
1J. Plasma Phys. (2025), vol. 91, E139 © The Author(s), 2025. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited. doi:10.1017/S0022377825000418

Enhanced collisional losses from a magnetic
mirror using the Lenard–Bernstein

collision operator

Maxwell H. Rosen1 , W. Sengupta1 , I. Ochs1, F.I. Parra1,2 and
G.W. Hammett2

1Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA
2Princeton Plasma Physics Laboratory, Princeton, NJ 08540, USA
Corresponding author: Maxwell H. Rosen, mhrosen@pppl.gov

(Received 20 November 2024; revision received 21 March 2025; accepted 24 March 2025)

Collisions are crucial in governing particle and energy transport in plasmas confined in a
magnetic mirror trap. Modern gyrokinetic codes model transport in magnetic mirrors, but
some use approximate model collision operators. This study focuses on a Pastukhov-style
method of images calculation of particle and energy confinement times using a Lenard–
Bernstein model collision operator. Prior work on parallel particle and energy balances
used a different Fokker–Planck plasma collision operator. The method must be extended
in non-trivial ways to study the Lenard–Bernstein operator. To assess the effectiveness of
our approach, we compare our results with a modern finite element solver. Our findings
reveal that the particle confinement time scales as a exp(a2) using the Lenard–Bernstein
operator, in contrast to the more accurate scaling that the Coulomb collision operator
would yield, a2 exp(a2), where a2 is approximately proportional to the ambipolar poten-
tial. We propose that codes solving for collisional losses in magnetic mirrors using the
Lenard–Bernstein or Dougherty collision operator scale their collision frequency of any
electrostatically confined species. This study illuminates the collision operator’s intricate
role in the Pastukhov-style method of images calculation of collisional confinement.

Keywords: Fusion Plasma, Plasma Confinement, Plasma Simulation

1. Introduction

Magnetic mirrors, or adiabatic traps, present a compelling avenue for plasma
confinement through the deflection of particles away from high-field regions.
In recent years, the resurgence of interest in mirrors as a fusion concept has
been led by groundbreaking experiments at the collisional Gas Dynamic Trap
Experiment (GDT) at the Budker Institute in Novosibirsk, Russia, which achieved
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unprecedented transient electron temperatures of 900 eV, demonstrating the viability
of mirrors in fusion endeavours (Bagryansky et al. 2015).

One of the most remarkable results from the GDT experiment is the stabili-
sation of axisymmetric mirrors against the well-understood interchange instability
(Post & Rosenbluth 1966). Vortex confinement, for instance, has been shown to
stabilise the m = 1 flute interchange mode, and finite Larmor radius effects can sta-
bilise m � 2 (Beklemishev et al. 2010; Bagryansky et al. 2011; Beklemishev 2017;
Ryutov et al. 2011; White, Hassam & Brizard 2018). Moreover, recent advance-
ments in superconducting magnet technology and electron cyclotron heating (ECH)
have motivated new experiments to extend the results of GDT (Fowler, Moir &
Simonen 2017). One such experiment is the Wisconsin high-field axisymmetric mir-
ror experiment (WHAM) in Madison, Wisconsin (Egedal et al. 2022; Endrizzi
et al. 2023). Their new endeavour, using high-temperature superconducting (HTS)
REBCO tapes and neutral beam injection (NBI), will investigate the magnetohydro-
dynamic (MHD) and kinetic stability of the axisymmetric mirror, extended into the
collisionless regime. With these new experimental techniques and MHD stability in
sight, questions arise related to particle and energy confinement in these new stable
axisymmetric mirror configurations.

Parallel losses play a critical role in the confinement of particles and energy,
which occur when particles scatter due to collisions across the loss cone (Berk &
Chen 1988). Pastukhov (1974) laid the foundation for calculating parallel losses
in a magnetic mirror with the method of images approach that this study uses.
Pastukhov’s insight showed that the steady-state balance among a low-energy source,
Fokker–Planck collision operator and high-energy image sinks could be simpli-
fied by transforming the problem into an analogous Poisson equation, then solved
using standard techniques from electromagnetism (Jackson 1999). Building on
Pastukhov’s insight, Najmabadi, Conn & Cohen (1984) extended the analysis by
simplifying Pastukhov’s variable transformations, reducing the number of approx-
imations made, and including a higher-order correction, yielding a more refined
solution. Recent advancements have been made by Ochs, Munirov & Fisch (2023),
who included relativistic effects to Najmabadi’s approach.

Although parallel dynamics is often the fastest time scale phenomenon in
magnetised plasmas, many researchers are interested in studying the next-order per-
pendicular transport due to micro-stability and turbulence, which find their best
answers in computer simulations that include collisions. With the recent investiga-
tions using the Gkeyll code to study high-field magnetic mirrors using the Dougherty
collision operator (Francisquez et al. 2023), it is essential to understand the effect of
this approximate collision operator on parallel collisional losses before it is extended
to study perpendicular transport.

To understand the key details and trade-offs between different collision operators,
we must first study a few important approximations in this context. A comprehen-
sive description of two-particle collisions within the framework of a Fokker–Planck
operator involves the so-called ‘Rosenbluth potentials’ (Rosenbluth et al. 1957).
This fully fledged operator, while widely studied and implemented, poses computa-
tional and analytical challenges (Taitano et al. 2015). In some cases, approximations
become a pragmatic necessity to render the problem computationally tractable. In
this context, one widely used approximate collision operator is the Lenard–Bernstein
(LBO) / Dougherty operator: a simple operator that captures the advection and dif-
fusion responses from small-angle two-body collisions (Lenard & Bernstein 1958;
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Dougherty 1964). The difference between the LBO and Dougherty collision oper-
ators is that the LBO has zero parallel streaming fluid flow velocity, while the
Dougherty operator includes the parallel fluid flow velocity in calculating the drag,
useful for cases where momentum conservation is important.

Novel work was performed using the Gkeyll code in projecting the Dougherty
operator onto a discontinuous Galerkin framework with enhanced multi-species
collisions for gyrokinetic and Vlasov–Maxwell simulations (Hakim et al. 2020;
Francisquez et al. 2020, 2022). Owing to the Dougherty operator having eigen-
functions of Hermite polynomials, the GX code uses this simple collision operator
(Mandell et al. 2022). The GENE-X code can simulate x-point geometry toka-
mak configurations, with their most rigorous collision operator being Dougherty
(Ulbl et al. 2022, 2023). Other examples of plasma kinetic / gyrokinetic codes
that have implemented such collision operators (at least as an option) include Ye
et al. (2024), Celebre, Servidio & Valentini (2023), Hoffmann, Frei & Ricci (2023),
Frei, Hoffmann & Ricci (2022), Perrone, Jorge & Ricci (2020), Loureiro et al.
(2016), Grandgirard et al. (2016), Pezzi, Camporeale & Valentini (2016), Parker &
Dellar (2015) and Hatch et al. (2013). An LBO / Dougherty collision operator
with the appropriate definitions satisfies many properties of a good collision oper-
ator, such as conservation of density, momentum and energy (Francisquez et al.
2020). The most significant defect in this model is that the collision frequency is
independent of velocity, leading to inaccurate results in the tail of the distribution
function. Furthermore, the operator’s isotropic diffusion coefficient makes no dis-
tinction between pitch-angle scattering and energy diffusion (Hirshman & Sigmar
1976). Some of the shortcomings of the Lenard–Bernstein / Dougherty operator are
described by Knyazev, Dorf & Krasheninnikov (2023).

