In many
cases it would also be more realistic to let the time delay be even longer.
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RANTALA (1986) illustrates the incorporation of a time delay in a simple
case.

Take the model in the form (1.4); i.e.

(3.1) {
I "2(0 = r2u2(t-l)+p(t)-yi(t)-x(t).

The control variables are the underwriting result y\(t) of the cedant and the
total premiums p{t). It is clear that the optimality criterion must include each
of U\(t) (or alternatively y\(t)), M2(0 a n d P(t) if a solution is sought where
none of these variables is identically constant: if the variation of only two
variables is restricted the total variation produced by x(t) can be directed to
the remaining third variable by letting the other variables be constant.

We make the general assumption that the claims rate is an ARIMA (s, d,q)
process

(3.2) <P{B)Adx{t) = 0{B)e{t),

where

0{B) = 1 - ^ , 5 - ^ f l 2 - ... -4>SB
S

(3.3) J 0(B) = \-9lB-e2B
2- ...9qB

q

e{t) = a sequence of uncorrelated random variables with
mean zero and with variance CT£

2 .

If d > 0, then the JC(O process defined by (3.2) is non-stationary, but if the
roots of equation

(3.3) <P(B) = 0

lie outside the unit circle the d-th difference Ad x{t) of x{t) is stationary. Note
that for d > 0 the variances of A'Uj(t) and A'p(t) for i < d and 7 = 1,2
cannot all be finite. A natural demand is that Du}(t) (J = 1, 2) and DAdp{t)
should be finite, i.e. the accumulated profits have finite variances and the
" stationarity order " of the premium process is the same as that of the claims
process.

Next (3.1) and (3.2) are transformed to a state-space model. Equations (3.1)
can be rewritten as

f (\-r]B)Adul(t) = Adyl(t)
(3.4) \

{ (\-r2B)0(B)Adu2(t) = <P(B)[Adp(t)-Adyl(t)]-@(B)e(t).

Let «! = d+ 1, «2
 = max{.? + </+ 1, q+ 1} and n = n{ + n2.

Introduce n state variables Z{i,t) (/ = 1, 2 , . . . , N) obeying equation

(3.5) Z(t+\) =
\ J'pit)

- Me(t),
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where

(3.6)

JUKKA RANTALA

A =

a,

0 0 . . . 0

?'
p., 0 0 . . . 0

/„ = identity matrix of order n,
On = nxn matrix of zeroes,

G =
1 0 . . .0 - 1 , <j>ni

0 0 . . . 0 i 1 , - * , , . . . , -4>n2

)...o ! i, -eu,..,-ej' ,

def
id —a(B) = {\-rxB)Ad= \-axB-a2B

z~ ... ~anB"\

dcf

= (l-r2B)Ad0(B)= \-

with <t>i = 0 for i > s and Qt = 0 for / > q and ' denoting transpose.
The accumulated profits ux{t) and u2(t) are given by Z ( l , r + 1 ) and

\,t+\).
Let the loss function to be minimized be

Y Qi
(

(3.7) E\ Z(N)' QOZ(N) +
I 7 = 1

where Qo, Q, and Q2
 a r e symmetric positive definite matrices,

Y(j) = (Adyx{j), Adp{j))' and {1,. . . , ./V} is the planning horizon (a suita-
ble choice for which is the duration of the reinsurance agreement). According
to our assumption at the beginning of this section Y(t) can depend on Z(t),
Z ( f - l ) , . . . but not on Z(t+1).
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The optimal linear control rule giving the minimum for this loss function is
(see e.g. ASTROM (1970): Theorem 4.1 in Section 8.4):

(3.8) Y(t)= -L(t)Z(t),

where Y(t) is the vector of the cedant's optimal profit and premium setting to
be applied at time t. L(t) is a (2 x n) matrix of constants given by

(3.9) 1(0 = [Q2 + G'S(t+l)G]-lG'S(t+l)A,

where S(t+ 1) is obtained from

(3.10) S(t) = A' S{t+\)A + Qx-A' S(t+l)GL(t)

with the initial condition

(3.11)

Thus the optimal procedure is quite easy to reach from recurrence equations
(3.8)-(3.11). However, it depends on the initial values of the state vector Z; i.e.
on the immediate past of the accumulated profits Uj(t). It can be shown that as
the planning horizon N-* oo, matrix 5 (0 will converge to a unique steady-
state positive definite value S. Denote the corresponding limit of L(t) by L.
Numerical calculation by computer of this steady-state solution is quite easy
from equations (3.9) and (3.10) by successive iteration. (Note also that the
results of Section 2 are in fact steady-state solutions.) The steady-state feedback
rating and ceding formula is

(3.12) Y(t)=-LZ{t).

