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This research examines in detail the complex nonlinear forces generated when steep waves
interact with vertical cylindrical structures, such as those typically used as offshore wind
turbine foundations. These interactions, particularly the nonlinear wave forces associated
with the secondary load cycle, present unanswered questions about how they are triggered.
Our experimental campaigns underscore the occurrence of the secondary load cycle. We
also investigate how the vertical distributions of the scattering force, pressure field and
wave field affect the nonlinear wave forces associated with the secondary load cycle
phenomena. A phase-based harmonic separation method isolates harmonic components
of the scattering force’s vertical distribution, pressure field and wave field. This approach
facilitates the clear separation of individual harmonics by controlling the phase of incident
waves, which offers new insights into the mechanisms of the secondary load cycle. Our
findings highlight the importance of complex nonlinear wave—structure interactions in
this context. In certain wave regimes, nonlinear forces are locally larger than the linear
forces, highlighting the need to consider the secondary load cycle in structural design.
In addition, a novel discovery emerges from our comparative analysis, whereby very
high-frequency (over the fifth in harmonic and order) oscillations, strongly correlated to
wave steepness, have the potential to play a role in structural fatigue. This new in-depth
analysis provides a unique insight regarding the complex interplay between severe waves
and typical cylindrical offshore structures, adding to our understanding of the secondary
load cycle for applications related to offshore wind turbine foundations.
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1. Introduction

Offshore structures, including offshore wind turbines, bridge piers and floating vessels,
may be subjected to severe environmental loads. Understanding the physics and statistics
of wave-structure interaction, especially under nonlinear forces experienced in extreme
conditions, remains a complex and partially unresolved challenge. Severe wave impacts on
cylinders, for instance, can induce slam loads, addressed by various models (Von Karman
1929; Wagner 1932; Ghadirian & Bredmose 2019). Beyond these initial impacts, the
interaction between waves and cylinders may generate additional strongly nonlinear forces,
notably from the secondary load cycle. This phenomenon, manifesting between the crest’s
passage and the subsequent trough, represents a complex aspect of wave force, initially
identified by Grue, Bjgrshol & Strand (1993) and further explored in studies across regular
wave trains (Grue & Huseby 2002), focused wave groups (Chaplin, Rainey & Yemm 1997)
and irregular sea states (Stansberg 1997).

Over the years the underlying mechanisms of the secondary load cycle have been
extensively debated. Tromans, Swan & Masterton (2006) advanced the discussion by
subtracting the linear force from the total force to isolate the nonlinear component,
showing that two distinct types of wave scattering, type-I (associated with run-up and
set-down on the structure) and type-II (associated with wave diffraction around the
cylinder), as identified by Sheikh & Swan (2005), contribute to the nonlinear forces that
give rise to the secondary load cycle. Shortly thereafter, Rainey (2007) suggested that local
wave breaking and the collapse of a cavitation bubble on the cylinder’s backside might also
play a role. Building on these findings, Paulsen et al. (2014) used numerical simulations to
demonstrate that the strong nonlinear free-surface dynamics, in particular, the return flow
from the rear of the cylinder after the passage of the wave crest, generates high-frequency
force components (above the fifth and sixth harmonics) that constitute the secondary load
cycle. Riise et al. (2018b) then provided a systematic experimental wave analysis, showing
that, while both the Keulegan—Carpenter number and a suitably defined Froude number are
important, the best correlation for the secondary load cycle magnitude is obtained with the
latter, underscoring the primary role of gravity wave effects at the cylinder scale, which
is also experimentally highlighted by Antolloni et al. (2020). Ghadirian & Bredmose
(2020) offered a detailed force distribution using the vertical momentum equation in
cylindrical coordinates, revealing that the key mechanism behind the secondary load
cycle is a strong suction effect caused by the rapid downward acceleration of the water
column on the rear side of the cylinder, with additional contributions from hydrostatic
pressure differences and set-down effects. Rainey (2007) and Esandi et al. (2020) further
underscore the potential of these nonlinear forces to trigger resonant structural responses
at the natural frequencies of the system. Our new research (Tang et al. 2024) investigates
the backward wave force associated with the secondary load cycle, revealing its quasi-
impulsive characteristics. Despite these discussions, the precise triggers of the secondary
load cycle remain elusive (Chang et al. 2019; Li et al. 2022).

In this research, we adopt the approach of Ghadirian & Bredmose (2020) for vertically
distributing inline forces to analyse scattering forces, which delineate the wave force
effects arising specifically from the cylinder’s interactions with waves. By correlating
these forces with force time histories, the scattering wave field and the scattering pressure
field, we aim to clarify the mechanisms driving the secondary load cycle and its associated
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nonlinear forces. With respect to the nonlinear components, wave free-surface elevations
and forces, as described by the classic Stokes perturbation expansion, can be decomposed
into a primary component near the spectral peak period of the incident wave and additional
harmonics that arise from nonlinearities in both the incoming waves and the wave—
structure interactions. These higher harmonics occur at frequencies that are approximately
integer multiples of the fundamental frequency (Chen et al. 2018). Using a phase-based
harmonic separation method (Fitzgerald et al. 2014), we isolate these higher harmonic
components within the inline scattering force’s vertical distribution, scattering pressure
and scattering wave field. This method enables the precise identification of individual
harmonics by combining controlled incident focused wave groups with shifted phases,
thereby providing deeper insight into the nonlinear mechanisms associated with the
secondary load cycle. It underscores the significance of the secondary load cycle in
influencing structures subjected to severe wave interactions through a quantitative analysis
of higher harmonic components. The new insights into the secondary load cycle are
presented in this study.

The paper is structured as follows: § 2 introduces the experiments conducted to illustrate
the occurrence of the secondary load cycle during wave—cylinder interactions, and
demonstrates and validates the numerical method that provides data that are difficult to
obtain from physical experiments for subsequent analysis and discussion. § 3 presents
the vertical distribution of inline and scattering forces, aligned with the scattering wave
field and scattering pressure field at critical time points. § 4 compares more test cases to
explore the impact of wave steepness on nonlinear wave forces and the secondary load
cycle. Conclusions are drawn in § 5.

2. Methodology

In this section, both experimental wave tank tests and a validated numerical method are
described. We conducted 157 uni-directional focused wave groups in physical experiments,
with a substantial number of tests exhibiting the secondary load cycle. In addition to
the uni-directional waves, directional waves were tested experimentally and also showed
the secondary load cycle. The experimental data highlight the frequent occurrence
of the secondary load cycle. In parallel, our numerical method, validated against
physical experiments, provides more comprehensive data on free-surface elevations of the
scattering wave field, and pressure fields that are used to calculate the vertical distributions
of the inline force from below to above the water’s surface for the uni-directional wave
regime. This analysis, based on numerical data, can offer all-around insight into the
wave—structure interactions, capturing both the surface and underwater dynamics.

2.1. Physical experiments

Experiments were conducted in three facilities: the shallow water basin (35 m x 25 m)
at the Danish Hydraulic Institute (DHI) (figure la) (Zang, Taylor & Tello 2010; Chen
et al. 2018), the towing tank (76 m x 4.6 m) at the Kelvin Hydrodynamics Laboratory
(KHL) (figure 1b) (Tang et al. 2024) and the multifunctional tank (54 m x 34 m) at
the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of
Technology (DUT) (figure 1c¢) (Ding et al. 2025). In all tests, a fixed vertical cylinder
was installed. Different test scales were used: DHI tests employed a cylinder with a radius
(R) of 0.125 m and a water depth (d) of 0.505 m; KHL tests used a cylinder with a radius
of 0.2 m and a water depth of 1.8 m; and DUT tests featured a cylinder with a radius of
0.125 m, with water depths of 0.5 and 0.7 m. The wave generation for these experiments
used focused waves based on NewWave theory (Lindgren 1970; Boccotti 1983; Tromans,
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Figure 1. Set-up of experiments at (@) Danish Hydraulic Institute, (b) Kelvin Hydrodynamics Laboratory and
(c) State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology.
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Figure 2. Occurrence of the secondary load cycle (SLC in the figure). Experimental cases are plotted in
(a) with non-dimensional cylinder slenderness, non-dimensional water depth and incident wave steepness on
the x-, y- and z-axes, respectively; and in (b) with incident wave steepness on the x-axis and non-dimensional
cylinder slenderness on the y-axis.