In this study, we build upon the method of images approach developed by
Najmabadi et al. (1984), but with a focus on the LBO, since we consider a sys-
tem with zero parallel fluid flow. Since the ambipolar potential of magnetic mirrors
shifts the loss cone towards higher-energy particles, we must investigate the validity
of the LBO’s collisionality approximation at high energies. Following the method of
images approach from Najmabadi et al. (1984), results show that the particle con-
finement time scales as a exp(a2) using the LBO, in contrast to the scaling a2 exp(a2)
that more accurate Coulomb collision operator yields, where a2 is proportional to
the ambipolar potential. In addition, the average energy of lost particles is also modi-
fied. The error between the average energy of lost particles and our numerical solver
is comparable to that in the study of Najmabadi et al. (1984). It is critical that a code
using the LBO or Dougherty collision operator matches particle loss rates compared
with an experiment to predict the correct ambipolar potential. Suggestions are made
to reduce the collision frequency to match particle loss rates compared with the
results of Najmabadi et al. (1984).

It is of interest to mention and discuss an alternative to the method of images
approach, as the historical journey towards accurate ambipolar estimates encom-
passes diverse approaches. Chernin & Rosenbluth (1978) introduced an alternative
derivation that approximates the loss cone as a square in velocity space, yielding
insights using a linearised Fokker–Planck equation and the associated variational
principle. Cohen et al. (1978) showed that the techniques of Chernin & Rosenbluth
(1978) lacked robustness compared with Pastukhov’s technique, and higher-order
approximations were needed. Subsequent work by Catto & Bernstein (1981), fol-
lowed by Catto & Li (1985) and Fyfe et al. (1981), refined this approach by
eliminating the square loss cone approximation and extending the approach to
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higher order. Catto’s studies circumvent the need for an accurate solution for
the distribution function by transforming the problem into parallel and perpen-
dicular coordinates to the loss cone and then employing variational techniques to
yield improved confinement times. Khudik (1997) demonstrated the comparable
accuracy of fourth-order extensions of Catto’s methods to Najmabadi’s approach.
Furthermore, these variational methods generalise to arbitrary mirror ratios and,
therefore, would be more suitable for application to toroidal confinement devices,
which have order unity mirror ratios. Extending these models to the LBO would
not be trivial because these methods are finely tuned to the Coulomb operator.
Although these methods have many good properties, we are ultimately interested in
large mirror ratios, and the flexibility of variational techniques is unnecessary.

Subsequent sections will use the method of images approach to explore how the
LBO collision operator changes the parallel losses of a magnetic mirror. In § 2, the
problem is presented and solved systematically for the confinement time and energy
loss rate. A correction factor is evaluated numerically in § 3. Results are compared
with the numerical code presented in § 3. This approach’s validity and applicability
to mirror simulation codes are discussed in § 4. Suggestions are made for modifying
the collision frequency to obtain the appropriate ambipolar potential. Finally, we
conclude in § 5.

2. Method of images solution

Our solution follows closely with the methods of Najmabadi et al. (1984) with
some key differences. In a single-particle picture of a magnetic mirror, the parallel
dynamics of particle losses depend on whether they possess sufficient energy to
overcome the confining forces. These forces arise from gradients in the magnetic
field magnitude ( �∇ B) and an electrostatic ambipolar potential (zseφ), where e is
the elementary charge and zs is the charge number of species s. When particles
have enough energy to overcome the �∇B forces in the absence of an ambipolar
potential, they reside within a specific region in phase space known as the ‘loss cone’.
The introduction of an ambipolar potential alters the minimum energy required
for escape, thereby transforming the loss cone into a ‘loss hyperboloid’. The loss
hyperboloid can be expressed as

1 − μ2 = 1
R

(
1 − v2

0

v2

)
. (2.1)

Here, μ = cos θ = v||/v is the cosine of the pitch angle, v is the total velocity |�v|,
v|| =

(
�v · �B

)
/B is the component of the velocity parallel to the magnetic field, R is

the ratio of the maximum magnetic field to the minimum magnetic field Bmax/Bmin

and v0 is the loss velocity corresponding to the ambipolar potential (msv
2
0/2 = zseφ),

where ms is mass. The goal is to recreate this boundary, where the distribution
function is null, with image sources and sinks. A model of the loss hyperboloid,
source and image sinks in the problem is shown in figure 1. A source is placed at
a low velocity, in a steady-state balance with the collision operator, while sinks are
placed in the loss region and fs is extended. With these sinks, the equation for fs

near the loss hyperboloid is

L( fs) + Q(v, μ) = 0. (2.2)
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Journal of Plasma Physics 5

FIGURE 1. Loss boundary in velocity space for electrostatically confined particles in a magnetic
mirror field. Imposed on the figure is a model depiction of the low energy source. The dotted
green line represents the sinks used to solve for the distribution function. The blue line is the
loss hyperboloid described in (2.1), and the red dashed line is the loss cone without an ambipolar
potential.

Here, L( fs) is a collision operator, which acts on the distribution function fs of
species s, and Q(v, μ) is an image sink of particles placed inside the loss region,
where fs is extended. The sink Q will be chosen to make fs = 0 at the loss hyper-
boloid’s vertex defined by (2.1) as well as have the contour of fs = 0 match the radii
of curvature of the loss hyperboloid at the vertex. Thus, the boundary conditions on
fs are defined as

fs(v, μ)|v=v0,μ=±1 = 0,
∂v fs

∂μ fs

∣∣∣∣
v=v0,μ=±1

= 1
Rv0

. (2.3)

For small v, we assume that fs is a Maxwellian,

fs(v, μ)|v→0 → ns

π 3/2v2
th,s

exp(− v2

v2
th,s

), (2.4)

where ns is number density, vth,s = √
2Ts/ms , Ts is temperature in units of energy and

v is the total magnitude of the velocity |�v|. Assuming a square-well approximation
for the magnetic field and considering that the maximum magnetic field occurs at
the mirror throat, the LBO has the form (Lenard & Bernstein 1958)

L( fs) = νsL BO
∂

∂ �v ·
(

�v fs + v2
th,s

2
∂ fs

∂ �v
)

, (2.5)

where νsL BO is the collision frequency used in the LBO, �v is a velocity vector and
vth,s is the thermal velocity. Generality is left in defining the collision frequency νsL BO

because it may be chosen to match certain important physical quantities and rates in
its specific implementation (Francisquez et al. 2022). For instance, one may choose
the collision frequency for the LBO to match thermal equilibration rates, Braginskii
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heat fluxes or the Spitzer resistivity. Later in this work, we will investigate choosing
the LBO’s collision frequency to match ambipolar collisional losses from a magnetic
mirror field. To simplify the analysis, we adopt the following normalisations and
definitions:

v̄ = v

vth,s
; Fs = v3

th,s fs

ns
. (2.6)

Our normalisation v̄ is what Pastukhov (1974) and others refer to as x . We restate
the LBO in normalised spherical coordinates to improve clarity,

L(Fs) = 1
v̄2

∂

∂v̄
v̄3

(
Fs + 1

2v̄

∂ Fs

∂v̄

)
+ Zs

2v̄2

∂

∂μ

(
1 − μ2

) ∂ Fs

∂μ
. (2.7)

We introduce a factor Zs into the diffusion term to correct for the LBO’s approx-
imation of treating the pitch-angle scattering and energy diffusion terms equally.
Although for the LBO Zs = 1, an opportunity is left for future work to correct this
defect by modifying the coefficient Zs . The factor of 2 in the pitch-angle scattering in
(2.7) comes from the 1/2 in the v2

th,s term in (2.5). An essential distinction between
(2.7) and the collision operators proposed by Pastukhov (1974) and Najmabadi et al.
(1984) lies in the factors of v̄. The collision operators in their work retain the veloc-
ity dependence within the Rosenbluth potentials. Below are the collision operators
from Pastukhov (1974) and Najmabadi et al. (1984),