This equation is quite easy to translate into a more traditional form involving
only past />(0's a nd «/(0's or x(0's. An example is given later.

The corresponding steady-state covariance matrix Cz of the state vector Z(t)
can be obtained by iteration from equation

(3.13) Cz = (A-GL)Cz(A-GL)' + (72
eMM'.

The corresponding variance of Y(t) is

(3.14) Var Y(t) = CY= LCZL'.

The steady-state variances of the accumulated profits and Adyx and Adp can be
found as the appropriate elements of matrices Cz and CY.

Note that when d> 0 the variance of the premiums (as that of x(t)) is
infinite but the variances of the accumulated profits and cedant's profit >>i(0
are finite. Note also that the KALMAN filter technique can easily be extended to
more than one reinsurer.
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EXAMPLE 1. Take first the white noise x(t) process of traditional risk theory.
This case was considered in the examples of Sections 2.1 and 2.2. Now the
state-space equation (3.5) is simply

(3.15)
"2(0

r , 0

0r2 u2(t-\)

1 0

1 1 pit)

0
x(t)

and MM' =
0 0

0 1

Choose the matrices Qo, Q\ and Q2 in loss function (3.7) as

(3.16) Qo = 02 ,e , =
x 0

0 w2

22 =
0

0

By varying w,-'s different optimum combinations can be produced. As an
example we take ry = r2 = 1.0, w, = 0.1, w2 = 0.025, w3 = 0.0001 and w4 = 1.
Since w3 is negligible this in fact means that the variance of premiums is
minimized subject to wlD

2ul + w2D
2u2= a given value. Furthermore, an

increase in D2p is ten times "worse" than in D2ux and forty times "worse"
than in D2u2 and an increase in D2ux four times "worse" than in D2u2. This
choice of weights reflects the thinking that the reinsurer should carry most of
the fluctuations and the policy-holder the least.

With these parameters the steady-state optimal scheme turns out to be

(3.17)
yi(t) = -

p(t) = -0.132-Mi(f-l)-0.132-M2('-l)

with corresponding variances

D2yl = 0.0322CT£
2

D2ux = 0.122CT£
2

D2p = 0.0705 a2
(3.18)

D2u2 = 2.96a2.

Using equations (3.1) it can be shown that (3.17) is equivalent to

(3.19)
(l-2.652fi+1.65252)j!(O = (0.173-0.173B) B(p(t)-x(t))
(1-1.868B+0.868B2)p(t) = (0.264-0.2645) Byx(t) +

+ (0.U2-0.132 B)Bx(t).
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Figures 3.1 and 3.2 show the steady-state standard deviations of the main
variables in the optimal schemes as a function of wx, where loss matrices (3.16)
are used with vv3 = 0.0001, w4 = 1 and with two constant ratios wx\w2 = 4 and
wjw2 = 1.

2.1 -

2.2 -

2 -

i.a

i.a -

1.1 -

Dp/Dx

Du2/D,

O.OI O.O2 O.O3 O.O1 O.OS 0.00 O.O7 O.OO O.O9 O.l O.ll O.12 O.I3 OJ4 O.I5 OJO OJ7 O.1& O.W O.2 W,

FIGURE 3.1. Steady-state Dut, Dyt, Du2 and Dp of the optimal schemes as functions of wx when
w3 = 0.0001, wt = 1, wt/w2 = 4 and rt = r2= 1.0.

O.OI O.O2 O.OS O.O4 O.O5 O.O6 O.O7 O.OO O.OQ O.I O.ll OJ2 O.13 O.14 O.13 O.1O O.17 O.1O O.W O.2

FIGURE 3.2. As Figure 3.1 but wjw2 = 1.