Anaturk & Hagemeijer 1991) and the JOint North Sea WAve Project spectrum with a peak
enhancement factor (y) of 3.3.

2.1.1. Uni-directional waves
Figure 2(a) presents the experimental results of uni-directional wave groups, where the
axes represent the non-dimensional cylinder slenderness k), R, the non-dimensional water
depth k,d and the incident wave steepness k7., respectively. Here, k), is the peak
wavenumber associated with the peak wave period, and 7. is the maximum surface
elevation measured in the empty tank at the focus point (i.e. cylinder centre). All test
cases fall within the ranges 0.10 <k, R < 0.80, 0.76 < k,d < 7.24 (intermediate to deep
water) and 0.03 < k,n. < 0.45. In the figure, cases exhibiting a secondary load cycle are
marked with solid symbols, based on manual identification following Riise et al. (2018b).
These cases cluster in the upper-left corner and typically correspond to larger k1.
Figure 2(b) plots experimental cases with k,n. on the x-axis and k, R on the y-axis,
and includes two reference lines representing Froude numbers, Fr=0.3 and Fr = 0.45,
estimated based on Riise et al. (2018a) as

2
Fr=—"Tc_ 2.1
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Figure 3. Force time history (in red) and wavelet contour representation of this in normalised frequency and
time for KHL experiments with R=0.2 m, d =1.8 m and T, =1.96 s. (a) Corresponds to 1. =0.24 m,
kpne=0.27, Fr=0.42 and (b) to . =0.34 m, k,n. =0.37, Fr =0.60.

where T), is the peak wave period, g is the gravitational acceleration and D = 2R is the
cylinder diameter. The line at Fr=0.3, as identified by Grue et al. (1993), serves as a
good predictor for the occurrence of a secondary load cycle. All cases with Fr < 0.3 do
not exhibit a secondary load cycle, which is consistent with the prediction from Grue et al.
(1993). However, in some cases where Fr > 0.3, no obvious secondary load cycles occur.
Another line at Fr = 0.45 is included to indicate the upper limit, beyond which an obvious
secondary load cycle is observed in all cases; this line is also used by Tang et al. (2024)
as a predictor of a backward quasi-impulsive force. The experiments plotted here involve
non-breaking incident waves, nevertheless, the secondary load cycle, which produces large
nonlinear wave forces, occurs frequently in these non-breaking conditions.

Two experimental tests conducted at KHL (R =0.2 m, d = 1.8 m) are presented in
figure 3. A continuous wavelet transform is employed to analyse the evolution of the inline
wave force’s frequency component over time. Accordingly, figure 3 displays a contour
plot of the inline force as a function of time and normalised frequency (f/f,, where
fp is the peak incident wave frequency), with the total inline force time history overlaid
in red. Figure 3(a) corresponds to the case with T), =1.96 s, n. =0.24 m, k,n. =0.27,
kpR =0.22 and Fr = 0.42, whereas figure 3(b) shows the case with 7), = 1.96 s, n. = 0.34
m, kpne. =0.37, kp, R =0.22 and Fr=0.60. In the Fr =0.60 case, an obvious oscillation
appears at the trough of the total force curve at around 64 s, corresponding to the secondary
load cycle. The wavelet contour reveals that the nonlinear force components (f/f, = 2)
have relatively high magnitudes (displayed in light blue) around the time of the secondary
load cycle. In contrast, the Fr =0.42 case does not exhibit obvious oscillations at the
trough, although nonlinear components in the frequency range from 3 f/f, to 5 f/f, are
still observable around the first trough following the main crest. A similar phenomenon is
also observed in the vertical distribution of the scattering force, as discussed in § 4.1.

2.1.2. Directional waves
Various directional wave spreading patterns were successfully generated in the DUT tests
(Ding et al. 2025). The tests examined bi-directional waves, which consisted of two
crossing wave groups with identical wave amplitudes and peak periods intersecting at
the focus point. The crossing angles (£) between the two wave groups were set to 40°,
with each wave at +20° relative to the normal to the wave paddles, respectively. For multi-
directional waves, the Mitsuyasu-type spreading function cos®*(6/2) (Longuet-Higgins,
Cartwright & Smith 1963) was employed. The root-mean-square angle (o) was set to
approximately 30°, corresponding to s = 7.

Figure 4 shows the incoming wave spreading pattern at the focus point in the empty
tank: multi-directional waves form a hyperbolic pattern, while bi-directional waves create
an X-shaped pattern. Figure 4 also compares total wave forces as functions of frequency
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Figure 4. Wave spreading pattern in the empty tank at the focus location and corresponding wavelet analysis
of inline total wave forces on the cylinder (in red) for uni-, multi- and bi-directional waves (T, =1.64 s,
ne =0.15 m, d = 0.5 m) over normalised frequency and time for DUT experiments.

and time for waves with the same peak period and maximum surface elevation. Despite
differences in spreading types, the wave force time histories exhibit similar magnitudes
and patterns. Around 28.2 s, all wave forces show oscillations associated with secondary
load cycles, with nonlinear components occurring at higher frequencies (lighter colours
ranging from 3 f/f, to 5f/f, echoing the cases in figure 3). This indicates that the
secondary load cycle is observed not only in the uni-directional wave regime, most of the
experimentally tested conditions, but also under physically realistic sea states with various
types of directional spreading.

2.2. Numerical method

In this study, we use OpenFOAM, a computational fluid dynamics (CFD) model governed
by the Navier—Stokes equations, to simulate wave—cylinder interactions, aiming to provide
the wave fields and pressure fields that are necessary for evaluating the vertical distribution
of the inline wave force. Previous research (Chen et al. 2014; Ghadirian & Bredmose 2019,
2020; Yan et al. 2020) has demonstrated OpenFOAM’s capability to effectively simulate
complex wave—cylinder interactions and predict nonlinear harmonics. We use the multi-
phase solver, inter Foam, which employs a volume-of-fluid method, to accurately track
the water—air interface, and the k — w SST model is applied for turbulence modelling.

2.2.1. Numerical wave tank set-up
The numerical wave tank, depicted in figure 5 within OpenFOAM, positions the cylinder
centrally. It incorporates relaxation zones at both inlet and outlet boundaries to manage
wave reflections effectively. The inlet boundary’s relaxation zone is designed to absorb
waves reflected off the cylinder, whereas the outlet boundary’s relaxation zone mitigates
incident wave reflections. Following the recommendations of Jacobsen, Fuhrman &
Fredsge (2012), both zones extend 1.5 x the wavelength of the incident waves, ensuring
near complete wave attenuation. This strategic configuration allows the total length of the
numerical wave tank to be significantly shorter than the physical wave tank and without
the influence of reflected waves. The wave tank’s total length is set to 7 x the wavelength
of the incident waves. Wave generation is achieved by specifying wave parameters at the
inlet boundary, utilising the waves2foam toolbox (Jacobsen et al. 2012).