LNajmabadi(Fs) = 1
v̄2

∂

∂v̄

(
Fs + 1

2v̄

∂ Fs

∂v̄

)
+ 1

v̄3

(
Zs,N − 1

4v̄2

)
∂

∂μ

(
1 − μ2

) ∂ Fs

∂μ
,

(2.8)

LPastukhov(Fs) = 1
v̄2

∂

∂v̄

(
Fs + 1

2v̄

∂ Fs

∂v̄

)
+ 1

v̄3

∂

∂μ

(
1 − μ2

) ∂ Fs

∂μ
, (2.9)

where Zs,N is the Z that is used by Najmabadi et al. (1984) and N stands for
Najmabadi et al. (1984), detailed in Appendix B. To compare, the collision operator
used by Pastukhov (1974) treats the factor in (2.8)

(
Zs,N − 1/(4v̄2)

)
as one, although

Cohen et al. (1986) addresses this limitation in treating the multi-species collisions.
Comparing (2.8) and (2.7), we see that the drag and parallel diffusion are missing
the 1/v̄3 scaling of the more accurate collision operators. However, the pitch angle
scattering term is not as bad, scaling as 1/v̄2 for the LBO and as 1/v̄3 for the more
accurate operators.

To simplify the solution, we define a general form for the image problem. We
impose that the image sinks start at velocity a, are placed solely outside the loss
hyperboloid (a > v̄0 where v̄2

0 = zseφ/Ts) and are isolated to lie along μ = ±1 to
preserve the symmetry of the problem. As described in figure 1,

Q(v̄, μ) = −δ(1 − μ2)

4π
H(v̄ − a)q(v̄), (2.10)

where H() is the Heaviside step function and δ() is the Dirac delta function.
Pastukhov (1974) assume a form for the sinks q(v̄) = q0 exp(−v̄2), but the later

work by Najmabadi et al. (1984) shows that defining q(v̄) = q0 exp(−v̄2)(Za −
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1/4v̄2)/v̄3 makes the resultant equations simpler to solve with fewer approxima-
tions. Najmabadi et al. (1984) finds the form of q(v̄) by leaving its functional form
free during the problem set-up, then choosing a specific form at a later stage to
facilitate a solution. Thus, we choose to leave the form of q(v̄) arbitrary in (2.10)
and will define its form at a later stage.

Without approximation, we can use (2.7) to rewrite (2.2) in the following way:

2ev̄2

v̄

∂

∂ev̄2 v̄3 ∂

∂ev̄2

(
ev̄2

Fs

)
+ Zs

2v̄2

∂

∂μ

(
1 − μ2

) ∂ Fs

∂μ
+ Q(v̄, μ) = 0. (2.11)

The inverse chain rule is used to absorb factors of v̄ into the derivatives and we
also employ the identity Fs + (1/2v̄)∂v̄ Fs = (1/2v̄) exp (−v̄2)∂v̄(exp (v̄2)Fs). Let us
define here the variable transformation z(v̄) = exp (v̄2). We now make a critical
approximation: large changes in z cause only small changes in v̄2 = ln(z), making the
derivatives of powers of v̄ small. This justifies moving the v̄3 outside the derivative.
In more detail, the approximation we make says

3v̄2 Fs, v̄
∂ Fs

∂v̄
� v̄3 ∂ Fs

∂v̄
, v̄3 ∂

∂v̄

(
1
2v̄

∂ Fs

∂v̄

)
. (2.12)

This is valid since we are only interested in Fs near the loss cone at large veloc-
ities, where ∂ Fs/∂v̄ is large and v̄ � v̄3. To simplify further, we define g(v̄, μ) =
π 3/2 exp(v̄2)Fs(v̄, μ) to factor out the Maxwellian component of the solution. This
leads to the new form(

∂2

∂z2
+ Zs

4z2 ln(z)2

∂

∂μ

(
1 − μ2

) ∂

∂μ

)
gs(v̄, μ) + π 3/2

2z ln(z)
Q(v̄, μ) = 0. (2.13)

We aim to make the operator on g(v̄, μ) resemble a cylindrical Laplacian to
map this problem to a Poisson problem. For this reason, we must also perform a
transformation on the pitch angle scattering component. Consider a general vari-
able transform of the form ρ(v̄, μ) = h(v̄, μ)

√
1 − μ2. Assuming a large mirror

ratio R � 1, we may approximate that near the loss cone μ ≈ ±1. Thus, computing
∂ρ/∂μ, we neglect ∂h/∂μ, which would be multiplied by a term (1 − μ2), which
is small. From this, we find ∂μ ≈ −(μh2/ρ)∂ρ and (1 − μ2) = ρ2/h2. Under this
transformation, (1 − μ2)∂μ becomes −μρ∂ρ without any factors of h(v̄, μ).

Part of the elegance of this method is that we are not limited by the form of
h(v̄, μ), as long as z is only a function of v̄. For the purpose of an argument, con-
sider an arbitrary transformation z(v̄, μ). If ∂μz were non-zero, we would have to
use the chain rule and compute ∂μρ(z, μ) = ∂zρ ∂μz + ∂μρ, thus complicating the
procedure. From Najmabadi et al. (1984) and here, our variable transformation
z = exp(v̄2) means that ∂zρ ∂μz = 0, making this variable transformation simpler.
This insight is perhaps the most pivotal innovation of Najmabadi et al. (1984) com-
pared with the variable transformations presented by Pastukhov (1974). Pastukhov
(1974) uses a variable transformation z = exp(v̄2)μ/

√
2v̄2 and ρ = exp(v̄2)

√
1 − μ2,

where both variable transformations are functions of v̄ and μ. When ultimately
satisfying boundary conditions, this leads Pastukhov (1974) to do ‘a number of
straightforward but rather cumbersome algebraic transformations’. The complica-
tions arise due to the prefactors in front of the logarithm in their (17) having a
factor of v̄/μ, which comes from the μ/v̄ in their variable transformation for z. In
contrast, Najmabadi et al. (1984) use the variable transformations z = exp(v̄2) and
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ρ =√
2v̄2/(Za − 1/4v̄2) exp(v̄2) tan θ . Notice that, as we have pointed out above, the

variable transformation in z does not depend on μ. The equivalent solution is (23)
of Najmabadi et al. (1984), which is divided by a Maxwellian compared with (17)
of Pastukhov (1974). Equation (23) of Najmabadi et al. (1984) has a mere constant
before the logarithm, making satisfying boundary conditions much simpler.