In both cases Du\, Du2 and Dy{ are decreasing functions of wx, whereas Dp
increases with wx. For Dux and Dyt this is natural since the increasing wx

means that an increase Du{ is considered more serious and a smoother flow of
ux is achieved by a smoother j , . The decrease in Du2 obviously emerges from
the constancy of the ratio wx/w2; i.e. when wx increases w2 also increases.
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EXAMPLE 2. Assume that s = q = 0 and d= 1; i.e. x{t) is a random walk
process. As noted above, this case can be viewed as a cautious approximation
which in a way constitutes an "upper limit" for actual claims processes. Now
transformation (3.5) reads

(3.20)

\Z(4, f+1)/ \0

+ 1 1

r, 0

0

0

0

0

r2+\

~r2

°\
0

1

0/

/Z(l,

Z(2,

Z(3,

U(4,

O\
t)

t)

t)

+

/ 1

0

- 1

\ 0

°\
0

1

0/

Uyx(t)

U(O

/°\
0

1

W
e(t)

Choose Qo = 04, Qx ~

lwx

'o
0

\0

0

0.0001

0

0

0

0

w2

0

0 \

0

0

0.0001/

and Q2 as in (3.16)

Thus, instead of Dyx and Dp we now consider D(Ayx) and D{Ap). Note also
that Z)/> has now to be infinite if Dux and Du2 are to be finite. Take
rx = r2 = 1.0 and w, = 0.01, w2 = 0.05, w3 = 0.5 and w4 = 1.0. The two
elements on the diagonal of Qx other than wx and w2 cannot be taken as zero,
since they must be positive in order to obtain a positive definite matrix.
However, they are so small that their effect on the results is insignificant. Then
the steady-state solution is in the feedback form

(Ayx{t) = - 0.433 « , ( / - 1) - 0.352 u, (t- 2) + 0.294 u2 (t - 1 ) + 0.172 u2(t- 2)
(3-21W

[Ap(t) = 0 . 3 7 4 M 1 ( « - 1 ) - 0 . 3 1 7 M , ( ? - 2 ) - 0 . 5 2 1 M 2 0 - 1 ) - 0 . 4 0 3 M 2 ( / - 2 )

with corresponding variances

(3.22)

Figures 3.3-3.4 show the steady-state standard deviations Dux,D(Ayx), Du2 and
D(Ap) of the optimal schemes as a functions of w3 when wx = 0.01, vv4 = 1,
Wi/W2 = 10 or = 1.

D2ux = 6.02a?

D\Ayx) = 0.14ae
2

= 4.19<T£
2

= 0.43 a]

D2u2

4. Concluding remarks

The results of the paper should not be seen as suggestions for explicit solutions
to be used in reinsurance treaties. In practical situations there are many factors
to be taken into account, which however cannot easily be included in a
mathematical model. The main emphasis of the paper is on demonstrating an
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o.s

O.O5

FIGURE

Du2/D,

DAp/Dx

0,13 0,2 0.23 0.3 0.35 0,1 0.15 05 o.ss o.e

3.3. Steady-state Du,, D(Ayt), Du2 and D(Ap) of the optimal schemes as functions of
when H»| = 0.01, w4 = 1 and w3/w2 = 10 and r, = r2 = 1.0.

2.1 -

2.2 -

2 -

l.S -

i.e -

hi -

1.2 -

1 -

o.a -

o.e

DuJD,

Du2/D,

O.2 O.23 O.3 O.3S O.1 O.43 0.35 o.e

FIGURE 3.4. As figure 3.3 but w3/tv2 = I.

approach which would be considered as a rational means of tackling reinsur-
ance problems. That is

1) cedant's and reinsurer's share of the claims are functions of the total claims
amount in the reinsured part of the portfolio (i.e. they do not depend on
individual risks)

2) the agreement is made on a long-term basis
3) an explicit definiton of the goals and criteria of both parties involved (such

as acceptable variations in accumulated profits and in annual profits,
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profitability in the long run, the rating procedure of the cedant etc.)
(compare also BOHMAN (1986) and GERATHEWOHL-NIERHAUS (1986)).

In this way one may succeed in giving more weight to the most relevant
factors related to a reinsurance treaty than in a heuristic approach.