Figure 5 also illustrates the mesh surrounding the cylinder in OpenFOAM. Chen et al.
(2014) carried out a comprehensive series of mesh convergence tests to identify the optimal
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Figure 5. Top view of the numerical wave tank set-up and mesh configuration in OpenFOAM.

mesh size for accurately simulating wave—cylinder interactions. We employ the same
specifications for the outermost layer of mesh cells, with horizontal mesh sizes Ax and Ay
set to L /140, and vertical mesh size Az to A/8. Here, Ax and Ay are the horizontal mesh
dimensions and Az is the vertical mesh dimension, as depicted in figure 5. The parameter
L represents the incident wavelength, and A denotes the incident wave amplitude. In this
study, we further refine the mesh by reducing the horizontal width Ax of the innermost
layer around the cylinder to 0.2 x the thickness of the outermost layer. This adjustment
is crucial for capturing complex and localised wave behaviours with good accuracy, such
as the steep gradient of wave run-up on the cylinder and the secondary load cycle. In
addition, the numerical wave tank in Chen et al. (2014) exploited lateral symmetry and
modelled only half of the domain along the tank centreline to reduce computational cost.
In the present study, the entire domain is retained (figure 5) so that any asymmetries that
may arise under severe wave conditions are fully captured.

2.2.2. Validations
This section validates our numerical model using experiments conducted at DUT. In our
simulations, we replicate the DUT test conditions by maintaining the same scale and
dimensions for the cylinder (R = 0.125 m) and water depth (d = 0.5 m for this validation).
Our model effectively captures the nonlinear evolution observed in steep wave groups
propagating along the wave tank, which is a phenomenon corroborated by Lo & Mei
(1985) and Baldock, Swan & Taylor (1996). To ensure fidelity to experimental conditions,
we first performed an empty wave tank test in the CFD model (without the cylinder) to
verify that the initial wave conditions closely match those generated in the experiments.
Figure 6 compares CFD simulations with experimental measurements of the free-
surface elevation at the focus point (also the cylinder centre). The test wave has a peak
period of 7, = 1.64 s and a main crest amplitude of 7, = 0.14 m, resulting in k,n. = 0.28,
kpd =0.99 and k,R =0.25, which indicate steep wave conditions. Overall, the CFD
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Figure 6. Comparisons of CFD results with DUT experimental measurement showing time histories of
elevation (the free-surface elevation at the focus point in an empty wave tank) and force (the total inline force
on the cylinder).

results show good agreement with the experimental data. Although minor discrepancies
appear between 11 and 12 s, the main crest and its subsequent trough, which are critical to
the secondary load cycle, are well captured. Moreover, the total inline wave force predicted
by CFD aligns with experimental results, with both displaying a distinct oscillation around
13 s associated with the secondary load cycle under steep wave conditions.

Figure 7 provides a zoomed-in comparison from 12.5 to 14 s during the main crest’s
passage. Both the incident free-surface elevations and the total inline force exhibit
excellent local agreement between CFD simulations and experiments. The secondary load
cycle, indicated by the nonlinear force components, is accurately reproduced by the CFD
model. Additionally, the pressure data used to calculate the vertical distributions of the
inline force are validated in figure 7. Unlike the total force, which is an integrated result,
point pressure measurements present a more refined challenge due to their sensitivity
and the complexity involved in their prediction. Three points are compared: P1 is at
the cylinder’s front stagnation point, with Z =0, where Z indicates the relative height
from the still water level, while P2 and P3 are at 0.1 m below the still water level
and positioned 100° and 140° from the frontal stagnation point, respectively. The two
underwater point pressures show good agreement between CFD results and experimental
data. A small local oscillation around 13 s is even captured by the CFD model at P2
and P3. Although CFD slightly overestimates the P1 peak value, the duration of the
crest corresponding to the wave run-up interaction time is well predicted by the CFD
model.

In summary, the CFD model described in § 2.2.1 accurately reproduces wave—cylinder
interactions while preserving key nonlinearities. These validations establish the reliability
of our subsequent analyses and discussions.

3. Secondary load cycle analysis

In continuation of our previous work, the example case presented in this section is
conducted at the same scale as the KHL experimental tests and the numerical set-up
described in Tang et al. (2024). Uni-directional focused wave groups are used for all the
following investigations. The focused wave group in this section features a maximum free-
surface elevation measured at the focus point (1) of 0.41 m, a peak wave period (T},) of
2.52 s, a water depth of 1.8 m and a peak wavenumber associated with the peak wave
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Figure 7. (a) Set-up of point pressure probes on the cylinder’s surface, where MSL refers to mean sea level.
(b) Zoomed-in comparisons of CFD results with DUT experimental data showing time histories of elevation
(the free-surface elevation at the focus point in an empty tank), force (the total inline force on the cylinder), P1
(the point pressure at the cylinder’s front stagnation point, with Z =0, where Z indicates the relative height
from the still water level), P2 (the point pressure at 0.1 m below the still water level and positioned 100° from
the frontal stagnation point) and P3 (the point pressure at 0.1 m below the still water level and positioned 140°
from the frontal stagnation point).

period (kp) of 0.73 m~!. These parameters result in a local wave steepness measured at
the focus point (k,7.) of 0.30 and a cylinder slenderness (k, R) of 0.15.

3.1. Inline force per unit vertical length

The inline force per unit vertical length is derived from the circumferential integration of
local point hydrodynamic pressure, aligned with the inline direction. This is visualised in
a contour plot against time and along the cylinder’s height Z in figure 8, where Z =0
corresponds to the still water level, and Z < 0 signifies submersion. Notably, a positive
value of the force per unit vertical length signifies a force direction that aligns with the
incident wave’s propagation direction, whereas a negative value denotes a force direction
opposing the wave’s approach (this approach of the force direction definition will be
applied to all the results in this research).

Between 12 and 14 s, coinciding with the crest and trough of the total force, the contour
plot of the inline force per length reveals a positive region when the force peaks and a
negative region during the trough, delineated by a distinct boundary. After 14 s, the total
force tends to the main crest, corresponding to pronounced magnitudes in the inline force
per length prior to 15 s. The secondary load cycle is apparent in the total force trace near
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Figure 8. Contour plot of inline force per unit vertical length against vertical level relative to still water level

and time, with overlaying time histories of total force (black line). Critical time points a (15.30 s), b (15.45 s)
and ¢ (15.60 s) are highlighted.
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Figure 9. Time histories of free-surface elevations at the cylinder’s front and rear stagnation points during
wave—cylinder interactions, alongside time histories of undisturbed free-surface elevation at the planned
cylinder centre measured in an empty tank.

15.5 s. In the contour plot of the inline force per length, a notable negative ‘chamber’ forms
beneath the positive region at Z = 0.2 m, approximately at 15 s, indicating the onset of the
secondary load cycle. At point a, marked at 15.30 s on the total force—time history curve,
a shift towards a positive tendency begins. Contrasting with the period between 12 and
14 s, which exhibits a distinct boundary, a positive region, named a ‘positive insertion’,
transiently inserts into the negative zone as a minor crest appears in the trough of the total
force, succeeded by a pronounced negative region around Z = —0.2 m. Here, the “positive
insertion’ indicates the peak of the oscillation associated with the secondary load cycle,
while the subsequent significant negative area represents the quasi-impulsive force at the
trough of the total force—time history curve, as discussed in our previous study (Tang et al.
2024). Additionally, two pivotal points are identified as point b and point ¢ at 15.45 and
15.60 s, respectively.

Free-surface elevations at three locations along the central line in the direction of wave
propagation around the cylinder are shown in figure 9. Elevation time histories are taken
at the front stagnation point of the cylinder, the undisturbed wave at the planned centre
point of the cylinder in an empty tank (i.e. the free-surface elevation at the focus point),
and the rear stagnation point. Notably, the front stagnation point exhibits a significantly
higher peak crest in its free-surface elevation, highlighting substantial wave run-up at the
cylinder’s front when compared with undisturbed waves. Meanwhile, at the rear stagnation
point, despite the cylinder’s presence, the peak free-surface elevation marginally exceeds
that of the undisturbed waves, attributed to wave diffraction.