By setting h(v̄, μ) to cancel any factor in front of the pitch-angle scattering
derivatives, it can be shown that the appropriate variable transformation is

ρ(v̄, μ) = 2z ln(z)√
Zs

√
1 − μ2

μ
= 2z ln(z)√

Zs

tan θ. (2.14)

As a result, the problem is in the form of a cylindrical Poisson equation,

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ
gs

)
+ ∂2gs

∂2z
= π 3/2

2z ln(z)

δ(1 − μ2)

4π
q(v̄)H(v̄ − a). (2.15)

We can now set the free function q(v̄) such that the equation takes an ad hoc,
easy-to-solve form,

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ
gs

)
+ ∂2gs

∂2z
= δ(ρ)

2πρ
4πq0 H(z − za). (2.16)

On the right-hand side of (2.16), q0 is equivalent to a constant linear charge density
and za = exp(a2). Although we choose q0 to be a constant for the sake of having
an easy-to-solve problem, it does mean we are sacrificing some detail in the ability
to match (2.1) perfectly; however, exact matching is not necessary because the dis-
tribution function, as well as losses, decay at higher energies and the majority of
particles are lost near the tip of the loss hyperboloid, so that is the region we are
most interested in matching. By matching (2.15) and (2.16), we show in Appendix A
that the appropriate connection between q(v̄) and q0 is

q(v̄) = q0 · 8√
π

μ2 Zs

z ln(z)
. (2.17)

With the new coordinates ρ and z, we transform boundary condition (2.4). In addi-
tion, the lower limit of z = 1 for v̄ = 0 is extended to z = 0 since z ≡ exp(v̄2) � 1 or
set z′ = exp(v̄2) − 1 = z(1 + O(exp(−v̄2))).

gs(ρ, z)|z=0 = 1. (2.18)

Equation (2.16) with boundary condition (2.18) is solved by Jackson (1999). The
equivalent problem in electricity and magnetism terms is having a conducting bound-
ary condition on the z = 0 plane held at potential gs = 1 and placing a wire of
constant linear charge density q0 on the z-axis, suspended above the z = 0 plane at
height z = za. The standard method of solving this problem is to use the method
of images to match the conducting boundary condition. To outline this approach,
we use the method of images for the equivalent Poisson problem after previously
using the method of images approach to place image sources and sinks in figure 1.
This layering of the method of images is why this approach is referred to as the
method of images solution for determining loss rates from a magnetic mirror. Only
requiring unmapping the equation through stated variable transformations, we find
the appropriate distribution function for a magnetic mirror as
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gs(ρ, z) = 1 − q0 ln

(
za + z +

√
ρ2 + (za + z)2

za − z +
√

ρ2 + (za − z)2

)
. (2.19)

Mapping this problem back to the magnetic mirror and using that z � 1 near the
loss hyperboloid, we can apply the boundary conditions assigned to this problem in
(2.3). Interestingly, this is the only part of the calculation in which information about
the magnetic field is used in the solution. We show in Appendix C that for a gen-
eral variable transformation z = exp(v̄2), ρ = ρ̄(v̄)z tan θ , where h(v̄, μ) = ρ̄(v̄)z/μ
mentioned earlier, we get

q0 =
(

ln
(

w + 1
w − 1

))−1

, (2.20)

w2 = 1 + ρ̄(v̄0)
2

2Rv̄2
0

= 1 + 2v̄2
0

Zs R
, (2.21)

where w = exp(a2 − v̄2
0). This can be inverted to give a2 = v̄2

0 + ln(w), which
determines the edge of the sink region, a, in terms of the tip of the loss region v0.

Najmabadi et al. (1984) adjust the strength of the sinks by examining the difference
between the flux of the true loss cone, (2.1), and the approximate loss cone, where
(2.19) equals zero. They account for this in their (41a) and (41b). Their instructions
are to evaluate (2.19) along the loss cone one zseφ/Ts above the tip of the loss cone
in the limit where R � 1. This means v̄2 = v2

0 + 1, μ = 1 and a ≈ v0, which leads to
z = exp(v2

0 + 1) and ρ = 0, meaning g(0, v2
0 + 1) ≈ 1 − q0 ln((e + 1)/(e − 1)) = 1 −

0.77q0. Thus, we modify q0 by subtracting 0.77, leading to a corrected definition of
q0. Najmabadi et al. (1984) determine this to be 0.84q0, but we have not replicated
the calculation used to determine their (41b),

q0 =
(

ln
(

w + 1
w − 1

)
− 0.77

)−1

. (2.22)

To calculate this system’s confinement time and energy loss rate, we integrate the
image sinks over all velocity space, considering the symmetry in gyro- and pitch-
angle,

1
nsνsL BO

dns

dt
= 2π

∫ ∞

0
v̄2dv̄

∫ 1

−1
dμQ(v̄, μ), (2.23)

3
2

1
νsL BO

1
ns Ts

dns Ts

dt
= 2π

∫ ∞

0
v̄4dv̄

∫ 1

−1
dμQ(v̄, μ). (2.24)

Although this appears to be a straightforward integral, there is a subtlety to handling
it worth mentioning. Equation (2.23) appears as if it is integrating over half of each
delta function on both sides, but it is, in fact, integrating two whole peaks of the
delta function across all of velocity space, so

∫ 1
−1 δ(1 − μ2)dμ = 1. Once we account

for this intricacy, we arrive at the following forms for confinement time and energy
loss rate:
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1
τc

= 1
ns

dns

dt
= −νsL BO2Zs

Erfc(a)

ln
(

w+1
w−1

)− 0.77
, (2.25)

1
Es

dEs

dt
= 1

ns Ts

d(ns Ts)

dt
= −νsL BO

4
3
√

π
Zs

e−a2
a + √

π

2 Erfc(a)

ln
(

w+1
w−1

)− 0.77
. (2.26)

Here, τc is the confinement time, Es = 3/2 ns Ts is total energy of the system,
Erfc() is the complementary error function, w = √

1 + 2zseφ/ (Ts Zs R) and a =√
zseφ/Ts + ln (w).
We proceed to calculate the energy of the particle, but due to collisions, zseφ/Ts ∼

(1/2) ln(mi/me) � 1. Furthermore, for R � zseφ/Ts Zs , ln(w) is small, giving a 
√
zseφ/Ts � 1. The asymptotic expansion for a large argument of the complemen-

tary error function is Erfc(x) ≈ exp(−x2)/(
√

πx) × (1 − 1/2x2 + 3/4x4 +O(1/x6)),
so τc scales as a exp(a2). The average energy of lost particles is found by evaluating
Es,loss = (dEs/dt)/(dns/dt),

Es,loss

Ts
= 1

2

(
1 + 2ae−a2

√
πErfc(a)

)
(2.27)

≈ a2 + 1 − 1
2a2

+O(1/a4). (2.28)

It is important to note that (2.25) and subsequent definitions are presented in their
un-normalised form. During the un-normalisation process, all quantities are stated
in terms of the temperature Ts of the species. This avoids confusion when using a
different normalisation procedure for the thermal velocity.

3. Numerical simulations and corrections to (2.20)

We compare our approximate expressions for the loss rates in magnetic mirrors to
results obtained using a code based on the work of Ochs et al. (2023). The code uses
the FEniCS DolfinX Python package to employ the finite element method (FEM)
with third-order continuous Galerkin discretisation to solve a general Fokker–Planck
model collision operator. The FEM code is meshed over the upper right quadrant
of v̄, θ space and has a low-energy source of the form v̄2 exp(−v̄2/v̄2

s0)θ
2(π/2 − θ)2.

