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Let Fq be the finite field of q elements. Let f{x) be a polynomial of degree d over Fq and let r be the least
non-negative residue of q — 1 modulo d. Under a mild assumption, we show that there are at most r values of
ceF , such that f(x) + cx is a permutation polynomial over Fq. This indicates that the number of permutation
polynomials of the form f(x) + ex depends on the residue class of q — 1 modulo d.

As an application we apply our results to the construction of various maximal sets of mutually orthogonal
latin squares. In particular for odd q = f if t(n) denotes the number of positive divisors of n, we show how to
construct r(n) nonisomorphic complete sets of orthogonal squares of order q, and hence t(n) nonisomorphic
projective planes of order q. We also provide a construction for translation planes of order q without the use
of a right quasifield.

1991 Mathematics subject classification: primary 11T06, O5B15.

1. Introduction

Let Fq be the finite field of q elements with characteristic p. Let f{x) be a polynomial
over Fq of degree d(\<d<q). If f(x) induces a one-one map of Fq to itself, then /(x) is
called a permutation polynomial (PP). Motivated by various combinatorial applications,
it is of interest to study the number C(f) of PPs of the form f(x) + ex, where f(x) is
fixed and c varies in Fv (see [6-8, 13-14, 16-17]). Several bounds are currently known.
Using Fried's characterization of PPs as in his proof of the Schur conjecture in [10],
Cohen [3] proved the Chowla-Zassenhaus conjecture that C(f) ^ 1 if J is not divisible
by p and q is sufficiently large compared to d. This result was recently generalized to
PPs of the form f{x) + cg{x) by Cohen, Mullen and Shiue [4] where g(x) is a
polynomial over Fq.

In his thesis [1], Chou showed that

C(f)^q-\-d. (1.1)

If C(/)^2 it was proved in [17] for odd q and in [20] for even q that d^q-3. A

•These authors would like to thank UNLV for partial support by the University Research Grants and
Fellowship Committee. The first author would also like to thank the Institute for Advanced Study for its
hospitality, and the National Science Foundation and the UNLV Faculty Development Leave Committee for
partial support.

•*This author would like to thank the National Security Agency for partial support under grant agreement
#MDA904-92-H-3044.

133

https://doi.org/10.1017/S001309150000626X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000626X


134 D. WAN, G. L. MULLEN AND P. J.-S. SHIUE

generalization of Chou's bound for prime q was obtained by Stothers [19]. The
following bound was given by Evans, Greene and Niederreiter [8]:

4-j5|. (1-2)

In the case that q is an odd prime, they showed that

C(f)^(q-3)/2. (1.3)

But (1.1) and (1.3) are best possible for polynomials of the form x(?+1)/2

In this paper, we give a new bound which shows that C(f) depends on the residue
class of q — 1 modulo d. Namely, we have:

Theorem 1.1. Let q— 1 =\_^ir]d + r and J =[_ajjL_} + r. Assume that \<d<q and that the
binomial coefficient (J

r) is not divisible by pj as a p-adic integer (that is, the power of p
dividing (J

r) is at most equal to the power of p dividing J). Then,

(1.4)

In the case that q— 1 is divisible by d> 1 (i.e., r=0), Theorem 1.1 reduces to the well
known result that there are no PPs of degree d>\, see [13, Cor. 7.5]. In the case that
q — 2 is divisible by d (i.e., r = 1), Theorem 1.1 shows that there is at most one PP of the
form /(x) + cx. If d divides q — 2, the monomial xd is a PP. Thus, Theorem 1.1 is best
possible in this case. If d divides q — 2 and (d, 3) = 1, the following shows that Theorem
1.1 is also best possible for a more general class of polynomials, the so-called Dickson
polynomials of degree d defined for the parameter aeFq by

id/2] j

i = O d —

where \_d/2j denotes the largest integer ^d/2. It is known from [13, Thm. 7.16] that for
a^0, DJix,a) induces a PP on Fq if and only if (d,q2 —1) = 1. In Section 3, we shall
compare the bound in Theorem 1.1. with the true value of C(f) in the case that f(x) is
oftheformx1+(«-1)/<[ + ax.