1021 A24-10


https://doi.org/10.1017/jfm.2025.10738

https://doi.org/10.1017/jfm.2025.10738 Published online by Cambridge University Press

Journal of Fluid Mechanics

Critical time points a, b and c, identified in figure 8, are also marked in figure 9. These
correspond to: the intersection of front and rear stagnation point elevations at point a
(15.30 s); the intersection of the front stagnation point elevation with the undisturbed
wave elevation at point b (15.45 s); and the trough of the front stagnation point elevation
at point ¢ (15.60 s), which coincides with the quasi-impulsive force observed from the rear
of the cylinder in figure 8. At point ¢, the notable wave set-down in front of the cylinder
potentially amplifies the negative force, offering insights into the occurrence of the quasi-
impulsive force. However, the free-surface elevations at points a and » do not match the
timings of the emergence of the oscillation or the negative ‘chamber’ beneath the positive
region, nor the peak of the oscillation or the ‘positive insertion’. Therefore, a detailed
discussion on the three-dimensional wave field surrounding the cylinder is warranted in
subsequent sections to fully comprehend the nonlinear inline force phenomena.

3.2. Scattering force per unit vertical length

The scattering pressure is calculated by subtracting the baseline pressure (measured in the
absence of the cylinder but with the same incident wave group) from the total pressure
recorded when the cylinder is present. To achieve this, point pressure measurements are
collected from the surface of a cylinder within the CFD simulation. Correspondingly,
point pressure is also measured at the same location in an empty wave tank, to capture
the pressure contributions from incident waves alone. The difference between these
two measurements yields the scattering pressure, which represents the pressure changes
attributable solely to the cylinder’s interaction with the waves. Employing these scattering
pressures, we can obtain the scattering force per unit vertical length (hereafter, SFL), as
shown in figure 10. Following a similar principle for deriving the scattering pressure, the
scattering wave field, also presented in figure 10, is obtained by subtracting the free-surface
elevation measured in the empty tank from that measured during the cylinder’s interaction
with the wave. This approach enables a detailed examination of how the presence of the
cylinder influences the wave forces and the wave profiles in its vicinity.

Figure 10 illustrates the SFL, highlighting three critical points: a (15.30 s), marking
the onset of the secondary load cycle (corresponding to the negative ‘chamber’ in the
SFL); b (15.45 s), located at the peak of the oscillation associated with the secondary
load cycle (denoted as the ‘positive insertion’ in the SFL); and ¢ (15.60 s), pinpointing the
quasi-impulsive force at the trough in the total force—time history (leading to a significant
negative region in the SFL). These critical points are marked on the curve representing the
total force, alongside scattering wave free-surface elevations measured at both the front
and rear stagnation points of the cylinder. The alignment of total force curves with the SFL
over time histories reveals that the SFL mirrors the distribution of positive and negative
regions found in the total inline force per unit vertical length, as depicted in figure 8.
Notably, in the SFL, the ‘positive insertion’ not only occurs concurrently but is also
more distinctly observable and exhibits a significantly greater magnitude than seen in the
total inline force per unit vertical length. This observation underscores that the ‘positive
insertion’ is primarily driven by scattering forces. Moreover, although the pronounced
negative region following the ‘positive insertion’ in the SFL displays a relatively lower
magnitude compared with the total inline force per unit vertical length, approximately
—530 N m~! versus —700 N m~! at 15.6 s, it still dominates this phenomenon.

The scattering wave field around the cylinder at time points a (15.30 s), b (15.45 s) and
¢ (15.60 s) is depicted in figure 10. A supplementary movie of the full evolution from 12
to 18 s (Movie 1) is available at https://doi.org/10.1017/jfm.2025.10738. At 15.30 s, a wave
run-up is observed at the cylinder’s front, aligned with the direction of the incident wave,
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Figure 10. Contour plot of inline SFL against vertical level relative to still water level and time, with overlaying
time histories of total force (black line). Also depicted are the scattering wave free-surface elevations at the
cylinder’s front stagnation point (red dashed line) and the rear stagnation point (purple dash-dot line). The
scattering wave field around the cylinder is shown at three time points: (@) 15.30 s, (b) 15.45 s and (c) 15.60 s.
(Colour bar in the scattering wave field: scattering elevation (m).)

and this run-up is in a set-down phase, as indicated by the scattering wave free-surface
elevation time histories in figure 10. Conversely, at the cylinder’s rear, the wave set-down
is evident on both shoulders, while a ridge-type wave run-up occurs at the rear stagnation
point.

Figure 11 illustrates the distributions of SFL on the front and rear halves of the cylinder,
where the overall SFL depicted in figure 10 constitutes the sum of these distributions.
Specifically, figure 11(a) shows that wave run-up corresponds to positive force, while
wave set-down induces negative force. Conversely, in figure 11(b), wave run-up produces
a negative force and wave set-down aligns with a positive force. At 15.30 s, the front side
distribution shows a positive value around the free surface, corresponding to the frontal
wave run-up and contributing a positive force in the direction of wave propagation. On
the rear side, positive values near the free surface are also observed. Although the wave
run-up at the rear stagnation point, contrary to the frontal wave run-up that contributes
a positive force, tends to generate a negative force, the suction due to the wave set-down
occurring on the rear shoulders exerts force in the positive direction. This finding aligns
well with observations by Ghadirian & Bredmose (2020) regarding a strong suction effect
at the cylinder’s rear side. This combination of run-up and suction results in a positive
SFL near the free surface on the rear side, as shown in figure 11(b).

However, the negative ‘chamber’ beneath the positive region in the SFL is not directly
evident from the scattering wave profile at 15.30 s. By comparing the SFL distribution
from 12 to 14 s in figure 10, we can infer that the negative region is a natural evolution
following the wave crest’s passage, with the total force transitioning from positive to
negative around 15 s. The ‘chamber’ appearance in the SFL is due to the emergence of
a positive region near the free surface, leading to the ‘positive insertion’. This presence
mitigates the rate of decrease in the total force’s tendency towards the negative trough,
even reversing it towards a positive direction at 15.30 s, thereby initiating the secondary
load cycle’s oscillation.
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Figure 11. Contour plot of scattering inline force per unit vertical length against vertical level relative to still
water level and time, showcasing (a) the front side and (b) the rear side distributions.

From 15.30 to 15.45 s, the wave run-up at the front of the cylinder continues to set-down,
yet remains above the average free-surface level. Consequently, the front side distribution
of SFL, depicted in figure 11(a), exhibits a positive value of approximately 50 N m~! near
the free surface. In contrast, the rear side distribution, shown in figure 11(b) at 15.45 s near
the free surface, reaches over 210 N m~!, significantly influencing the “positive insertion’
observed in the overall SFL in figure 10. This dominance of the ‘positive insertion’ by
the rear side’s force is mirrored in the scattering wave field at 15.45 s. Similar to the
observations at 15.30 s, the positive forces at this time are attributed to the suction effects
of the wave set-down on both rear shoulders of the cylinder. Notably, the depth of the
lowest set-down has deepened to —0.13 m at 15.45 s from —0.11 m at 15.30 s, indicating a
progression in the wave set-down phenomenon. These same features were first described
by Grue et al. (1993).

Sheikh & Swan (2005) identified a scattering wave field linked to water motion around a
cylinder. The presence of the cylinder disturbs the water’s surface, with one part producing
the run-up and set-down, known as the type-I scattering wave, and another part, termed
the type-II wave, increasing elevations along both sides. This type-II wave disturbance
eventually forms a distinct mound on the rear face, which then propagates around the
cylinder’s surface toward the upstream side before apparently being released from the
cylinder.

