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Abstract

The question on existence of optimal controls for a system governed by
quasilinear parabolic partial differential equations which is linear in the
control variables is considered. It is shown that whenever the controls
converge in the weak * topology of U°, the corresponding solutions converge
uniformly. Using this result and results on lower semi-continuity of integral
functionals, existence theorems for optimal controls are proved.

1. Introduction

In this paper, we shall consider the existence of optimal controls for an optimal

control problem in which a given cost functional will be minimized subject to a

system governed by the following quasilinear parabolic partial differential equations

with first boundary conditions

JS*. #«)(*, 0 = 0, (

#«)(*, 0 = #* ,0 onT, (1.1)

where Cl is an open bounded connected subset of Rn;

r = {(x,O):xeQ}\JdClx[0,T);

dQ. denotes the boundary of Q; ueD, D is the set of admissible controls to be

defined later; tft is given function defined on Q and for each ueD, the operator
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J2J, is defined by

= 6 - S /•(««(*, *,0 £*)+«(*.'.*)«(*,0, (*,Oefi (1-2)

in which a = (a^ . . . . a j , " = ("i> -."m) and at/ = S
Related control problems to the problem considered in this paper can be found

in [1, 4, 7, 8, 9, 10]. In [4, 7, 8, 10], the authors considered systems of ordinary
differential equations. In [1], Berkovitz considered an abstract control problem
with Lp-bounded controls (p^ 1). However, the class of problems considered in
[1] does not include the problem considered here. Indeed, in this paper the existence
of solutions for the system is considered and the control restraint set depends also
on the solution of the system, while in [1] the existence of solutions is not con-
sidered and the control restraint does not depend on the solution of the system.
In [9], Noussair et al. considered a similar control problem to ours in which the
existence of optimal controls was established using Filippov's implicit function
lemma [5]. Our results are complementary to that given in [9] and overlap with
the results in [1]. Further, our results can be considered as an extension of results
in [4,7,8,10] for ordinary differential systems to a quasilinear parabolic partial
differential system.

2. Notations

Let Rn denote the n-dimensional Euclidean space. For any xeRn, let
1*1 = (2"_i|*i|2)*- The abbreviation a.e. means almost everywhere with respect
to Lebesgue measure; \E\ denotes the Lebesgue measure of the measure set
EcR" (s > 1), dB denotes the boundary of the set B and E its closure.

A function/: Xx Y->Rn is said to be a Caratheodory function if f(.,t) is
measurable on Xfor every teYand f(s, .) is continuous on Yfor almost all seX.

Let G denote a bounded connected subset of Rn; and denote by C\G) (1 ^ / < oo),
the class of all /-times continuously differentiable real-valued functions on G.
Also Cl

0{G) denotes the class of all functions from C\G) with compact support in G.
Let L9{G; Rm)(m,q^l) be the Banach space of all measurable functions

z: G-*-Rm that are oth-power integrable on G. Its norm is defined by

= { [ for 1

Iko = ess sup | z(x) | for q = oo.
xeO
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92 S. Nababan and E. S. Noussair [3]

Let L9-T(G x / ; Rm) (m,q,r^l) be the Banach space of all measurable functions
z: Gxl-+Rm such that ||z||9,r,o

<QO» where

I Z I L , G X J = [ J I { j j ) }
L esssup!|z(.,0!L(?, l^g<co, r - oo.

lei

and
= esssup \z(x,t)\

{MG1

The space 2>«(G x / ; Rm) will be denoted by L«{G x I; Rm) and the norm || .||9,9>OX7
by ll-ILoxz- A l s o L«(G; R^WiGxI; R1), respectively) will be denoted'by
L?(G)(L*-r(GxI)).

We define W*\G x I), 1 ̂ q«x>, to be the Banach space of all functions z from
LQ(GxI) having generalized derivatives of the form (d'/dt^ifr/dx3) with any r and
j satisfying the inequality 2r+s^2. The norm in it is defined by

Let H*((J), 0 < A < 1, be the Banach space of all functions z that are continuous in
G and have a finite norm

supJ'jgjff Uma»|z(x)|;
XO \X — X | G

and let Hk'xn{GxI), O<A<1, be the Banach space of all functions z that are
continuous in Gxland have a finite norm

M<A> _||7||(A) J_| | 7 | | (A/2) j -mavUII z \axi — IIz \\x,axi+IIz haxi+"3251z l»

where

I-IICAI - S U D

\z \\x,oxi — SUP

7 IIA/ZI Glin
ZI«,GX/ - S U P

Finally, let H^/2(Q) be the set of all functions belonging to HXM%Qj for any
closed subdomain QxcQ.
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3. Preliminaries

In this section, an existence theorem for solutions is given in Theorem 3.1.
Further, it will be shown that whenever the controls converge in the weak *
topology of Lm(Q; Rm) then the corresponding solutions converge uniformly on Q.
This result is presented in Lemma 3.3.