The assumption in Theorem 1.1 is automatically satisfied if q is a prime. In general,
the assumption in Theorem 1.1 cannot be removed. For example, let us consider the p-
linearized polynomial /a(x) = xp — ax. It is well known that fj^x) is a PP over Fq if and
only if a is not a non-zero (p— l)th power in Fq. This implies that C(xp) = q—f^\. On
the other hand, the residue class r of q— 1 modulo the degree p is seen to be p — 1. If q
is not p and p>2, then p— 1 <q — f=\. This shows that the assumption in Theorem 1.1
cannot be removed. We are indebted to W.-S. Chou for providing the following example
which shows that the condition in Theorem 1.1 cannot be replaced by the condition
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PERMUTATION POLYNOMIALS 135

that d is not divisible by p: Let q = 25 and fj[x) = x1 + ex. One checks that /c(x) is a PP
over F25 for exactly 9 values of c and thus, C(/) = 9.

Note that Theorem 1.1 is also best possible for polynomials of the form x(q + l)l2-\-cx.
In this case, it is well known that C(f)=(q — 3)/2, see Niederreiter and Robinson [17].
One checks that d = (q + l)/2, r=(q-3)/2 and J = {q- l)/2. Thus, the binomial coefficient
{J

r) = {q—1)/2 is not divisible by p and Theorem 1.1 applies.
Theorem 1.1 can be generalized as follows:

Theorem 1.2. Let f(x) be a polynomial of degree d over Fq and let q — l=kd+r, with
0<r<d. If for some j , O^j

in the ring of p-adic integers, then

(1.6)

We note that if j=0, Theorem 1.2 reduces to Theorem 1.1 and if j = k—\, Theorem
1.2 reduces to Chou's bound (1.1). An alternate form of Theorem 1.2 is the following.

Theorem 1.3. / / m is a positive integer such that m^k and p does not divide ^(^"-i),
then C{f)^q-l-md.

Proof. Taking j = k — m, one computes that k + r + j(d— \) = q — 1 — m(d— 1). Thus the
combinatorial number

1 (k + r+j(d-l)\=l fq-2-m(d-\)
j(d-l)\ k-j ) m\ m-l

The theorem now follows from Theorem 1.2.

Theorem 1.1 can also be generalized as follows: Let f(x) and g(x) be two polynomials
over Fq of degrees ds and dg, where df>dg^ 1. Let C(f,g) be the number of PPs of the
form f(x) + cg(x) as c runs through the elements of Fq.

Theorem 1.4. Assume that we can write q — \=sdf + rdg, where r and s are non-
negative integers with r minimal. Assume that the binomial coefficient ('**) is not divisible
by p(r + s) as a p-adic integer. Then,
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136 D. WAN, G. L. MULLEN AND P. J.-S. SHIUE

In the case dg = \, Theorem 1.4 reduces to Theorem 1.1. If (df,dg) divides q — 1 and

the theory of linear diophantine equations shows that we can always write q — 1 =
sdf + rdg, where r and s are non-negative integers.

We note that the generalized Carlitz conjecture [21] also indicates that the
distribution of PPs depends on the residue class of q—\ modulo the degree d. The
generalized Carlitz conjecture postulates that if q>d*, then C(f,g) = 0 if (d,q—1)> 1.
The generalized Carlitz conjecture is now known to be true in most cases in view of the
recent work by Fried, Guralnick, and Saxl [11].

2. Proof of Theorems 1.2 and 1.4

Let Qp be the field of p-adic rational numbers and let K be the unique unramified
extension of Qp with residue field F r Let Tq be the set of Teichmuller liftings of Fq in K,
that is, Tq is the set of all beK satisfying b" =b. Let F(x) be a lifting of f(x) to /£[*].

Define Uq(f) to be the smallest positive integer t such that

£ F(x)' #0 (mod pi). (2.1)

One checks that Uq (/) is independent of the choice of the lifting F(x). Furthermore, the
number [/,(/) is invariant under linear transformations, in fact, invariant under
substitutions of PPs. Note that Uq{f)^q — \, (see [23]). Furthermore, f(x) is a PP if
and only if Uq(f) = q—l. In [23], it was shown that f{x) takes at most q — Uq(f)
different values as x runs through Fq provided that f(x) is not a PP. The following
lemma shows that the number Uq(f) can also be used to bound C(f,g), which is our
main concern here.