At 15.60 s, a type-II scattering wave emerges from behind the cylinder. At this time,
the wave run-up at the cylinder’s front has set-down to its lowest point, as evidenced
by the scattering wave free-surface elevation at the front stagnation point. This set-down
contributes to the generation of negative forces, as depicted in the front distribution of
SFL shown in figure 11(a). Concurrently, the wave set-down previously observed on
the rear shoulder has vanished by 15.60 s, leaving behind only the wave run-up at the
cylinder’s rear. This run-up also results in negative forces, as illustrated in the backside
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Figure 12. Contour plot of scattering pressure against cylinder height and azimuth at time point a (15.30 s),
showcasing (A—f) the front side and (A-r) the rear side, at time point b (15.45 s) showcasing (B—f) the front
side and (B-r) the rear side and at time point ¢ (15.60 s) showcasing (C—f) the front side and (C-r) the rear
side.

distribution of SFL in figure 11(b). The combined effects of the front and rear side
distributions lead to a pronounced negative region, culminating in a quasi-impulsive force
at the trough in the total force curve. The elevation differences between the frontal wave
set-down and the backward wave run-up are distinctly captured in the respective front
and backside distributions of the SFL, underscoring the dynamic interplay of forces at
work.

3.3. Azimuthal scattering pressure

To calculate the SFL in § 3.2, the scattering pressure, which represents the pressure
changes attributable solely to the cylinder’s interaction with the waves, is used.
Figure 12 presents the azimuthal distribution of scattering pressure, corresponding to
the SFL shown in figure 10. These figures highlight critical points on the cylinder
surface where significant scattering pressure is induced by wave scattering around the
cylinder.

In figure 12, the front and rear sides of the cylinder are presented separately. On the
front side, the front stagnation point is defined as 0° azimuth. Moving counterclockwise,
the azimuth reaches —90° at one cylinder shoulder and 90° at the opposite shoulder.
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Conversely, on the rear side, the rear stagnation point is set at 0° azimuth, with the azimuth
increasing clockwise from —90° at one shoulder to 90° at the other.

Figures 12(A—f) and 12(A-r) show the azimuthal scattering pressure at time point a
(15.30 s). The free-surface elevations of the wave interacting with the cylinder around
its circumference and the undisturbed wave elevation in an empty tank at the same
locations are also presented alongside the contour plot of the scattering pressure. At
15.30 s, the main crest peak has passed the cylinder location, and the main crest of the
focused wave is moving past the cylinder, as observed from the undisturbed wave at the
cylinder centre in figure 9. Consequently, the azimuthal undisturbed wave elevation at
the front stagnation point is at the lowest water surface level, and as one moves around
the cylinder circumference to the rear stagnation point, the water surface level gradually
increases, reaching the highest level at the rear stagnation point. In the presence of the
cylinder, due to wave scattering from wave—cylinder interactions, significant wave run-up
is observed on the front side, with the highest run-up at the stagnation point. The largest
discrepancies between the wave run-up and the undisturbed wave elevation result in the
greatest positive scattering pressure around the azimuth of 0° near the undisturbed water
level, corresponding to the positive SFL region above the naturally evolved negative SFL
region in figure 11(a). On the rear side, pronounced wave set-down symmetrically occurs
at azimuths of —40° and 40°, inducing significant negative scattering pressure regions
around the water’s surface, over the naturally evolved positive scattering pressure regions
underwater due to the arrival of the main crest.

From 15.30 to 15.45 s, the wave run-up has receded, and no significant positive
scattering pressure is observed in figure 12(B—f); most regions are close to zero
scattering pressure. The wave set-down on the rear side in figure 12(B—r) continues
to evolve and extends from around —40° and 40° to the front shoulders of the
cylinder, continuing to induce significant negative scattering pressure at the wave surface
level, corresponding to the peak value of ‘positive insertion’ around Z=0 m in
figure 11(b).

At 15.60 s, as the main crest has not completely passed the cylinder, the undisturbed
wave elevations still follow the same pattern as at time points a and b. However,
wave elevations with the cylinder’s presence change significantly. Wave set-down can
be observed on the front side in figure 12(C—f), inducing a large negative scattering
pressure region. In figure 12(C-r), wave run-up occurs and induces a positive scattering
pressure region from —60° to 60°, while around the shoulders of the cylinder, the negative
regions are influenced by the wave set-down from the front side.

3.4. Spectral decomposition

Building on the foundation laid by Stokes-type harmonic series theory (Stokes 1847),
which applies to both harmonic and wave steepness in the free-surface elevation and
horizontal wave forces of focused wave groups, Zang et al. (2006) and Chen et al. (2018)
effectively isolated higher harmonics in their studies using a two-phase-decomposition
method. This approach facilitated the distinct separation of odd and even harmonics within
time histories. To enhance the separation of harmonics, Fitzgerald et al. (2014) introduced
a four-phase method. This advanced method allows better separation using two additional
force signals by implementing further phase shifts in the linear paddle signal, requiring
four distinct runs for each test case. Each run generates wave groups with the same paddle
signal, albeit with the phase of each linear Fourier component shifted by 0°, 90°, 180°
and 270°, yielding four respective force time histories: Fp, Fog, Fig0 and F»79. Here,
we adopt the four-phase method to extract individual high-order harmonic Stokes-type
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Figure 13. Contour plot of inline SFL against vertical level relative to still water level and time, with overlaying
time histories of individual harmonic forces (black line) decomposed by spectral decomposition for (a) the
linear harmonic, (b) the second harmonic, (c) the third harmonic, (d) the fourth harmonic, (e) the fifth harmonic
and (f) beyond the fifth harmonic.

components. The required linear combinations of these four phase-shifted runs are as
follows:

1
Z(Fo — Ff — Fiso+ Ff)) = (Afu + A% f31 + A% f5)) cos ¢ + A° fs5 cos Sg + O (A7)

)

1

Z(FO — Foo + Fig0 — F270) = (A® fo2 + A* fa2) cos 2¢ + O (A%)
) =

1
Z(FO + Ff — Figo — Ff, (A3f33 + A5f53) cos 3¢ + O(A7)

1

Z(Fo + Foo + Figo + Fr70) = A% f0 + A* fao + A* fas cos dp + O (A°). 3.1)

In this sequence, the combinations are devised to isolate the linear (first harmonic), the
second harmonic sum, the third harmonic sum and ultimately, both the second harmonic
difference and the fourth harmonic sum terms separated by frequency filtering. Here, A
is the linear wave amplitude, the coefficients f;,,, conceptually represent the wave-to-
force transfer functions. Additionally, the expression ¢ = wt + ¢ specifies the phase of
the linear component of the incident wave, with a predetermined phase shift ¢g.

In this study, we use the phase-decomposition method to examine the vertical
distribution of scattering forces, scattering wave elevations and scattering pressure. The
spectral decomposition results of the SFL are illustrated in figure 13, aligned with the
time histories of each corresponding ordered harmonic inline force, depicted in black
lines. Our discussion is confined purely to water-induced hydrodynamic forces, with a
specific focus on the secondary load cycles. Therefore, we only consider the SFL below
the still water level in figure 13. Notably, all crests of force curves align within the positive
region in the SFL, and troughs fall within the negative region. This pattern indicates
that the time histories of individual high-order forces exhibit an excellent correlation
with their respective high-order harmonic SFLs. Such alignment underscores the spectral
decomposition method’s effectiveness in segregating the vertical distributions of SFL.
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Figure 14. Beyond the fifth harmonic SFL, comparing CFD simulation results, refined CFD simulations with
a finer mesh and the impact force model results for rear-side quasi-impulsive force from Tang et al. (2024).

As the harmonic order increases from the first to the fifth, the oscillations between
positive and negative regions in the SFL contour plots become progressively more rapid,
while the magnitudes of these harmonic SFL. components generally decrease. Despite this
decreasing trend, the nonlinear contributions remain substantial compared with the linear
SFL, underscoring their significance within the overall SFL.

Remarkably, harmonics beyond the fifth order display significant magnitudes, with
negative regions (—224 N m~! in figure 13f) surpassing the linear SFL (—178 N m~!
in figure 13a), indicative of a pronounced negative region in the SFL and a violent
quasi-impulsive force at the trough in the total force curve aforementioned in figure 10.
The distinct positive region around 15.45 s, aligning with the ‘positive insertion’, is also
notable.