This paper concentrates on point (3): how methods of stochastic control
theory might be used in a search for the optimal reinsurance formulas (in
Section 3 also for the rating formla), when the goals and criteria are expressed
in terms of the variances of certain important variables. These rules could be
applied if a sufficient consensus on the criteria and on the stochastic properties
of the claims process is achieved. If there is considerable uncertainty about
those properties then the formula candidates should be tested against various
claims process alternatives.

APPENDIX 1

MINIMIZATION OF DXX (T) SUBJECT TO A CONSTRAINT ON

DU2(T) WITH CONSTANT PREMIUM RATES

It is assumed that the claims rate process x{t) is a weakly stationary process
given by equation

(Al.l) x(t) =

where e(t) is the noise process of uncorrelated random variables with mean
zero and with variance a}, and y/fs are the weights of past E(J)'S such that
Eyif < oo and B is the backward shift operator: Be(t) = e(t- 1). However,
the explicit solution is given only for the case where y/fs are generated by an
AR(2) claims process.

It is assumed that x(t), x(t-l), ... are used to determine X\(t). Thus the
optimal scheme can be written as the output of a linear filter L(B):

) x{{t) = L{B)e(t),

or equivalently

where " ' denotes the inverse operator. If x, (t) should be a function of delayed
x(t)'s:x(t-d), x(t-\-d), ... with d < 0 then L(B) should be replaced by
BdL(B) and the formulas and equations to be presented below should be
correspondingly modified (see RANTALA (1984), Appendices I and II).

Let -fi(B) be the linear filter corresponding to (A 1.3) and transforming £ (t)
into u2(t); i.e.

(A1.4) u2(t)= -n(B)e(t)= -li{B)'F-x(<B)x{t),

where we have temporarily assumed that p = px = p2 — 0.
Thus n(B) and L{B) are connected via equation

) L{B)= -(\-r2B)M(B)+>P(B).
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Obviously the minimum possible variance of u2(t) is zero, which results with
the reinsurance scheme L(B) = ¥(B); i.e. the total business is taken over by
the cedant.

The optimization problem stated in the title can be solved by finding the
unrestricted minimum of

D2u2{t)
~ w

where v is the Lagrange multiplier and wo2 the value allowed for D2 u2{t).
The autocovariance-generating function for the autocovariances yk

(k = . . . , - 2 - 1 , 0 , 2 , . . . ) is defined by (see BOX-JENKINS (1976)),

CO

(A1.7) y(B) = X ykB
k,

k=-oa

where B now is a complex variable.
If x(t) = lF(B)s(t), it is easy to see that the autocovariances of x{t) are

generated by

(A1.8) y(B)=V(B)>F(F),

where F = B'\
Applying this technique to the minimization of (A 1.6) we can equivalently

require an unrestricted minimum of the coefficient of B° = 1 in the expres-
sion

) G(B) =

Regarding (A 1.5) we obtain

(A1.10) G(B) = [(l-r2B)(l

-(\-r2B)n(B)V(F)-(\-r2F)ii(F)>F(B)+<F(B)¥(F).

By differentiating G(B) with respect to each fi, {i = 0, 1, 2 , . . . ) , we obtain

(Al.ll) — G(B) = [l+2

6

- V(F) [B'-r2B
i+l]- W{B) [F'-r2F

i+l].

After selecting the coefficients of 5° = 1, and equating them to zero, we obtain
the following equations:

(A1.12) r2ftl-b/iQ = r2ir1-l (i = 0)
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where

REMARK. From (A 1.12) and (A 1.13) we obtain a relation for the characteristic
function of /z which—if fi0 is known—determines fi:

H(z)(r2 + r2z
2-bz) = y/(z)(r2-z)-r2 + r2fi0.

The solution of (A1.12)-(A1.13) is the sum of the solution of the corresponding
homogeneous equation and any particular solution of the homogeneous
equation.

First the solution of the homegeneous difference equation

= 0 (i = 0, 1,2,...)

is sought. The characteristic equation is

(A1.16) r2z
2-bz + r2 = 0;

i.e.

(A1.17) r2z + r2z~x = b.

Thus if z0 is a solution so is zo~' and the general solution of (A 1.15) is

(A1.18) n,, = AZ'Q + A'ZO'1 (i = 0, 1,2,...).