Lemma 2.1. The following inequality holds:

, - * - * ( 2 .2 )

df-dg

Proof. To simplify notations, we assume that f(x) and g(x) are already lifted to be
polynomials of degrees ds and dg over K. Let C/=l/,(/). If U = q— 1, then (2.2) is trivial.
In the following, we assume that 1 ^ U ^ q — 2. Then

G(c)= I U(x) + cg{x)f
xeTq
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PERMUTATION POLYNOMIALS 137

• = 0 \ » / x e T ,
(2.3)

is a polynomial in c, whose coefficients are p-adic integers.
If f(x) + cg{x) is a PP for a given c, then G(c) is divisible by pU. Now, there are

C(f,g) PPs of the form f(x) + cg(x). It follows that the equation

G(c)=0 (mod pU), (2.4)

has at least C(f,g) different solutions ceTq. By the definition of U, the constant term of
G{c) is not divisible by pU. Removing all of the powers of p from congruence (2.4), we
obtain a non-zero polynomial G*(c) over the finite field Fq whose degree is at most the
degree of G, and yet the polynomial G*(c) has at least C(f,g) distinct roots in Fq. Thus,
the degree of G*(c) is at least C(f,g). This shows that the polynomial G(c) modulo pU
has degree at least C(f,g). Thus, there is a positive integer i^C(f,g) such that

(U) Z «(*)'/(*)""'#0 (mod pi/). (2.5)

Since U^q — 1, <j is divisible by pU as a p-adic integer. A necessary condition for (2.5)
to be true is that the degree of the polynomial g{x)'f(x)u~' is at least q — \, i.e.,
idg+(U-i)df^q-l. Solving this inequality, we get i^(Udf—(q—l))/(df—dt). Since

^i, the lemma follows.

It is clear that C(f,g) = C(f+cg,g) for all ceFq and so Lemma 2.1 immediately
implies

Lemma 2.2. Let

Then

<U,g)*ud'-{q-l). (2.6)
df-dg

We now prove Theorem 1.2. Take t = k + r + j(d— 1). Since j^k— 1, we have
-2. Write

-m
For i = k-j, the degree of /(x)'(c^)'"' is (k-j)d + t-k +j = q-1. For i<k-j, the
degree of/(x)'(cx)'"' is less than q— 1. Since (kLj)£0{modpt), we have that
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G(c)= £ (f(x) + cx)< (mod pt)

is a non-zero polynomial in c of degree exactly t—(k — j) = r + jd<q—l. Following the
argument right after equation (2.4), we deduce that there is at least one c e Tq such that
G(c) is not zero modulo pt. Thus

and hence by (2.6)

ceFo

To prove Theorem 1.4, we work as above in the p-adic field K. Consider

(Ax) + cg(x)Y+' = rZ (r + S)c>g(x)lf(xY+'-'. (2.7)

;=o\ » /

The degree of the term g{xYf(xy is exactly

rdg + sdf = (q-l).

For i>r, the degree of g(x)'/(x)r+s"' is bounded by

Since (r\s)^0(modp(r + s)), the above argument and (2.7) show that the polynomial
G(c) = £ x e r , ( / (x ) + cg(x))r+s modulop(r + s) is a polynomial in c of degree r. It follows
that there is at least one ce Tq such that G(c)#0 (mod p(r + s)), that is, Uq(f(x) + cg(x)) g
(r + s) for such c. By Lemma 2.2, we obtain

df-dg

The theorem is proved.

3. A comparison with earlier bounds

Let k be a positive divisor of q— 1. Let C* be the number of PPs over Fq of the form
fa(x) = x{x{q~ulk — a). Let g be a primitive root of Fq and o)=g{q~1)lk be a primitive fcth
root of unity. It can be easily proved (see [1] or Theorem 1.3 in [22]) that fj[x) is a PP
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PERMUTATION POLYNOMIALS 139

over Fq if and only if there is a permutation n of {0, l,...,fc — 1} such that g'~'l')(u)'-a)
is a ilcth power in F* for all O^i^fc— 1.