To ensure that these significant high-order harmonics are physical rather than
artefacts from mesh resolution, figure 14 cross-checks the beyond-fifth-order forces using
simulations with two mesh resolutions: one with a local horizontal mesh size of L /700
(based on convergence tests in Chen et al. (2014)) and another with a finer mesh size of
L /1050. The forces associated with the ‘positive insertion’ and the violent quasi-impulsive
force from the rear side agree well between the two resolutions. This consistency confirms
mesh convergence and rules out the possibility that these results are caused by numerical
noise or insufficient mesh refinement. Consequently, a significant push-and-pull force is
verified as being physically induced by the secondary load cycle.

This push-and-pull force depicted in figure 14 is hypothesised to be initiated by the
suction caused by wave set-down at the cylinder’s rear side. The pull force echoes findings
from our previous work (Tang et al. 2024), where it was identified as a quasi-impulsive
force originating from the rear side. To further explore this similarity, an impact model
was utilised to predict this force, highlighting its resemblance to frontal impact forces. We
applied a commonly used breaking wave model proposed by Goda (1966)

C
F1(t) = AnyCs p RS (1 - E’)' 3.2)

Following the methodology in Tang et al. (2024), for this wave condition, we select a
wave curling factor 4 = 0.4, a peak impact crest height 1, = 0.19 m, an impact coefficient
C,s = 7 and a wave celerity ¢ = 1.14 m - s~!. The backward impact force calculated by this
model, as shown in figure 14, accurately captures the duration of the impact. Although
the force magnitudes show discrepancies (likely because the coefficient Cy is empirically
derived from physical tests where the cylinder is not perfectly rigid as assumed in the CFD
model), the similarity between the pull force and typical frontal impact force is evident.
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Figure 15. Scattering wave field at time point a (15.30 s), illustrating (a) the linear harmonic, (b) the second
harmonic, (c¢) the third harmonic, (d) the fourth harmonic, (e) the fifth harmonic and (f) harmonics beyond the
fifth. (Colour bar: scattering elevation (m).)

This confirms that the pronounced negative region in the SFL indeed corresponds to a
backward quasi-impulsive impact phenomenon.

These push-and-pull forces play a crucial role in the trough oscillations of the total
force curve associated with the secondary load cycle. Nevertheless, the initiation of the
secondary load cycle, presumed to be triggered by the suction effect of wave set-down on
the cylinder’s rear side, is not directly discernible from the SFL beyond the fifth harmonics
alone. The subsequent scattering wave fields of each individual harmonic, as presented in
figures 15 and 16, provide further evidence on how these harmonics contribute to initiating
the secondary load cycle.

Figures 15, 16 and 17 depict the scattering wave field around the cylinder from the linear
components up to the fifth harmonics, as well as harmonics beyond the fifth at 15.30, 15.45
and 15.60 s, respectively. Supplementary movies of the harmonic-resolved free-surface
evolution from 12 to 18 s are available at https://doi.org/10.1017/jfm.2025.10738 (Movies
2-7 correspond to the linear harmonic, the second harmonic, the third harmonic, the fourth
harmonic, the fifth harmonic and harmonics beyond the fifth, respectively). As discussed
in § 3.2, the frontal wave run-up, even in its set-down phase at 15.30 s, combined with the
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Figure 16. Scattering wave field at time point b (15.45 s), illustrating (a) the linear harmonic, () the second
harmonic, (c¢) the third harmonic, (d) the fourth harmonic, (e) the fifth harmonic and (f) harmonics beyond the
fifth. (Colour bar: Scattering elevation (m).)

suction effect of wave set-down at the cylinder’s rear, contributes to the positive region
near the free surface in the SFL shown in figure 10. And this positive region in the SFL
is inferred to initiate the secondary load cycle. In figure 15, frontal wave run-up is evident
across all harmonics. However, the wave set-down at the cylinder’s rear, visible from the
linear through the fifth harmonics, evolves at different speeds for different harmonics. This
causes set-down regions in certain harmonics, such as the fourth and fifth, to drift away
from the cylinder. Collectively, these observations suggest that all harmonics play a part in
contributing to the positive SFL near the free surface, potentially initiating the secondary
load cycle.

By 15.45 s, as depicted in figure 16, different harmonics of scattering waves exhibit
distinct behaviours due to their varying evolution speeds. Despite expectations that
scattering waves provide positive inline forces around this moment, the second harmonic,
for instance, exhibits wave run-up at the cylinder’s rear and set-down at the front, while
wave set-down regions at the rear have disappeared. This pattern suggests negative inline
forces from the second harmonic, consistent with the second harmonic SFL shown
in figure 13(b). Conversely, harmonics beyond third, identified as contributors to the
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Figure 17. Scattering wave field at time point ¢ (15.60 s), illustrating (a) the linear harmonic, (b) the second
harmonic, (c¢) the third harmonic, (d) the fourth harmonic, (e) the fifth harmonic and (f) harmonics beyond the
fifth. (Colour bar: scattering elevation (m).)

‘positive insertion’, still exhibit wave set-down regions at the cylinder’s rear, suggesting the
potential for generating positive inline forces. Nonetheless, since the peak of the ‘positive
insertion’ occurs beneath the free surface, the free-surface profiles of harmonics beyond
fifth appear spiky and indicate localised splashing phenomena rather than significantly
contributing to positive inline forces.

Figure 17 at 15.60 s shows that, despite discrepancies in evolution speed, all harmonics
exhibit a wave set-down at the cylinder’s front and wave run-ups at the rear simultaneously.
At this time point, the collective effect of different harmonics results in negative inline
forces, leading to a pronounced negative region in the SFL and a quasi-impulsive force at
the trough in the total force curve.

Decomposed scattering pressures in the azimuthal distribution at time points a (15.30 s),
b (15.45 s) and ¢ (15.60 s) are shown in figure 18. Due to the symmetric nature of the
azimuthal scattering pressure observed in figure 12, the decomposed azimuthal scattering
pressure is only presented for one half of the cylinder circumference. The front stagnation
point is at 0° and the azimuthal angle increases counterclockwise to 180° at the rear
stagnation point.
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Figure 18. Contour plot of scattering pressure against cylinder height and azimuth at (@) time point a (15.30
s), (b) time point b (15.45 s) and (c) time point ¢ (15.60 s) decomposed by spectral decomposition for different
harmonics.

At 15.30 s, the initiation of the secondary load cycle is linked to the negative SFL region
induced by the suction effect of the wave set-down from the rear side of the cylinder.
In figure 18(a), it is evident that the negative scattering pressure from the rear of the
cylinder is primarily contributed by the third, fourth and fifth harmonics around the rear
stagnation point, ranging from 160° to 180°. Additionally, in the linear harmonic, negative
scattering pressure is observed around the shoulder of the cylinder, ranging from 60° to
120°. The positive scattering pressure at the front stagnation point in the linear harmonic
also contributes to the initiation of the secondary load cycle.

By 15.45 s, harmonics beyond the fifth harmonic in figure 18(b) begin to contribute to
the positive SFL, with very large negative scattering pressure from the rear side ranging
from 120° to 180° around Z = 0 m, and positive pressure from the front side ranging from
0° to 100° around Z = —0.15 m, together inducing the ‘positive insertion’.

At 15.60 s, all harmonics in figure 18(c) show negative scattering pressure on the front
side and positive scattering pressure on the rear side, resulting in a subsequently very large
negative SFL. The harmonics beyond the fifth harmonic exhibit the largest magnitudes of
positive and negative pressure.