Now, if z0 has a modulus less than or equal to one, then zo~' has a modulus
greater than or equal to one, and since u2(t) in the optimal solution must have
finite variance, A' must be zero. Because of the property (A 1.17) it is easy to
see that z must be real. Thus the general solution of (A 1.15) is

In deriving the particular solution of (A1.12)-(A1.13) we confine ourselves to
autoregressive processes of at most order two; i.e. we assume that the weights
are given by

and (j>i and <p2 are constants satisfying stationary conditions (2.1.2).
It can be shown (see RANTALA (1984), Appendix II) and is easy to check that

the solution of (A1.12)-(A1.13) is then

(A1.20) fi{B) = A(l-z0Byl + (Wl + W2B)(l-(j>lB-<l>2B
2r1,

where the second term on the r.h.s. is a particular solution. Coefficients A, Wy

and W2 are given by equations
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(A1.21)

c o s d + D2 s i n

tanfl = (0 < 9 < n)

r\
C, E, + C2 E2

C2EX Cx E2
~" <t>2

E2 = r2 71
C, = r2 ^!

when the roots of

(A 1.22)

are complex, and

(A 1.23)

W2 =

D

D

c, =

c2 =

A =

-KXK2(DX+D2)

r2K
2-bKx + r2

C2K2

r2K2
2-bK2 + r2

Ky{\-r2Kx)

K2-Kx

_ K2(l-r2K2)

K2-Kx

— <j>2 c o s 6 —

= 0

sin 0 —
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when the roots Kx and K2 of (A 1.22) are real and distinct.
When Kx = K2= K the following equations are obtained

Cx = 2r2K-\

C2 =r2K-l

(A 1.24)

r2K
2-bK+r2

CxK+r2D2(\~K2)

r2K
2-bK+r2

D, =

W2 = -DXK2

A =r2
lz0-[(L

Now the optimal reinsurance scheme may be found by substituting (A 1.20)
into (A1.5). As can be seen from equations (2.1), (A1.2)-(A1.5), the resulting
difference equations for xx, ux and u2 are

(A1.25)

or equivalently

(A1.26)

(A1.27) ( l - r

and

(A1.28) * "

= [-(\-r2B)v(B)<P(B)+l]x(t)

= -[-(\-r2B)fi(B)0(B)+l]x(t)+pl

= -ti{B)x{t)+p2l{\-<t>x-<t>2)(\-r2).

In (A1.27) and (A1.28) the effects of non-zero premium rates are taken into
account. Processes xx (t), ux (t) and u2(t) are ARMA processes whose variances
are easy to compute from the presentations based on the noise process £(/).

APPENDIX 2

MINIMIZATION OF D{AXX {T)) SUBJECT TO A CONSTRAINT ON

DU2(T) WITH CONSTANT PREMIUM RATES

Assume again that the total claims rate x(t) is given by (Al.l). Moreover, in
order to shorten the notations assume that p = p{ = p2 = 0.

By defining the change in the retained claims rate in the optimal linear
scheme as
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) Axx{t) = (l-B)Xl(t) = L{B)e{t)

we can proceed analogously to Appendix 1. The resulting difference equations
are

(A2.2) (i = 0):r2fi2-(r2+l)2n1 + cfi0 = r2W2-(2r2+\)

( A 2 . 3 ) ( i = l ) 2 2

(A2.4)

where

(A2.5) c = 2( l+

Thus we have to solve a difference equation of order four. The homogeneous
equation is solvable by the methods presented in BOX-JENKINS (1976),
Section 13.2.

The characteristic equation corresponding to difference equation (A2.4) is

(A2.6) r2z
4-(r2+l)2z2 + cz2-(r2-\)

2z + r2 = 0.

Hence, if z is a solution so is z ~'. Let the roots be Kx, Kx~', K2 and K2~' with
| Kx | < 1 and | K2 \ < 1. If v = 0 then the roots of (A2.6) are 1, r2 and r{1.

Then the modulus of only one root is less than 1. To rule out this case we
assume that v> 0.

In subsequent applications we need only coefficients k0 = Kx + K2 and
kx = KXK2. They can be found by the following procedure (see BOX-
JENKINS (1976)):

(I) Compute M = (1 + r2)
2/r2 and N = [(1 + r2)

2 + (1 + r2
2) + v]/r2

for a series of values of v chosen to provide a suitable range for Du2 and
DAx,.