For a permutation n of {0, l,...,k— 1}, let C»(7r) be the set of a e F , such that
gi~M'\co'—a) is a fcth power in F* for all 0^i<k. Standard arguments of character
sums show that

(3.1)

If n and n' are different permutations, then the corresponding sets Ck(n) and Ck{n') are
disjoint. This follows from the fact that if 7r#7i', then g«<'>-«'(0 is not a /cth power for
some i with O^i^fc— 1. Summing (3.1) over all permutations n, we deduce that

I.I

(3.2)

If k = 2, it was noted that the bound in Theorem 1.1 is best possible.
Assume q^l so that if k = 3, the degree of /fl(x) is (q + 2)/3 and (q-l) = 2(q + 2)/3 +

(<?-7)/3. Thus, (r)=((*"2)/3) >s n o t divisible by p if p>2. The bound in Theorem 1.1
gives the estimate C3^(q-l)/3 if p>2. Chou's bound [1] gives C3<L(2q-5)/3. The
bound of Evans, Greene, and Niederreiter [8] is C3^q — 3. The actual value of C3 is

Assume <?^13 so that if k = 4, the degree of fa(x) is (q + 3)/4 and (<?-l) =
3fa + 3)/4 + fo-13)/4. Thus, tf) = ((*-3

1)/4) is not divisible by p if p#3,5. The bound in
Theorem 1.1 gives the estimate C4^(q —13)/4 if p#3,5 while Chou's bound gives
C4.^(3q —7)/4 and the bound of Evans, Greene, and Niederreiter is CA^q — 4. The
actual value of C4 is 3q/32 + O(y/q).

4. Maximal sets of orthogonal latin squares

In this section we present an application of the previous bounds to the construction
of maximal sets of mutually orthogonal latin squares (MOLS). Recall that a latin square
of order n is an n x n array consisting of n distinct symbols with the property that each
of the n symbols appears once in each row and once in each column. Two such squares
are orthogonal if when superimposed, each of the n2 possible ordered pairs occurs once,
and a set of latin squares is orthogonal if any two distinct squares are orthogonal.
Finally a set of MOLS is said to be maximal if there is no latin square orthogonal to
each square in the set, (see Evans [7]).

In [7] Evans uses orthomorphisms of the additive group of Fp, p prime, to construct
maximal sets of MOLS. Specifically an orthomorphism 9 of F , is a PP with 8(0)=0 for
which 6{x)—x is also a PP. Two orthomorphisms 9 and <f> are adjacent if 8(x) — (f>(x) is a
PP. The set of all orthomorphisms of Fp forms a graph called the orthomorphism graph
of F^ denoted by Orth (Fp), where two vertices 9 and (p are connected by an edge if 9
and <p are adjacent orthomorphisms. An r-clique of Orth(Fp) is a set of r mutually
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140 D. WAN, G. L. MULLEN AND P. J.-S. SHIUE

adjacent orthomorphisms and it is a maximal clique if it cannot be extended to a larger
clique.

As indicated in [7], an r-clique of Orth(G) where G is a group of order n, can be
used to construct a set of r + 1 MOLS of order n, and the set of MOLS is maximal
whenever the r-clique is maximal. More specifically if G = {gl,...,gn} and 9l,...,6r form
an r-clique of Orth(G), then define nxn matrices L0,L1,...,Lr as follows. The (i,j)
entry of Lo is gi+gj and the (i, j) entry of Lk is gi + 9k(gj) for k=l,...,r. Moreover
Lo,Lu...,Lr are MOLS of order n.

The motivation for studying orthomorphisms comes from the long standing conjec-
ture that every projective plane of prime order is Desarguesian, see Denes and Keedwell
[5, p. 276]. The linear PPs ax with a^leFp clearly form a (p —2)-clique in Orth(Fp)
and it was shown by Evans and McFarland in [9] that the existence of another (p — 2)-
clique in Orth(Fp) distinct from the linear one would imply the existence of a
non-Desarguesian affine plane of order p which admits translations. Such planes have
long been conjectured not to exist.

We first turn to the construction of nonisomorphic planes through the use of
orthomorphisms of finite fields. We first prove the elementary lemma:

Lemma 4.1. Let q = p" and let 0^k<n. Then the number of PPs of Fp of the form
^ with beF is given by q — (q—\)l(q—\,pk—\).