From the azimuthal scattering pressure, it is evident that each nonlinear individual
harmonic from the second to the fifth order has a pronounced value relative to the linear
harmonic. The harmonics beyond the fifth harmonic demonstrate the most significant
magnitudes of both positive and negative scattering pressure. Particularly, as the azimuthal
scattering pressure field in figure 18(b) transitions to that in figure 18(c), local areas around
Z = —0.15 m on the front side and around Z = 0 m on the rear side experience a rapid shift
from large positive/negative pressure to large negative/positive pressure. In long-term steep
sea states, with multiple occurrences of secondary load cycles, higher-order harmonics
may significantly impact the cumulative fatigue damage of local structural elements.
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Figure 19. Contour plot of inline SFL against vertical level relative to still water level and time, with overlaying
time histories of total force (black line) for the incident waves (k, =0.73 m—1)and cylinder slenderness k, R =
0.15 with varying amplitudes: (a) n. =0.24 m, k,n. =0.18, (b) n. =0.34 m, k,n. =0.25, (¢) n. =0.41 m,
kpne =0.30 and (d) ne =0.47 m, k1. = 0.34. Critical time points a (15.30 s), b (15.45 s) and ¢ (15.60 s) are
highlighted.

4. Influence of wave steepness

This section compares test cases with varying main crest wave amplitudes to investigate
how different incident wave amplitudes influence the nonlinear wave forces and the
secondary load cycle.

4.1. Scattering force per unit vertical length

Figure 19 presents the SFL alongside the total force—time histories for incident waves
with a constant wavenumber (k, = 0.73 m~! corresponding to kpR =0.15) but varying
main crest wave amplitudes. As observed, with increasing wave steepness, kpn., the
main crest of the total force curves in figures 19(a) and 19(b) transitions from relatively
smooth to markedly sharper, indicating a nonlinear impulsive force at the cylinder’s front.
This effect is mirrored in the SFL, where the vertical distribution of the positive region
ascends higher around 15 s. Specifically, for k,n. =0.18 and 0.25, the positive region’s
maximum height Z reaches approximately 0.36 and 0.44 m, respectively. Conversely, for
kpne =10.30 and 0.34, the positive region extends over 0.5 m, signifying elevated wave
run-up at the cylinder front. Notably, at the highest wave steepness (k,n. =0.34), the
peak positive region in the SFL around 15 s reaches 429 N/m, significantly exceeding the
values observed at lower steepness levels (197 N m_; when k,n. =0.18, 272 N m_; when
kpne=0.25 and 354 N m_; when k,n. = 0.30).

The first trough following the main crest in the total force curve depicted in figure 19(a)
does not exhibit significant nonlinearity for k,R =0.15, k,n. =0.18. However, as
kpne increases to 0.25 in figure 19(b), changes in the curve’s slope reveal noticeable
nonlinearity. Between points a and b, the slope is visibly reduced, yet the force tendency
does not shift to positive, unlike in the scenarios with k, 7. = 0.30 and 0.34. In the SFL,
the emergence of the ‘positive insertion’ begins at k7. = 0.18 but does not fully develop,
leading to subtle slope variations in the total force curve. When k7. reaches 0.25, the
‘positive insertion’ becomes more pronounced, aligning with the observed slope change
in the total force curve, indicative of the secondary load cycle. As k1, increases to 0.30,
the peak of the “positive insertion’ rises to 2904 N m~!, approaching the magnitude of the
positive region induced by impulsive wave forces at the front. Yet, when k7. escalates to

0.34, the peak value diminishes to 211 N m~ L.
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Figure 20. Scattering wave field at time point a (15.30 s) for the incident waves (k, =0.73 m~!) and cylinder
slenderness k, R = 0.15 with varying amplitudes: (@) n. = 0.24 m, kpn. = 0.18, (b) n. = 0.34 m, k,n. =0.25,
(¢) ne =0.41 m, kpn, =0.30 and (d) ne = 0.47 m, k,n. = 0.34. (Colour bar: scattering elevation (m).)

Supplementary movies showing the scattering free-surface evolution from 12 to 18 s
are available at https://doi.org/10.1017/jfm.2025.10738 (Movies 8, 9, 1 and 10 correspond
to 1. of 0.24, 0.34, 0.41 and 0.47 m, respectively). At times a (15.30 s) and b (15.45 s),
the wave set-down at the cylinder’s rear side, contributing to suctions that likely initiate
the secondary load cycle as discussed in § 3.2, evolves differently across wave steepness
levels, as shown in figures 20 and 21. At k, R =0.15, k,n. = 0.18, the wave set-down
is minimal, correlating with an underdeveloped ‘positive insertion’. As k. increases
to 0.30, the wave set-down’s evolution is more pronounced. However, the evolution of the
wave set-down at the rear shoulders of the cylinder when k7. = 0.34 is not as complete as
kpne = 0.30, potentially due to rapid over-washing from wave run-up observed in figures
20(d) and 21(d). Physical experiments at KHL show this phenomenon (figure 22), where
high wave celerity at steep waves (k7. = 0.40) results in rapid wave run-up, propagating
surrounding the cylinder surface and impacting wave set-down evolution.

For the troughs in the total force curve, the scenarios with k1. = 0.18 and 0.25 feature
smooth curves. Conversely, the cases with k1. = 0.30 and 0.34 exhibit sharp troughs akin
to the crests, suggesting quasi-impulsive forces from the cylinder’s rear, as discussed in § 3.
With increasing k7., the magnitude of the negative area following the ‘positive insertion’
in the SFL escalates. This trend aligns with observations from the scattering fields depicted
in figure 23, With an increase in k,n., the wave set-down in front of the cylinder
deepens, with the lowest level of free surface transitioning from -0.086 m at k,n. =0.18
to —0.2 m at k1. = 0.34. Simultaneously, the wave run-up at the cylinder’s rear elevates,
with the highest level of free surface rising from 0.069 m at k,n.=0.18 to 0.11 m at
kpne =0.34. This dynamics collectively enhances the magnitude of the negative areas in
the SFL. Specifically, for k,n. = 0.34, the deepest negative value reaches —600 N m~!,

surpassing the —531 Nm~! observed with kpne =0.30. Notably, across all four cases,
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Figure 21. Scattering wave field at time point b (15.45 s) for the incident waves (k, = 0.73 m~!) and cylinder
slenderness k, R = 0.15 with varying amplitudes: (@) n. =0.24 m, kyn. =0.18, (b) n. = 0.34 m, kpn. = 0.25,
(¢) ne =0.41 m, kpn, = 0.30 and (d) ne = 0.47 m, k,n. = 0.34. (Colour bar: scattering elevation (n1).)

(b)

Wave direction

Figure 22. High-speed camera images from the KHL experimental tests showing interactions between the
cylinder and incident waves with (a) k, R =0.15, kpn. = 0.3 and (b) k, R =0.15, kpn. = 0.4.

the peak magnitudes of negative areas downstream significantly exceed those of the
upstream positive areas, a phenomenon not easily discerned from the total force analysis.

4.2. Spectral decomposition

Spectral decomposition obtains each individual harmonic SFL below the still water
level, from the linear to the fifth harmonics, across cases with varying wave steepness
(kpne =0.25, 0.30 and 0.34), as depicted in figure 24. It is observed that the peak values
of both positive and negative areas in the SFL from the linear to the fourth harmonics
generally remain consistent, particularly for cases with k,n. = 0.30 and 0.34. Despite an
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(b)

™

Wave direction

(d)

Figure 23. Scattering wave field at time point ¢ (15.60 s) for the incident waves (k, =0.73 m~!) and cylinder
slenderness k, R = 0.15 with varying amplitudes: (@) n. = 0.24 m, kpn. = 0.18, (b) n. = 0.34 m, k,n. =0.25,
(¢) ne =0.41 m, kpn, =0.30 and (d) ne = 0.47 m, k,n. = 0.34. (Colour bar: scattering elevation (m).)

increase in wave steepness, the impact on the SFL from the linear to the fourth harmonics
is minimal. The fifth harmonic SFL, however, exhibits a slight increase with the wave
steepness. Overall, the sensitivity of the first five harmonic SFLs to changes in wave
steepness is minimal under the still water level.