Let O be an open bounded connected subset of Rn. Let T> 0 be a fixed constant
and let Q = Qx(0,T) and T = {(x,0): xeQ}u5Qx [0,T].

Let UK denote that set of all bounded measurable functions u: Q-+Rm such
that \u(x,t)\^K for all (x,t)eQ. In the following K>0 denotes a positive fixed
constant.

The following conditions will be referred to collectively as conditions (5X):
(i) The functions a^ix, t,<f>),i,j = 1,..., n, and a^x, t,<f>),i= 1,..., n, are defined

on QxR1 and take finite values for any finite (f>, and (x, t)eQ;
(ii) For all (x,t)eQ and arbitrary <f>eR\ '£lZi=.1aii(x,t,(f>)€i$j^0 for all

(iii) There exist non-negative constants bt and b2 such that

for all (x,t)eQ; and
(iv) ifieHfi(Q) for some j3, 0<j3 < 1.
Let MK denote the positive constant defined by

= inf (e^max(|^|, Ar (3-D

DEFINITION 3.1. The boundary 8Q. of Q is said to satisfy condition (A) if there
exist constants OQ, 60>0 such that the inequality

holds for any ball Bp with centre on 3D. of radius p^a^ and any connected component
Qp of Qp, where Qp = BpnQ.

The following conditions will be referred to as conditions {B^: For (x,t)e.Q
and I^I^Mg-,

(i) The functions ai}{x,t,^), i,j = 1,2,...,«, are continuous in <f> and differ-
entiable with respect to x and <f>; and the function a(x, t, <f>) is continuous in <f>;
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for all £eRn and some constant V,/A>0;

daij{x,t,<f,)
\aij{x,t,<f>)\ +

in which Q <>//*!>

[5]

\a[x,t,<j>)\^3(x,t),

*! f o r s o m e constants fi1,fi2>0 with

1 n

where

for n ̂  2,

for n = 1; and
(iii) d£2 satisfies the condition (A).
The existence of solutions for system (1.1) follows from Theorem 3.2 of Noussair

et al. [9]. This theorem is quoted below without proof.

THEOREM 3.2. Let the assumptions (Bj) and(B^> be satisfied. Then for each ueUK,
the system (IA) has a solution <f>ueH°^/2(Q)n Wf^Q') with j>%eH™/2(Q), where
Q' is any interior subdomain of Q that is separated from Y by a distance d>0, and
0 < y, a < 1 are constants determined by K, n, v, fi, y^, (i%, q, MK and rfrom condition
B2(ii). Furthermore, there exist positive constants c and c(d) such that for all u e U^,
and for any subdomain Q' separated from F by a distance d> 0, the following
estimates are valid

\4>u\(^^c (3.2)
and

where the constants c and c(d) are determined only by n, MK, v,
and the distance d.

, \i, q, r, K,

LEMMA 3.3. Let the hypotheses of Theorem 3.2 be satisfied. Let {«„} be a sequence
in UK such that un->u0 in the weak * topology ofL°(Q; R™). Let {<f>n} denote the
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sequence of solutions of system (1.1) corresponding to un. Then there exist a subse-
quence of {<f>n} which we shall denote by the original sequence and a function
4>° e H^XQ) such that

(i) <f>n^-<f>0 uniformly on Q,
(ii) <f>° is a solution of system (1.1) corresponding to u0.

PROOF. It follows from Theorem 3.2 that for any subdomain Q' separated from
F by a distance d>0,

I (3-4)

0.5)

where the constants c and c(d) depend only on n, MK, p, /Xj, /A2, V, q, r and d.
By using the diagonalization process given in [9], it can be easily shown that

there exist a function </>oeHa-°uXQ)n W™{Q') with ^eHy-y^iQ) and a subse-
quence of {<f>n} such that

uniformly on Q,

uniformly on Q',
(3.6)

!>? weakly in L\Q'\

where Q' is any closed subdomain of Q.
Let us first show that there exists a subsequence of {(<£", «„)} which will be

denoted by the original sequence such that

J J a(x,t,<f>n(x, 0).un(x, t).z(x, t)dxdt^[[ a(x,t,<f>\x,t)).uo(x,t).z(x,t)dxdt

(3.7)

for any zeL\Q). Since <f>n-><f>0 uniformly in Q, it is clear that (<f>n, Mn)-(^°, un)-+0
in measure in Q. Further, (<f>n, un) and ((f>°, un) are bounded in the norm of the
space L'Tl(Q)xL'rt(Q), ava2^l. Hence, it follows from Lemma 3.1 of Berkovitz
[1, p. 524] that