Proof. We first note that f(x) = xpk + bx is a p-linearized polynomial and so it is a
PP of Fq if and only if /(x) = 0 has no nonzero solution in Fq, see Lidl and Niederreiter
[13, Thm. 7.9]. Thus the number of beFq for which f(x) is not a PP is the number of
nonzero elements of Fq in the value set of the polynomial x^" 1 , which is

Let e = q — (q — \)l(q — \,pk—\) and suppose that x ^ + CfX is a PP of Fq for e elements
cu...,cesFq. By making the linear substitution x->(l/(cl— c2))x, we may assume that
c1 — l=c2 so that /(x) = axpl' + c1x, with a#0, is an orthomorphism. For i = 3,...,e, let
d^Ci—C; so that

/(x) - dtx = ax"* + cfx, a ± 0,

is a PP of Fq for i = 3,...,e. Thus /(x) is adjacent to the linear orthomorphisms
d3x,..., d^.

Suppose now that g{x) = bxpk + cx is an orthomorphism which is adjacent to
d3x,...,d,x: Let N = {q-l)/(q-l,pk-l). Then fc*-(d,-c)'V0 for i = 3,...,e. Moreover
the df consist of all elements deFq such that aN—(d — c J ^ O . Hence whenever

bN-(d-cf=0, (4.1)
then

aN-(d-cl)
N = 0. (4.2)
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PERMUTATION POLYNOMIALS 141

Now (4.1) has N solutions d = c + ub, parameterized by the Nth roots of unity, which
we denote by u. Substituting d into (4.2) we obtain the identity

This is a polynomial equation in u of degree at most N — 1, and yet it has N solutions u.
Thus the polynomial must be identically zero. In particular we have ct=c and bN=aN.
Writing b = ua with u an Nth root of unity in F^ we have gj[x) = uaxpk + clx. Indeed as
u runs through the Nth roots of unity, each such gj^x) is adjacent to d(x for i = 3,..., e.
Moreover these gu(x) are adjacent to each other.

Hence a family of adjacent orthomorphisms is given by the gu(x) and d3x,...,d^x. The
cardinality of this family is N + e — 2 = q — 2, which implies that we have a maximal
(q — 2)-clique in Orth(F,). This in turn implies the existence of a complete set of q— 1
MOLS of order q. Hence for a, ct and dt for i = 3,...,e as above, we have proved:

Theorem 4.2. For q=p", let 0^k<n and set N=(q-l)/(q-l,pk-l). Let u be a
primitive Nth root of unity in Fq. Then the polynomials

a^x^ + CiX, j=\,...,N

d,x, i = 3,...,e,

form a maximal (q — 2)-clique in Orth (Fq).

Given a polynomial f(x,y) over Fq we may form a qxq square by placing the
element / (x , y) at the intersection of row x and column y of the square.

Corollary 4.3. Using the notation from Theorem 4.2, the polynomials

y, j=l,...,N

i = 3,...,e (4.3)

x+y,

represent a complete set ofq—l MOLS of order q.

Given q=p" with n^.2, it is natural to ask as one varies k with 0^k<n, how many
different or inequivalent complete sets of MOLS of order q do we obtain? Recall from
Denes and Keedwell [5, p. 168], that two complete sets of MOLS of the same order are
equivalent or isomorphic, if the squares of the two sets can be put into one-to-one
correspondence in such a way that by renaming symbols and/or reordering or
permuting the rows and columns of each square in one set, we obtain the squares of the
second set. It is well known that the existence of a complete set of MOLS of order n is
equivalent to the existence of a finite projective plane of order n, and that non-
isomorphic complete sets of MOLS correspond to non-isomorphic projective planes, i.e.
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to projective planes whose co-ordinatizing planar ternary rings are non-isomorphic, see
Denes and Keedwell [5, p. 481].

Corollary 4.4. For each n^.2 and any odd prime p, the above construction gives
x(n) ^ 2, non-isomorphic projective planes of order p", where T(M) denotes the number of
positive divisors of n.

Proof. We first note that (p"—l,p*-l) = p(n>*)-l, and so we have t(n) different
values of N in Theorem 4.2. We now show that each of these leads to a non-isomorphic
plane. Recall from Lidl and Niederreiter [13, Cor. 7.5], that if / is a PP of Fq of degree
n> 1, then n cannot divide q— 1.