1

Here, v̄ is normalised velocity and θ is pitch angle. The normalised thermal velocity
for the source is evaluated at v̄s0 = 0.2 to concentrate it at low energy. This source
form is chosen to go to zero on the boundaries smoothly (the precise form of the
source term has little effect on the results in the asymptotic limit zseφ/Te � 1). Zero-
flux boundary conditions are used at θ = 0, θ = π/2, v = 0 and v = vmax , the maximal
velocity extent in the problem. A resolution of 
θ = 
v̄ = 0.1 is chosen, with double
resolution near the source and along the loss boundary. The boundary condition on
the loss hyperboloid is Dirichlet ( fs = 0). The domain is extended

√
7 + zseφ/Ts past

the loss hyperboloid vertex. An example mesh is shown in figure 2 for demonstration.
An astute reader will notice that the slope of the loss hyperboloid boundary is not
vertical at v̄ = 1. At the tip of the loss hyperboloid, the code struggles to mesh

1There is a typo by Ochs et al. (2023), where they miss a negative sign in the exponent.
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FIGURE 2. An example mesh from the finite element model. Here, zseφ/Ts = 1 and R = 2 to
exaggerate the loss cone.

the boundary because it is purely vertical. A finite step in v̄ is taken and the loss
boundary is linearly interpolated from the tip of the loss hyperboloid to the first
point. This plot was done with a coarser resolution to see the grid. The final results
were done at higher resolution confirmed to be adequate with convergence studies.
The problem is solved directly using PETSc’s linear algebra solvers to find an LU
decomposition.

To compare our numerical results to prior computational work, we need to make
a key distinction between the collision operator used by our code in reproducing
the results from Najmabadi et al. (1984) and the operators used in previous work.
The results labelled ‘FEM Rosenbluth’ use a slightly modified version of the col-
lision operator in (2.8), whereas the code used by Cohen et al. (1978) and later
used by Najmabadi et al. (1984) and Fyfe et al. (1981) considers a multi-species
Fokker–Planck equation derived from nonlinear isotropic Rosenbluth potentials.
Naive implementation of (2.8) would violate the assumption that v̄ � 1 because
our domain also includes low velocities. The work by Cohen et al. (1978) avoided
this issue by implementing the full nonlinear Rosenbluth potentials. To address this
limitation, we approximate the parallel drag-diffusion frequency in (2.8) by using a
Padé approximation of the form 1/v̄3 → 1/(1 + v̄3), which asymptotically matches
the high- and low-velocity Rosenbluth limits. For the pitch angle scattering compo-
nent, we have a full calculation of the pitch angle scattering rate while considering
collisions on a Maxwellian background to keep the problem linear. We consider
two cases: a plasma with hydrogen ions and electrons, where either the ions or elec-
trons are electrostatically confined. In both cases, the thermal velocity of electrons is
much higher than the thermal velocity of the hydrogen. This results in the following
collision operator:

LCode(Fs) = 1
v̄2

∂

∂v̄

v̄2

1 + v̄3

(
v̄Fs + 1

2
∂ Fs

∂v̄

)
+ 1

v̄3
P(v)

∂

∂μ

(
1 − μ2

) ∂ Fs

∂μ
. (3.1)

For electrostatically confined electrons, P(v) = (1 +R(v))/2 (Zs,n = 1). For electro-
statically confined hydrogen ions, P(v) =R(v)/2 (Zs,n = 1/2). In these expressions,
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R(v) = 1/(
√

πv) exp(−v2) + (1 − 1/2v2)Erf(v) and Erf is the error function. In
contrast, the LBO model is implemented in the code without approximations as
(2.7).

To demonstrate convergence, we examine increasing the resolution and the
amount of the problem meshed beyond the tip of the loss hyperboloid for zseφ/Ts =
8 and R = 10. When doubling all resolutions, the resultant loss rate changes by
−0.492 % for the Dougherty operator and −1.099 % for the operator in (3.1). When
not changing 
θ = 
v̄ but quadrupling the resolution near the source and along
the loss hyperboloid, the loss rate changes by −0.493 % for the Dougherty operator
and −1.001 % for the operator in (3.1). When increasing the extents of the problem
from

√
7 + zseφ/Ts to

√
15 + zseφ/Ts , the loss rate changes by −0.06906 % for the

Dougherty operator and −0.06732 % for the operator in (3.1). Thus, the code con-
verges within 1 % variation for all collision operators, and this resolution is suitable
for this study.

In figure 3, the numerical code is validated by comparing the analytic results
presented by Pastukhov (1974) and Najmabadi et al. (1984) with corrections noticed
by Cohen et al. (1978), Najmabadi et al. (1984), (2.25) and (2.27), which in turn were
validated using other numerical methods. Results in figure 3 agree well with those
in many prior works (Najmabadi et al. 1984; Cohen et al. 1978; Fyfe et al. 1981).
The confinement time τc is normalised to collision frequency for generality. The
diamonds are the finite element method numerical results and the dashed lines are
the analytic approximations. Although figure 3 shows great agreement with prior
work, it has a fair agreement with (2.25). To improve agreement between the code
and (2.25), rather than calculating the flux correction coefficient by hand to be 0.77
in (2.22), we can calculate this number numerically. First, let us call this correction
coefficient c0. It can be chosen to minimise error with the finite element code.
Equations (2.20), (2.25) and (2.26) are modified to be the following:

1
τc

= 1
ns

dns

dt
= −νsL BO2Zs

Erfc(a)

ln
(

w+1
w−1

)− c0
, (3.2)

1
Es

dEs

dt
= 1

ns Ts

d(ns Ts)

dt
= −νsL BO

4
3
√

π
Zs

e−a2
a + √

π

2 Erfc(a)

ln
(

w+1
w−1

)− c0
. (3.3)

In figure 4, we show various curves that describe the error between (3.2) and the
finite element code for various values of c0. This figure shows us that the value of c0

that minimises error with the finite element code depends on the ambipolar potential
and mirror ratio under investigation, although it seems to asymptote to a single value
for a sufficiently large mirror ratio and ambipolar potential. In table 1, we list the
appropriate correction factor to use for various values of ambipolar potential and
mirror ratio that minimise error with the loss rate from the finite element code.

Figure 3 is reconstructed in figure 5 using the correction coefficient c0 in (3.2) and
(3.3). In figure 5(c), a choice to not plot the results from Pastukhov (1974) is made
due to their close agreements with the results from Najmabadi et al. (1984).

In comparing the dependence of the loss rate with ambipolar potential, figure 5(a)
shows a key difference between the Fokker–Planck form Coulomb operator and the
LBO. Using a constant mirror ratio of R = 10, the LBO alters the confinement
time compared with the Fokker–Planck collision operator used in other studies
(Khudik 1997; Najmabadi et al. 1984; Pastukhov 1974; Catto & Bernstein 1981;
Catto & Li 1985). Particularly, the confinement time of Najmabadi et al. (1984)
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Confinement time variations with am-
bipolar potential for R = 10 for electrostati-
cally confined electrons (Zs,N = 1).

Confinement time variations with mirror
ratio for zseφ/Ts = 3 for electrostatically
confined electrons (Zs,N = 1).

Variation of average energy of lost
electrons (Zs,N = 1) with ambipolar
potential for R = 10.

(a) (b)

(c)

FIGURE 3. Normalised particle confinement time τcνsL BO from (2.25) and its dependence on
ambipolar potential and mirror ratio of the LBO versus Pastukhov (1974), with the correction
noticed by Cohen et al. (1978) and Najmabadi et al. (1984). The y-axis is confinement time,
normalised to the collision frequency with Zs = 1 for electrostatically confined electrons.

scales as a2ea2
, but (3.2) scales as aea2

. This scaling difference makes sense because
the LBO overestimates the collision frequency and ignores the collisionality drop-off
with velocity.

Figures 5(a) and 5(b) compare the variation with potential and mirror ratio of
the loss ratios calculated using different collision operators. We see that the LBO
model underestimates the confinement time at all potentials and mirror ratios. Even
so, the percentage variation of loss rate upon modification of the mirror ratio has
similar trends in the finite element code when comparing the LBO model with
(3.1). Furthermore, validating the code, each numerical line matches their respective
analytic curves well. Figure 5(b) leads us to conclude that there is no significant
difference in the dependence of loss rate on mirror ratio when considering LBO
collisions.