(a(x, t, <j>\x, 0 ) - a(x, t, <f>\x, t))). un(x, t)^0

in measure in Q. Therefore, there exists a subsequence of {(<£n, un)} such that

Yn(x, t) = {a{x, t, ̂ {x, t)) - a(x, t, <f>\x, t))). un(x, t)^0 (3.8)

a.e. in Q. From the condition B2(ii), it follows that for {x, t) e Q,
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where K is the bound on un and faeV-iQ). Thus, it follows from the Lebesgue
dominated convergence theorem that

lim (Y ¥»(*,t).z(x,t)dxdt = O. (3.9)

Since un->Wo in the weak * topology of Lm(Q; Rm), it follows that

lim f f a(x, t, <ffi(x, 0 ) . z(x, t). {un(x, t) - ujx, t)) dxdt = O. (3.10)
n-»oo J J Q

Hence, (3.7) follows from (3.9) and (3.10). Furthermore, by virtue of (3.6) and
(3.7) it is easy to see that <f>° is a solution of the system (1.1) corresponding to u0.
This completes the proof.

4. Existence of optimal controls

In this section, we consider the problem of existence of an optimal control.
The exact formulation of the problem is given below and existence proofs in
Theorems 4.1 and 4.3.

Let BK denote the m-dimensional sphere in Rm with diameter K, where AT is a
fixed positive constant. For each (x,t,ip)eQxR\ let U(x,t,t/t) be a non-empty
subset of BK.

A bounded measurable function u: Q-*-BK is called an admissible control if
(i) there exists a solution ^u of system (1.1) corresponding to u; and

(ii) u(x, t) G U(x, t, <f>v(x, 0) a.e. in Q.
Let D denote the set of all admissible controls, and let A denote the set of all pairs
(<j>u, u), where us D and <j>u is a corresponding solution of system (1.1).

Let the cost functional / be defined on A by

= J ]/(*>'»*"(*. 0, «(*, 0) dx dt, (4.1)

where g(t, x, ift, u) is a real-valued function on QxR1xBK and satisfies the following
conditions which will be referred to as conditions (H):

(i) g(x, t, ift, u) is continuous in (̂ r, u) for a.e. (x, t) e Q, measurable in (x, t)
for each (ifi,u)eR1 xB K and convex in u for each (JC,t,ifi)eQxRl; and

(ii) there exists a function zeLl(Q) such that

g(x,t,ip,u)7>z(x,t)

for a.e. (x, t)eQ and for all (<p, u)eR}x BK.
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We now state our control problem "P": subject to system (1.1), find an
admissible pair (^"«, «0)eA such that

«] (4.2)

for all (^u, u)e A. Such an admissible pair will be called an optimal pair.

THEOREM 4.1. Consider the problem P. Suppose that the following assumptions
are satisfied.

(i) The conditions (BJ, {B^ and (H) hold;
(ii) for each (x, t,<p)eQx R1, U(x, t, ifi) is closed and convex; and

(iii) the mapping U is upper semicontinuous with respect to inclusion {u.s.c.i.) on

Then there exists an optimal pair (^"o, UQ)S A for the problem P.

PROOF. From condition H(ii), it follows that inf{/[<£",«]: (<f>u,u)eA} = a> -co.
Let {(<f>Ut, «fc)}fcLi be a minimizing sequence such that

\im J[<f>u*,uk] = o. (4.3)

Since uk(x,t)eBK, k = 1,2,..., there exist a subsequence of {uk} and a function
UoeL^iQ; Rm) such that

uk-+uQ in the weak * topology of Lm(Q; Rm). (4.4)

By Lemma 3.3, there exists a solution <£"» of system (1.1) corresponding to w0 and
a subsequence {<£"*} such that

uniformly in Q. (4.5)

We show that u^x, t) e U(x, t, <f>"°(x, t)) a.e. in Q. For this, let

Q\ = {(x, t)eQ: uk{x, t)i U(x,t,p*{x, t))}.

Let (2i = U£-i0?- Clearly |(2i| = 0. Let QO = Q\QV Let (xo,to)eQo be any
regular point of the function u0. We first show that

. t0) e U(x0, t0, ^XQ, t0)). (4.6)

Since U is u.s.c.i., it follows that for a given e>0, there exists a 8 = S(e)>0 such
that

U(x, t, # c U°(x0, t0, ^{x0> t0)) (4.7)

whenever | (x, t) — (x0, t0) \ < 8 and | <f> — ̂ "°(x0> t0) \ < 8, where Ue denotes the closed
e-neighborhood of U.