For 0^k<n, let M(k) be the complete set of MOLS of order q constructed in the
above way using the integer k. We want to show that if kt and k2 are two integers in
the interval [0,n) satisfying (n,fcj)#(n, k2), then M(kt) and M{k2) are not isomorphic.
Without loss of generality, we may assume that (n,k2)>{n,ki)>0. Suppose there is an
isomorphism (p between M(k1) and M(/c2) via the row permutation ar(x) = £?= o rtx\ the
column permutation ac(y) = £?~Q cty' and the symbol permutation as(z) = Yj=o s;z'- We
want to derive a contradiction.

In the construction of M(k), there are (q—l)/(q—l,pk—\) non-linear polynomials if
k>0 and there are no non-linear polynomials if k=0. Let

The isomorphism <p will take at least N(kuk2) linear polynomials in M ^ ) , (say,
/c2), d,#0) to N(kuk2) linear polynomials in M(/c2), (say, c.x + y,

e,#0). Since the isomorphism </> is obtained via the row permutation
<rr(x), the column permutation <7c(_y) and the symbol permutation <7s(z), it follows that

dpJLx) + ac{y) = os(etx + y),l£i£ N ( k u k 2 ) , (4.4)

for all x, yeFq. The left hand side of (4.4) has no terms divisible by xy and thus it is
easy to see that as(z) has to be a p-linearized polynomial.

Since N(kuk2)>\, comparing the constant terms on both sides of (4.4), we see that
or(x) also has no constant term. Using this fact and comparing the x-part and y-part in
(4.4), we deduce that

°Xy)=°ly) (4.5)
dfljix) = (Ts(eiX), l£i£N{kuk2). (4.6)

Equation (4.6) shows that ar(x) and o£x) have the same non-zero terms except that
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their coefficients may be different. In particular, both a^x) a n d oix) are p-linearized
polynomials without constant terms. Thus we may write

+ ..., j!> j2> •• -^0,

where a1b1 #0 . We claim that all other coefficients in <xs(x) and ar(x) are zero.
If the claim is not true, we may assume that a2b2^0. Equation (4.6) then shows

Thus we have

b2 a2 ' a2

However the equation

has at most pUl J2n)— 1 ^ p n / 2 — 1 solutions in Fq. Thus we have the inequality

p"l2 — l*tN(kl,k2). (4.7)

If k2 = 0, then

q-\ ( 1
(q — l,p*' —1) = \ 3 — 1

However (q— l)/2>p"/2 — 1 for p ^ 3 and n ^ 2 . This contradicts (4.7).
If k2>0, then (k2,ri)>(kl,ri)>0 and so we have (k2,n)^2, n ^ 3 . Furthermore in this

case,

One checks that |(q — l)>p"/ 2 — 1 for p ^ 3 , « ^ 3 . This again contradicts (4.7). Thus we
have proved the claim that o£x) = alx

pJl and ar(x) = a2x
pJ'.

Since 0<(«,fc1)<(n, k2), there are more non-linear polynomials in M(fet) than in
M(k2). Thus, the isomorphism 4> will take one of the latin squares constructed from a
non-linear polynomial (say ax1*' + c1x + y), to a latin square in M(k2) constructed from
a linear polynomial, (say ex + y). Thus
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a(aXx))^1 + c.aXx) + ac(y) = a lex + y).

Since o£x) = o!l<x) = alx
pJl, ar(x) = a2x

pJl, the above equation simplifies to

= a1(ex)''\ (4.8)

Since 0<(n,kl)<{n,k2), and thus 0<&i<n, we have pil+kl£pilmod(q-l). Thus the
left hand side of (4.8) has two nonzero terms while the right hand side has only one. We
have thus proved that no isomorphism can hold between M(fcj) and M(k2), and so the
proof is complete.

Alternatively we have:

Corollary 4.5. For each n§:2 and any odd prime p, the above construction gives
T(M) ^ 2, non-isomorphic qffine translation planes of order p".

Proof. This follows from Hachenberger and Jungnickel [12, p. 301] where it is
shown that s — 2 pairwise orthogonal orthomorphisms of a group G of order s describe
an affine translation plane if and only if these orthomorphisms are in fact fixed point
free group automorphisms.