(II) Compute zx =0.5(N-2) +sJ0.25(N-2)2 + 2N-M2

and z2 = 0.5(TV-2) - JO.25(N-2)2 + 2N-M

(Ill) Compute kx = 0.5 zx - V(0.5z,)2-l

and k0 = -Jkx

2

The general solution of the homogeneous equation is

(A2.7) //,. = A.Ki + AlKr' + AlK. + AiKi' (/= 0, 1,2,...).

In this solution A{ and A{ must be zero because in the optimal solution the
solvency rate cannot have infinite variance. Hence
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(A2.8) Mi = AxK\ + A2K
i
2, 1 = 0,1,2,. . .) .

This solution is the same, apart from coefficients Ax and A2, for every x(t)
process. The exact solution contains features which are specific to individual
x(t) processes; i.e. it depends on the particular solution of (A2.2)-(A2.4).

For the case *F(B) = (\-<j>B)~l with | <j> | < 1 a particular solution of
(A2.2)-(A2.4) is easy to find. In fact, a particular solution is given by

(A2.9) ^ = D(j>' ( /= 1,2,...),

r2{<j>-\)2{<t>-r2
x)

where

(A2.10)

Constants Ax and A2 can be determined from initial conditions (A2.2) and
(A2.3), giving

(A2.ll)

2{r2DK2 K2 r2D
A, + —

A, =
r2{K,-K2)

A, =
\

Kx _ r2D\

(ft $ I

r2{K2-Kx)

In deriving /u(B) and L{B) it is useful to observe that

(A2.12) A

and

(A2.13)

The final solution is

(A2.14) nt = AxK
i
x + A2K

i
2 + D(l>i (i = 0, 1, 2, ...)

or equivalently

f D
(A2.15)

where (see (A2.12) and (A2.13))

(A2.16) t

and
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(A2.17) /i, = -(AlK2 + A2Kl).

Thus the final formulas are:

(A2.18) x , (0 = [-(\-r2B)(l-<t>B)ii(B)+\]x(t)

or

(A2.19) x , (0 = [- 1

(A2.20) (l

(A2.21)

The necessary coefficients can be found from equations (A2.5), procedure I-III,
(A2.10), (A2.11)-(A2.13) and (A2.15)-(A2.17).

The corresponding variances can most easily be calculated from the presen-
tations containing e(O's. Note that the effect of the constant premium rates p,
pt and p2 is not shown in equations (A2.18)-(A2.21), since we assumed the rates
to be identically zero.

Next, the random walk claims process is considered. For this purpose we
take a slightly more general process by assuming that

(A2.22) Ax(t) = (l-0B)e(t)

with e(/)'s uncorrelated; i.e. x{t) is an ARIMA (0, 1, 1) process.
When looking for the solution we can proceed analogously with the

considerations earlier in this Appendix. Now the following difference equations
are obtained:

(A2.23) r2^2-(r2+\)2
Ml + cMo= l + ( r 2 + l )0 ( /= 0)

(A2.24) r2fi3-(r2+l)2n2 + cfii-(ri+l)2/i0 = -6 0=1)

(A2.25) r2/i (-+2-(r2+l)V,-+i+c^-(r2+l)2Ai/-i + '-2/',--2 = 0 0" > 2)

The solution of this difference equation is exactly the same as that of the
homogeneous equation above; i.e.

(A2.26) /£,-= A]K\+A2K
i
2, | Kx \ < 1, | K2 \ < 1 (i = 0, 1,2,...)

and Â | and K2 are the solutions of equation (A2.6). Constants A\ and A2 can
be computed from intial conditions (A2.23) and (A2.24).

For all 6 n(B) is of the form

(A2.27) fi(B) = - - ,
1-koB + kiB2

where

Ho = A{+A2 = r2
2[r2-r2d-6]kx + r2;

xdk(>
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and

W h i t e noise case 0 = 1 gives fi0 = -r2~
2kl + r2~

lk0 a n d n x - -r2
xkx a n d the

r a n d o m wa lk case 0 = 0 gives n = r2"1/ci a n d fix = 0.
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