Figure 5(c) shows that our (2.27) and the numerical approach exhibit similar
trends, but are very different in magnitude. It is important to note that figure 5(c)
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R
zseφ/Ts 5 10 15 20 25 30 35 40 45 50
1 1.305 1.310 1.302 1.295 1.288 1.283 1.278 1.274 1.271 1.268
2 1.066 1.094 1.093 1.087 1.080 1.075 1.069 1.065 1.060 1.057
3 1.004 1.066 1.078 1.080 1.077 1.074 1.070 1.066 1.062 1.059
4 0.967 1.057 1.084 1.093 1.095 1.095 1.093 1.091 1.088 1.085
5 0.933 1.044 1.083 1.099 1.107 1.109 1.110 1.109 1.108 1.106
6 0.900 1.027 1.077 1.100 1.112 1.118 1.121 1.122 1.121 1.120
7 0.869 1.007 1.065 1.093 1.109 1.117 1.122 1.125 1.126 1.126
8 0.840 0.987 1.052 1.085 1.104 1.115 1.122 1.126 1.128 1.129
9 0.813 0.968 1.038 1.077 1.099 1.113 1.122 1.128 1.132 1.134
10 0.963 0.948 1.023 1.065 1.090 1.106 1.117 1.124 1.129 1.132

TABLE 1. A table of optimal correction factors c0 for various values of zseφ/Ts and R to
minimise error with the finite element code with Zs = 1.

Confinement time errors with ambipolar
potential for R = 10.

Confinement time errors with mirror
ratio for zseφ/Ts = 3.

(a) (b)

FIGURE 4. Fractional error in the confinement estimates between the numeric code and analytic
approximation for electrostatically confined electrons. The legend goes from the top curve to the
bottom curve in even steps in the value of c0.

subtracts the linear component zseφ/Ts to highlight the differences between the dif-
ferent results. Comparing results to prior work, our numerical method produces
roughly a 20 % difference with respect to the analytic results from Najmabadi et al.
(1984), investigated in Appendix B. Although errors of 20 % are large, Najmabadi
et al. (1984) noticed similar errors, so these results are comparable to prior work.
Interestingly, while the analytic results of Najmabadi et al. (1984) seem to have a
constant 20 % error, the discrepancy between (2.27) and the numerical results grows
with zseφ/Ts . With the LBO at c0 = 0.77, similar errors of 20 % are observed at low
values of zseφ/Ts ; at large values, the error grows to nearly 50 % at zseφ/Ts = 8.
The LBO model has an overall higher average loss energy than the model used by
Najmabadi et al. (1984). This means the losses from LBO collisions are more spread
around the loss hyperboloid. In contrast, a more accurate collision operator would
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Confinement time variations with am-
bipolar potential for R = 10, c0 = 1.04,
Zs,N = 1.

Confinement time variations with mirror
ratio for zseφ/Ts = 3 and c0 = 1.07,

Variation of average energy of lost
particles with ambipolar potential for R =
10, c0 = 1.04, Zs,N = 1.

(a) (b)

(c)

Zs,N = 1.

FIGURE 5. Comparison particle confinement time and average loss energy, and its dependence
on ambipolar potential and mirror ratio of the LBO versus Pastukhov (1974) and Najmabadi
et al. (1984). The y-axis is confinement time or average loss energy subtracted by zseφ/Ts ,
normalised to the collision frequency with Zs = 1 for electrostatically confined electrons.

have losses more concentrated around the tip of the loss hyperboloid. It is worth
noting that the correction factor c0 does not modify (2.27).

4. Discussion

We suggest that codes using an LBO / Dougherty collision operator improve their
results by scaling the collision frequency used to obtain the correct mirror confine-
ment time and ambipolar potential. First, one must obtain an accurate estimate of
the ambipolar potential of the system. The ambipolar potential may be determined
using the analytic results presented by Najmabadi et al. (1984) or in a code such as
our finite element solver or the one presented by Egedal et al. (2022). Using this
accurate estimate of ambipolar potential, one can calculate the estimated confine-
ment time using the results from Najmabadi et al. (1984), presented in Appendix B.
Call this confinement time τN . Now that we have calculated the ambipolar poten-
tial and confinement time, we may invert (3.2) to determine νsL BO Zs , with the
appropriate correction coefficient using table 1,
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1
νsL BO Zs

= 2τc,N

(
ln
(

w + 1
w − 1

)
− c0

)−1

Erfc(a). (4.1)

Here, recall that w = √
1 + 2zseφ/ (Ts Zs R) and a = √

zseφ/Ts + ln (w). The sim-
plest approach to achieving the correct results is to scale the collision frequency,
setting Zs = 1, which will also have undesirable effects such as modifying multi-
species thermal equilibration times (Francisquez et al. 2022). Let us define a collision
frequency gain constant γ = νsL BO/νN , where νN is the collision frequency used in
the results of Najmabadi et al. (1984). One must scale the collision frequency νN by
a factor of γ for the loss rate of the system using the LBO to be equal to the system
using the operator from Najmabadi et al. (1984). Alternatively, one could implement
an LBO with a modified diffusion coefficient, including Zs . Then, one may scale Zs

by a factor of γ instead of collision frequency, which may be preferable depend-
ing on the situation. Here, Zs �= 1 corresponds to an anisotropic collision operator,
which can be more accurate but, in some cases, can be numerically more challenging
(Sharma & Hammett 2011).

Putting this into practice, we make suggestions of the appropriate scaling factor γ
for WHAM and WHAM++. Egedal et al. (2022) predicts an ambipolar potential of
zseφ/Te 
 5 for WHAM and WHAM++. For WHAM, R = 13.3 and γ = 0.3030,
and for WHAM++, R = 10 and γ = 0.2721 with c0 = 1.05 and Zs = 1 for both
machines. It makes sense that the LBO would need a diminished frequency to match
Najmabadi’s loss rate because of the 1/v3 drop-off in collision frequency at large
velocity.

The scrape-off layer of toroidal confinement devices, like tokamaks and stellara-
tors, can exhibit a Pastukhov potential due to the difference in magnetic field
strength between the inboard and outboard sides (Majeski et al. 2017). The mag-
netic field magnitude (|B|) varies inversely with the distance (R) from the central
axis, determining the mirror ratio (Rout/Rin) of these devices, typically around 2.
Additionally, observed potentials are approximately zseφ/T ∼ 2. This implies these
devices have low mirror ratios and a limited potential. In this scenario, figure 5(a)
aligns reasonably with previous findings by Najmabadi et al. (1984). However,
Pastukhov (1974) and Najmabadi et al. (1984) consider a high mirror ratio and
potential limit, making their results inappropriate for toroidal confinement devices.
Caution is necessary when applying these equations in regimes approaching the
bounds of these limits. The variational method for studying collisional losses not
considered here offers an approach suitable for arbitrary mirror ratios and ambipo-
lar potential, making results from Catto & Li (1985) and Khudik (1997) more
appropriate.