It may be worth remarking here that this construction gives for any odd prime p, a
non-Desarguesian affine translation plane of order p2, constructed without the use of a
right quasifield as used in Denes and Keedwell [5, p. 278+]. As an illustration for the
smallest case of q = 9, let F9 be generated by the primitive polynomial f(x) = x2 + 2x + 2
over F3. Let a be a root of f(x) in an extension field. The MOLS corresponding to the
Desarguesian plane of order 9 may be constructed by using the polynomials

fAx,y) = «ix + y,i = 0,...,7. (4.6)

Since u = a2 is a primitive 4th root of unity, the construction from Corollary 4.3 leads to
the polynomials

<xx3+y a5x3 + y
(4.7a)

<x3x3+y a.1x3 + y,

which represent 4 MOLS. To complete the set to 8 MOLS of order 9, we consider the
linear polynomials

a2x + y <x6x + y

a.*x+y x + y.
(4.7b)

Thus four of the squares are the same in both the Desarguesian and non-Desarguesian
constructions.
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Before considering a different type of orthomorphism of Fv we mention the following
conjecture of Evans, Green and Niederreiter [8, Conj. 2].

Conjecture. Let f be a polynomial over Fq such that f(x) + ex is a PP of Fq for at
least |_<?/2J values ofceFq. Then f(x) — f(0) is a linearized p-polynomial over Fq.

By a linearized p-polynomial is meant a polynomial each of whose terms has degree
equal to a power of p, (see [13, Defn. 3.49]). In [8] it is shown that the conjecture is
true for q = p a prime, and it is also true for f(x) = xe with 0 < e < q. The truth of this
conjecture would have implications for the construction of sets of MOLS of order q via
automorphisms of the field Fq.

We now turn to a study of orthomorphisms over Fq of the form ax(q+l)l2 + bx. In [7]
for p an odd prime, Evans used PPs of the form ax(p+l)l2 + bx to construct a maximal
set of (p-3)/2 MOLS of order p if p = 3 (mod 4) and a maximal set of (p-1)/2 MOLS
if p = l (mod 4). Let f(x) = ax(p+i)l2+ bx with a, beFp, p prime. As indicated after
Theorem 1.1, with d = (p+l)/2, r = (p —3)/2 and J = (p —1)/2, the binomial coefficient
ti) = (p—1)/2 is not divisible by p so Theorem 1.1 applies. As a result it is clear that an
orthomorphism over Fq of the form ax{q+1)l2 + bx can be adjacent to at most (q — l)/2
linear orthomorphisms ax. Moreover from Niederreiter and Robinson [17, Thm. 5 and
Remark 1], for every odd prime power q there are orthomorphisms of the form
axl<l+l)l2 + bx which are indeed adjacent to exactly (q — 7)/2 linear orthomorphisms.

What if q = p" is a prime power with n> 1. For q = 9, Evans [7] exhibits a maximal
set of 6 (quadratic) orthomorphisms of the form ax(9+l)l2 + bx and a linear orthomor-
phism which yields a maximal 7-clique in Orth (F9) and hence a complete set of 8
MOLS of order 9 which can be used to construct the dual translation plane of order 9,
(see [5, p. 280-281] and [12, p. 301]).

From this example one might suspect that for any odd prime power q=p" with n> l ,
it is possible to construct a complete set of q— 1 MOLS of order q using orthomor-
phisms of the form axlq+l)l2 + bx and linear orthomorphisms. However to the contrary,
Pott in [18] conjectures that for any odd q = p" with n>\ except for <? = 9, no
orthomorphism of the form ax(q+1)l2 + bx leads to a maximal clique with q — 2 elements.
Instead Pott conjectures as in the case of prime p, that except for q = 9, there are such
polynomials leading to maximal sets of MOLS with (q — 3)/2 squares if q = 3 (mod 4)
and with (q—1)/2 squares if q= 1 (mod 4). While Pott bases his conjecture on computer
evidence from the cases q = 25, 27, and 49, we provide the following results toward the
proof of Pott's conjecture. First any polynomial ax{q+l)l2 + bx meeting the bound in
Theorem 1.1 can be used to construct a set of (q — 3)/2 MOLS of order q if q = 3 (mod
4) and (q—1)/2 MOLS if q = 1 (mod 4). As indicated earlier, from [17] such polynomials
exist for all odd q. In addition we prove:

Theorem 4.6. (i) / / the orthomorphism g(x) is adjacent to (q — 7)/2 linear orthomor-
phisms over Fv then the degree of g(x)^(q+ l)/2.