In contrast, the SFL beyond the fifth harmonic, presented in figure 25, exhibits a marked
variation with changing k., directly correlating to the occurrence of oscillations and
quasi-impulsive forces at the trough of the total force curves in figure 19, associated
with the secondary load cycle. Among the three SFLs with differing k7., the largest
positive area, associated with the ‘positive insertion’, occurs at k7. = 0.30, aligning with
observations in §4.1. The k,n. =0.34 case exhibits the highest magnitude of negative
area, accompanied by pronounced oscillations in the beyond fifth harmonic SFL, as shown
in figure 21(c). Table 1 lists the peak values of critical areas from figure 25, including
their occurrence times and heights. Notably, as k7. increases, the ‘positive insertion’
peak values occur at deeper locations, from —0.04 to —0.12 m, with subsequent negative
areas also appearing deeper. A significant positive area emerges after approximately 15.7 s,
with relatively minor peak values for k,n. = 0.25 and 0.30 compared with the ‘positive
insertion’, but the k7. = 0.34 case shows an even greater peak value.

Figure 26 highlights a considerable wave run-up evolving between 15.75 and 15.95 s
after the passage of the main crest for k,n. =0.30 and 0.34, potentially driven by the
wave diffraction of the wave run-up in the quasi-impulse phenomenon at the cylinder rear
side (i.e. type-II wave from the rear side), as evidenced in figures 23(c) and 23(d), leading
to a pronounced increase in positive SFL. Correspondingly, scattering waves beyond the
fifth harmonics at 15.75 s in figure 27 illustrate a wave run-up at the cylinder front. The
kpne =0.34 scenario showcases a larger wave run-up, indicating a significant positive
area from a double oscillation, albeit with a substantially higher peak value in the beyond
fifth harmonic SFL. Given that the peak value appears below the still water level at
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Figure 24. Contour plot of inline SFL against vertical level relative to still water level and time, obtained
through spectral decomposition for the linear, second, third, fourth and fifth harmonics across cases
with cylinder slenderness k, R =0.15 and varying wave steepness: (a) kpne =0.25, (b) kpn. =0.30 and
(c) kpne=0.34.

Results from figure 25

kpne Areas in beyond fifth harmonic SFL Peak value Occurrence time Height Z
0.25 ‘positive insertion’ 71N m™! 1545s —0.04 m
Subsequent negative area —136 Nm—1 15.59s —0.12m

The second pronounced positive area 53 Nm—1 1579 s —012m

0.30 ‘positive insertion’ 209 Nm—1 1547 s —0.08 m
Subsequent negative area —224 N m—1 1557 s —02m

The second pronounced positive area 86 N m—1 1579 s —02m

0.34 ‘positive insertion’ 114 Nm—1 1544 s —0.12m
Subsequent negative area —277TN m—1 15.63 s —0.28 m

The second pronounced positive area 135 Nm—1 15.75 s —0.12m

Table 1. Peak values of beyond fifth harmonic SFL across different wave steepness for cylinder slenderness
(kpR) of 0.15.

—0.12 m, it remains unseen from the scattering wave surface. This analysis, based on the
spectral decomposed vertical distribution of scattering forces, brings to light a previously
unobserved phenomenon: very high frequency (over fifth harmonic and order) oscillations
could potentially influence structural fatigue. We note that such a loading component
would be difficult to accurately record in a physical experiment because of the required
structural stiffness.

5. Conclusions

This study provides a comprehensive examination of the nonlinear forces arising from
severe wave interactions with vertical cylinder structures, integral to the design of
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Figure 25. Contour plot of inline SFL against vertical level relative to still water level and time, obtained
through spectral decomposition for the harmonics beyond fifth across cases with cylinder slenderness k, R =
0.15 and varying wave steepness: (a) kpn. = 0.25, (b) kpn. = 0.30 and (¢) kpn. = 0.34.

the column and foundation for offshore wind turbines. Our detailed experimental tests
highlight that the secondary load cycle occurs commonly in wave—cylinder interactions.
The scattering wave field offers a direct view of the wave scattering regime associated
with the secondary load cycle. In addition, the vertical distributions of the scattering
force and azimuthal scattering pressure field quantitatively reveal the wave—cylinder
interaction beneath the water’s free-surface level, an insight uniquely achievable through
CFD simulations. Moreover, by applying a phase-based harmonic separation method,
we have successfully isolated and analysed the harmonic components of the inline
scattering force’s vertical distribution, scattering pressure and the scattering wave field.
This approach has allowed us to accurately delineate individual harmonics and shed light
on the complex mechanisms of nonlinear forces related to the secondary load cycle.

From the experimental mapping, cases exhibiting the secondary load cycles cluster
towards larger wave steepness. On a Froude-number plot, all cases with Fr < 0.3 showed
no secondary load cycle, whereas all cases with Fr > (.45 exhibited an obvious secondary
load cycle; in the transitional band 0.3 < F'r < 0.45, secondary load cycle occurrence was
mixed. These observations were made under non-breaking focused waves. In addition to
the uni-directional waves, secondary load cycles were further observed for directional seas,
which are closer in form to large waves in the field.

We first examine the vertical distribution of inline and scattering forces, synchronised
with the scattering wave field and scattering pressure field at key time points. These time
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(b)

Figure 26. Scattering wave field at 15.75 s for the incident waves with (a) k, R = 0.15, kpn. = 0.30, (b) k, R =
0.15, kpn. =0.34, and at 15.95 s for the incident waves with (c¢) kR =0.15, kpn. =0.30, (d) kR =0.15,
kpne = 0.34. (Colour bar: scattering elevation (m1).)

Figure 27. Scattering wave field beyond the fifth harmonic at 15.75 s for the incident waves with (a)
kpR=0.15, kpne =0.30, (b) kp R =0.15, kpn. = 0.34. (Colour bar: scattering elevation (m).)

points highlight the onset of the oscillation associated with the secondary load cycle,
the peak of the oscillation corresponding to the ‘positive insertion’ in the vertical force
distribution, and the quasi-impulsive force at the trough corresponding to the subsequent
significant negative area in the vertical force distribution. The insights gained from both
above and below the water’s free-surface level, along with the clear separation of each
individual harmonic, indicate that the third, fourth and fifth harmonics play pivotal roles
in providing a suction effect from the cylinder’s rear side, contributing to the onset and
evolution of the secondary load cycle. Higher harmonics beyond the fifth further exhibit
rapid and significant value oscillations associated with a type-1I wave from the rear side
of the cylinder, inducing the ‘positive insertion’ and the backward quasi-impulsive force.
These insights reveal the paramount importance of nonlinear forces within the secondary
load cycle framework, offering novel perspectives on its mechanisms.
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Notably, our analysis demonstrates that in certain wave regimes, nonlinear scattering
forces exert a greater magnitude within the vertical force distribution than their linear
counterparts. Additionally, the decomposed azimuthal scattering pressure indicates that
higher-order harmonics beyond the fifth have potential to impact the cumulative fatigue
damage of local structural elements due to large, rapid pressure shifts. These unique
insights underscore the critical need to give greater consideration to the secondary load
cycle in the design and assessment of offshore structures.

Building on this foundation, we further extend our exploration by comparing test
cases across various wave steepness levels to assess their impact on nonlinear wave
forces and the secondary load cycle. These new findings indicate that as wave steepness
increases, high-order oscillations of the local scattering force become more pronounced
and significant, potentially leading to a greater influence on structural fatigue damage. This
observation, particularly regarding the pronounced discrepancies observed in harmonics
beyond the fifth, underscores the intricate relationship between wave steepness and
wave—cylinder interactions.

Together, these new findings enrich our understanding of the secondary load cycle and
its governing mechanisms. By clarifying the significant role of nonlinear forces and the
influence of wave steepness on these interactions, this research will contribute to the
resilience and safety of offshore infrastructures in extreme maritime environments.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10738.
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