We note a subtlety in the problem set-up as defined by Pastukhov, Najmabadi and
others. It is usually stated that there is a low-energy source of particles to balance
the sink at high energy. Standard electron–electron collision operators are energy
conserving and the electron–ion collision operator has been approximated by pitch
angle scattering, which also conserves energy, so one may wonder where the energy
injection comes from. It should be noted that it is not sufficient to add a source to
the kinetic equation of the form S(v) = S0δ(v − vI )/(4πv2) (where S0 is the source
rate in units of particles per second per unit volume), because no choice of the
injection velocity vI can provide enough power for steady state unless vI is quite
large, violating the assumption that the source is at low energy. This is because the
source energy per injected particle, (1/2)mv2

I , must be the same in steady state as
the average energy per particle lost, which from (2.28) is Eloss ∼ zseφ � Te.
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The resolution to this issue is as follows. In a real mirror machine, the heating of
electrons comes from collisions with beam and bulk ions (typically much hotter than
the electrons) or RF heating. Collisions and quasilinear RF heating can be roughly
modelled here by slightly increasing the velocity diffusion coefficient in the collision
operator, i.e. slightly increasing the factor of v2

th,s that appears in the Dougherty–
Lenard–Bernstein collision operator (2.5) above the actual thermal velocity squared
〈v2〉/3 one would find from the distribution function. Because the mirror confine-
ment time τc is much longer than the collision time in the asymptotic regime we are
studying, roughly by a factor of exp(a2) ∼ exp(zseφ/Te) � 1 (neglecting factors of a
or a2 depending on the choice of collision operator), the velocity diffusion coefficient
only needs to be increased slightly (the relative change scales as exp(−zseφ/Te) � 1).
In numerical codes, this is sometimes implemented via a hidden assumption by not
literally using an energy-conserving electron–electron collision operator and instead
fixing the value of v2

th,s in the diffusion coefficient as an input parameter. One would
find that the actual 〈v2〉/3 from the distribution function is slightly less than the
input parameter. Some calculations do the same thing by normalising the veloc-
ity variable to a fixed parameter, which will turn out to be slightly higher than the
actual thermal velocity. Nevertheless again, this is a tiny correction in the asymptotic
limit.

5. Conclusion

In summary, this study delves into the critical role that collisions play in governing
particle and energy transport within magnetic mirror confinement systems. We use
an LBO model to proceed through the method of images calculation to investigate
particle and energy confinement. Notably, we address the challenges posed when
using a different collision operator compared with prior work.

A pivotal observation emerges when examining the dependence of confinement
time on the ambipolar potential, as depicted in figure 5(a). The LBO alters the
particle confinement time compared with more accurate collision operators used in
earlier research (Khudik 1997; Najmabadi et al. 1984; Pastukhov 1974; Catto &
Bernstein 1981; Catto & Li 1985). Notably, our findings demonstrate that the par-
ticle confinement time scales as a exp(a2) using the LBO, whereas a more accurate
collision operator would yield a2 exp(a2), where a2 is approximately the normalised
ambipolar potential, zseφ/Te (see the inline equations after (2.26)). This scaling dis-
crepancy is attributed to the LBO’s disregard for the drop-off in collisionality with
velocity. Figure 5(b) highlights that despite significantly different loss rates at the
same potential, the scaling behaviour with the mirror ratio remains comparable with
prior models. Finally, figure 5(c) showcases that (3.3) reproduces comparable errors
compared with prior work.

To address these findings, we propose a practical modification for codes using an
LBO or Dougherty operator to achieve the correct ambipolar potential. This involves
estimating the particle loss rate, then calculating the ambipolar potential from a code
or predictions from Najmabadi et al. (1984). Equation (3.2) can then be employed
to determine the appropriate scaling factor for the collision frequency or pitch angle
scattering enhancement, ensuring congruence with the electron confinement time.
This scaling factor, denoted as γ , depends on various parameters, including the
correction factor c0, which can be interpolated from table 1.

Numerous avenues for extending this research exist. First, the incorporation of
anisotropic diffusion coefficients has the potential to alleviate the approximations
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inherent in the LBO operator. This is facilitated by the presence of Zs in (3.2)
and (3.3). Additionally, we have expanded the method of images approach to
accommodate alternative forms of the Fokker–Planck coefficients used in the colli-
sion operator. Future investigations could explore alternative approximate collision
operators using this generalised approach or even take the approximations from
Najmabadi et al. (1984) to higher order. In addition, the code could be improved by
including an improved approximation to the energy diffusion term in (3.1) using the
Rosenbluth potentials. Furthermore, future research endeavours might delve into
variational techniques, as demonstrated by Catto & Bernstein (1981), Catto & Li
(1985) and Khudik (1997), to relax the constraints imposed by large mirror ratios
within the method of images. On the computational side, it would be interesting to
see how much the results of Francisquez et al. (Francisquez et al., 2023) change
with rescaling the collision frequency suggested here. Extending the lessons learned
here beyond magnetic mirrors, it is worth considering tokamak and stellarator con-
finement systems. As discussed, toroidal confinement systems exist in the space of
low mirror ratios and low potentials, which we studied to be a regime where the loss
rate due to LBO collisions has a reasonable agreement with more comprehensive
collision operators, and little modification needs to be made. However, this analysis
assumed large mirror ratios and large potentials, so more careful analysis must be
done using variational techniques for a complete answer.
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Appendix A. Convenient choice for the free function q(v̄)

We will prove (2.17) by first examining the delta function δ(1 − μ2) to transform
it in terms of ρ. Recalling (2.14), we reorganise this definition to have equality
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Zsμ
2ρ2

4v̄4
e−2v̄2 = 1 − μ2. (A.1)

Using the delta function to assert that μ = ±1, we can show that the delta function
transforms to

δ
(
1 − μ2

)= δ

(
Zsρ

2

4v̄4
e−2v̄2

)
= δ (ρ)

2v̄4

Zsρ
e2v̄2

, (A.2)

where we have used δ(g(x)) = δ(x − x0)/|g′(x0)| with x0 satisfying g(x0) = 0.
Transforming Q(v̄, μ), we then get

π 3/2

2z ln(z)

δ(1 − μ2)

4π
H(v̄ − a)q(v̄) = δ (ρ)

2πρ
H(z − za)4π

(
z ln(z)

√
π

8Zs
q(v̄)

)
, (A.3)

where we have grouped terms to get it in the form of (2.16). We find (2.17) by setting
q(v̄) to cancel out this functional dependence and leave within it some arbitrary
functionality q̄. This follows the approach set forth by Najmabadi et al. (1984),
where they set this to a constant for simplicity.

Appendix B. Investigation into the correction factor of Najmabadi et al. (1984)

The notation used in this paper is very similar to the notation used by Najmabadi
et al. (1984). For clarity, let us define some of the key differences in notation,
which will be used exclusively in this appendix section. For the collision operator
used by Najmabadi et al. (1984), they define the appropriate collision frequency and
anisotropic diffusion coefficients considering multispecies collisions:

νe ≡ 4π

m2
ev

3
th,e

(
e2

4πε0

)2

neλee, Ze,N ≡ 1
2

(
1 +

∑
j n j z2

jλej

neλee

)
, (B.1)

νi ≡ 4π

(
e2

4πε0

)2 ∑
j

n j z2
i z2

jλi j

mi m jv
2
th,i

Tj

Ti
, Zi,N ≡ 1

2

∑
j n j z2

jλi j∑
j n j z2

jλi j(Tj/Ti)(mi/m j)
. (B.2)

where
∑

j is a summation over ions only, vth,s = √
2Ts/ms e is the electronic charge,

zs is the atomic number of species s, λab is the Coulomb logarithm and ε0 is the
dielectric constant.

We restate the main finding from Najmabadi et al. (1984). They found that the
confinement time scales as

1
τc,N

= νs
4√
π

exp(−a2)

a2

(
Zs,N + 1/4

)
a2 exp(a2)E1(a2) − 1/4

ln
(

w+1
w−1

)− cN

. (B.3)

Here, w = √
1 + 2/ (R(Zs − Ts/4zseφ)) and a2 = zseφ/Ts + ln(w), E1(x) =∫∞

x dt exp(−t)/t is the exponential integral, cN is a correction coefficient, and the
subscript N stands for Najmabadi et al. (1984).