(ii) Let e=(<j —3)/2 and let f(x) = axlq+i)l2 + bx with a # 0 be another polynomial such
that f(x)-dix is a PP for i=\,...,e. Let g(x) = a1x

iq+1)l2 + blx with ^ # 0 be another
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polynomial such that g(x) — dtx is a PP for i=l,...,e. If q>9, then bt = b and a^=a or
at = —a.

Proof. Part (i) follows immediately from Chou [2, Thm. 5] or [1, Thm 2.3.3] where
it is shown that if f(x) + bx is a PP for m values of beF,, then the degree of / is at
most q—l—m.

For (ii), let t1{i)=(b-d,)/a and t2(0 = (*i-<*i)A>i- Hence

Let n denote the quadratic character on Fq. The binomial xiq+i)l2 + tx is a PP if and
only if n(t2-l) = l, (see [13, Thm. 7.11]). Thus the ^(iTs are characterized by the
condition n(t\-\) = \. Similarly the t2(O's are characterized by the condition r\{t\ — 1) =
1. The relation t2{i) = Atl(i) + B shows that if teFq with t2i=\ and [At + B)2^\, then
n(t2-l) = ri((At + B)2-l). As a result (t2 - l)((At + B)2 - I) is either a nonzero square or
zero for all t e Fq. If for some t, t2 ^ (At + B)2, then by Weil's estimate for character sums,
[13, Thm. 5.41], we have

feF,

This is impossible if q> 16, or equivalently if q>9 since q is odd and not prime. Finally
t2=(At + B)2 for all teFq implies B = 0 and A = l or —1, and thus b^=b and at = a or
ax = —a, which completes the proof.

It may be of interest to give the polynomials over F9 which represent the dual of the
translation plane of order 9, (see Denes and Keedwell [5, p. 280]). As in the previous
example, we assume F9 is generated by a root a of x2 + 2x + 2 over F3. In this case 6 of
the MOLS of order 9 are represented by the polynomials

a2x5+y <x6x5+y

(4.8a)

ct2xs

To complete the set we consider the linear polynomials

<x4x + y x+y. (4.8b)

We thus note that two of the MOLS occur in each of the three non-isomorphic
complete sets of MOLS of order 9, namely those represented by a.Ax + y and x + y. We
also note from the proof of Corollary 4.5, that since six of these orthomorphisms are
not automorphisms of F9, the corresponding plane is not isomorphic to an affine
translation plane.
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As noted in Evans [7] for an odd prime p, the quadratic orthomorphism of Fp

defined by

C ax if x is a nonzero square
x-*i bx if x is a nonsquare

[o ifx = 0,

can be represented in the form

(4.9)

This can clearly be extended to Fq where q is any odd prime power. The structure of the
group of all PPs of the form (4.9) was determined in Mullen and Niederreiter [15].

More generally if e\(q — 1), then every element xeF* can be written in the form
x=yek+J for some j = 0,...,e— 1 with y a primitive element of Fq. Consider the map
f:Fq->Fq defined by x-*a-x for x # 0 and /(0) = 0. Let a be a primitive eth root of
unity in Fq. Then generalizing (4.9), / (x) can be represented via the polynomial

/ ( x ) = - V ' l ay(1'+1V<I(''"1)/e)+l- ( 4 1°)
£ i = 0 j = 0

As indicated earlier, PPs of the form (4.9) meet the bound from Theorem 1.1 while those
of the form (4.10) in general do not. However if e = (q—1)/2, then one can construct a
PP of the form (4.10) with degree q — 2 and so we obtain another class of PPs meeting
the bound in Theorem 1.1. We also point out that Wan and Lidl in [22] have
determined the structure of the group of all PPs of the form (4.10).

We close by pointing out several results concerning the existence of orthomorphisms
of Fp, p prime, which show that they must have degrees which are relatively large. For
example from Cohen's proof [3] of the Chowla-Zassenhaus conjecture, if / is an
orthomorphism of Fp of degree n, then n must satisfy p^(n2 — 3n+4)2. In addition if /
and g are adjacent orthomorphisms of degree n over Fp and t is the degree of f—g,
then Cohen, Mullen, and Shiue [4] shows that if p>(n2 — 3n + 4)2, then t^3n/5 and
(t ,n)>l . We also mention in closing that if an orthomorphism / is adjacent to m linear
orthomorphisms, then by Chou [1, 2], the degree of / is at most q-m — 3.
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