D
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From (4.5), it follows that there exists a positive integer k0 such that for all
k > kQ and (x, t) e Q,

e, 0-*«•(*, r)|< 8/2. (4.8)

Further, since <£"° is continuous on Q, there exists a Sj > 0 such that

)\<8l2 (4.9)

whenever | (x, t) - (x0, t0) \ < 8V

Let S2 = min 8, 8J. Then, it follows from (4.7), (4.8) and (4.9) that for all k> k0

U{x, t, <f>«*(x, 0 ) = U%x0, t0, <f>«°(x0, t0)) (4.10)

whenever | (x, t) - (x0, t0) \ < S2.
Let E be any measurable subset of Q such that (x0, to)eE and | £ | < 82. Then,

since Ue(t,x,4>) is convex and closed, it follows from (4.10) that for all A:>A:0>

I //fc(x> t)dxdte

Since Ue(x, t, <f>) is closed, it follows from (4.4) that

PH J JE"0^' ^dxdte U^x°'to' ^X°' 'o))'
and consequently,

"o(*o.'o) = I'm (T—, I | uo{x,t)dxdt\eUe(x0,t0,<j>«>(x0,t0)).
\E\->o\\£>\J . I E }

Since e was arbitrary and U(x0, t0, ̂ "°(x0, /0)) is closed, it follows that (4.6) holds.
Further, since almost every point in Q is a regular point of u0, we obtain that

Uo(x, t) e U(x, t, <f>"°(x, 0) a.e. in Q.

Hence, ( ^ u J e A . Further, it follows from (4.4), t(4.5), assumptions (H) and
Theorem 1 of [2, p. 53] that

«o]. (4.11)

Therefore, it follows from (4.3) and (4.11) that

That is (<£"<>, MQ) is an optimal pair. This completes the proof.
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REMARK 4.2. Theorem 4.1 remains valid when the conditions (H) on g is replaced
by the weaker conditions (H') (6, p. 524]:

(0 g(x,t,ip,u) is lower semicontinuous in (^, w) and convex in u for each
(x,t,t/j)eQxR1; and

(ii) there exist functions y, A eL\Q) such that for all i/jeR\ueBK and (x, t) e Q,

g(x, t, <f>, u) > y(x, t) | u | + \(x, t).

We now consider the case when the cost integrand g and the control restraint
set U satisfy the following conditions which will be referred to as conditions (G):

0) s(x,t,ip,u) is continuous in all its variables and convex in u for each
(x,t,tP)eQxRi;

(ii) for each (x, t,u)eQxBK and ip,ip'eR\

where j8 is a non-negative function defined on [0, oo) satisfying

limfi(S) = 0;
a o +

(iii) U is independent of if/ and for each (x,t)eQ, U{x,t) is closed and
convex.

THEOREM 4.3. Consider the problem P. Suppose that the conditions (Bj), (i?2) and
(G) hold. Then, there exists an optimal pair (<£"">, w0) e A for the problem P.

PROOF. From estimate (3.2) and the condition G(i), we can easily show that
inf{•/[«£«]: (<f>u,u)eA) = ao> -oo. As in the proof of Theorem 4.1, let {(<f>Ut,uk)},
u0 and ^"o be, respectively, a minimizing sequence, a function in Lm(Q; Rm) and
a solution of system (1.1) corresponding to u0 such that

\im J[<j>"*,uk) = a0, (4.12)
Jfc->00

uk -+ u0 in the weak * topology of D°{Q; R1"); (4.13)
and

uniformly on Q. (4.14)

Using condition G(iii) and an argument similar to that given in the proof of
Theorem 4.1, we can easily show that (
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From (4.1), it follows that

J[<kUk, «*] = [ J g{x, t, pHpc, t), uk(x, 0 ) dxdt

= |Y {g{x,t,j>uKx,t),uk<ix,ty)-g{x,t,4^{x,t),uk{x,t)))dxdt

g(x, t, Wx, t),uk{x, t))dxdt. (4.15)

Using the condition G(ii), it follows from (4.14) that

lim f f (g(x, t,<f>u*{x,0,uk(x, t))-g(x, t,<p*(x,t),uk{x,t)))dxdt = 0. (4.16)
fc-»ooj J Q

Since g is continuous in its all variables and convex in u, it follows from (4.13) and
the theorem of [3, p. 213] that

liminf f f g(x,t,^(x,t),uk(x,t))dxdt^ \{ g(x,t,4>*(x,t),ujx,t))dxdt.
*->oo J JQ J JQ

(4.17)
Hence, it follows from (4.15), (4.16) and (4.17) that

lim infJ [<£"*, uk] > J [<£««,«;,].
fc-»OO

Therefore, /[^"".WQ] = ao> t n a t is (̂ "°>Mo) is a n optimal pair. This completes the
proof.
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