2

2There is a typo in the second statement of w by Najmabadi et al. (1984) near (42) which should have a square
root, noticed by Ochs et al. (2023).
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Confinement time errors with ambipolar
potential for R = 10.

Confinement time errors with mirror
ratio for zseφ/Ts = 3.

(a) (b)

FIGURE 6. Fractional error in the confinement estimates between (B.3) and the finite element
code for electrostatically confined electrons. The legend goes from the top curve to the bottom
curve in even steps in the value of c0.

Najmabadi et al. (1984) determine cN = 0.84, although we have not replicated
the calculation used to determine this. In (B.3), it is essential to notice that the
correction coefficient does change the asymptotic convergence of the problem. The
authors claim that this convergence is enhanced from O(1/x2

a) to O(exp(−x2
z )), but

adding this 0.84 changes to where q0 asymptotes, so it does more than yield faster
convergence; it changes the convergence entirely. This is showcased in figure 6,
where it is clear that the error asymptotes to a constant level, which depends strongly
on cN . Without using this correction factor, the error saturates to approximately
40 % compared with the numerical code, which is quite large and not converging.
With cN = 0.84, (B.3) has a roughly 10 % error with the finite element code, whereas
Najmabadi et al. (1984) report errors of ±7 %. Their expression for q0 is the same
as with the LBO, ln(w + 1/w − 1), but their w takes the form for large zseφ/Ts of
w = √

1 + 1/RZs . Therefore, q0 asymptotes at large R to ln(1 + 4RZs). This number
is not large and is comparable to the coefficient of 0.84 they find.

We do not expect the same coefficient that Najmabadi et al. (1984) find
because our approximate distribution function takes a different form, using dif-
ferent powers of velocity. It is worth noting that w asymptotes very differently
with the LBO than with the Coulomb operator, which leads to these differ-
ences. Since w = √

1 + 2zseφ/(Ts Zs R), we order zseφ/Ts < Zs R. Then, we get
q0 = ln(1 + 2Zs RTs/(zseφ), which is also not large and is affected by the conver-
gence factor. The dependence of this q0 on zseφ/Ts affects the convergence, making
it more complex to determine the appropriate asymptotic behaviour.

Instead, we opt to apply the same numerical technique employed in § 3. By cal-
culating the value of cN that minimises the error between our finite element code,
we determine the appropriate value of cN . Table 2 has the appropriate correction
coefficients for a pure hydrogen plasma (Zs = 1/2) and table 3 has the correc-
tion coefficients for electrons with a hydrogen background (Zs = 1). Intriguingly,
this coefficient depends on the pitch angle scattering rate Zs . It is clear from these
tables that Najmabadi et al. (1984) calculated this as a constant, but it has a much
more complicated dependency in matching the finite element code. It is essential to
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R
zseφ/Ts 5 10 15 20 25 30 35 40 45 50
1 0.876 0.860 0.777 0.770 0.691 0.702 0.680 0.653 0.649 0.679
2 1.056 1.030 1.009 0.967 0.965 0.965 0.942 0.940 0.928 0.924
3 1.095 1.082 1.062 1.046 1.034 1.021 1.016 1.008 0.996 1.017
4 1.114 1.107 1.091 1.078 1.067 1.058 1.051 1.044 1.039 1.035
5 1.126 1.121 1.106 1.093 1.083 1.075 1.068 1.062 1.057 1.053
6 1.134 1.131 1.117 1.104 1.095 1.087 1.080 1.075 1.070 1.064
7 1.136 1.132 1.117 1.104 1.095 1.086 1.080 1.073 1.068 1.066
8 1.138 1.133 1.119 1.106 1.098 1.089 1.081 1.076 1.070 1.068
9 1.142 1.140 1.127 1.117 1.103 1.095 1.088 1.085 1.083 1.079
10 1.142 1.141 1.123 1.118 1.106 1.093 1.084 1.079 1.079 1.091

TABLE 2. A table of optimal correction factors cN for various values of zseφ/Ts and R to
minimise error with the finite element code for hydrogen Zs = 1/2.

R
zseφ/Ts 5 10 15 20 25 30 35 40 45 50
1 1.183 1.125 1.093 1.068 1.052 1.040 1.031 1.023 1.017 1.013
2 1.093 1.046 1.018 0.999 0.986 0.976 0.968 0.963 0.958 0.953
3 1.081 1.042 1.018 1.002 0.991 0.983 0.976 0.971 0.966 0.963
4 1.090 1.056 1.035 1.020 1.010 1.003 0.997 0.992 0.988 0.984
5 1.101 1.069 1.048 1.034 1.026 1.018 1.012 1.008 1.004 1.001
6 1.112 1.083 1.062 1.048 1.041 1.033 1.028 1.023 1.020 1.014
7 1.115 1.084 1.063 1.049 1.042 1.035 1.029 1.024 1.020 1.020
8 1.119 1.088 1.067 1.054 1.046 1.038 1.033 1.030 1.024 1.023
9 1.127 1.097 1.078 1.066 1.054 1.050 1.043 1.042 1.041 1.035
10 1.124 1.096 1.075 1.071 1.056 1.052 1.035 1.032 1.044 1.033

TABLE 3. A table of optimal correction factors cN for various values of zseφ/Ts and R to
minimise error with the finite element code for electrons Zs = 1.

mention that the collision operator used by the finite element code is approximate,
especially at low velocities, which impacts the results at low values of zseφ/Ts .
However, it is intriguing that this coefficient does not asymptote to a constant at
large values of R or zseφ/Ts , which they suggest should occur. Furthermore, using
this coefficient table effectively provides a much better estimation of the results from
the finite element code than the original work. Nonetheless, all figures in the rest of
the paper are produced with cN = 0.84 as it still is a reasonable estimate.

Appendix C. Loss cone boundary conditions

From (2.3), we have two boundary conditions to fix q0 and a. Recall g(v̄, μ) =
π 3/2 exp(v̄2)Fs(v̄, μ) and hence,

g(ρ, z)|z=z0,ρ=0 = 0. (C.1)

This is straightforward to apply from (2.19),
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q0 =
(

ln
(

w + 1
w − 1

))−1

, (C.2)

where w = exp(a2 − v̄2
0). Equation (C.2) can be rewritten as w = coth(1/2q0).

Now, we will expand the second condition in (2.3), that the curvature of the
contour where our fitted distribution function is zero near the loss cone matches
the curvature of the true loss cone. For the sake of generality, we will refer to a
variable transformation where the velocity transformation is the same, z = exp(v̄2),
but the pitch angle transformation is in the general form of ρ = ρ̄(v̄)z

√
1 − μ2/μ =

ρ̄(v̄)z tan θ ≈ ρ̄(v̄)zθ , where we have isolated the separate pitch angle and velocity
dependence. With this form,

∂v̄ F(v̄, μ) = ∂v̄

(
g(ρ, z)

π 3/2z

)
= 1

π 3/2z
∂v̄g(ρ, z) (C.3)

and

∂μF(v̄, μ) = ∂μ

(
g(ρ, z)

π 3/2z

)
= 1

π 3/2z
∂μg(ρ, z). (C.4)

So from changing distribution function from Fs(v̄, μ) to g(ρ, z),

∂v̄g

∂μg

∣∣∣∣
z=z0,ρ=0

= 1
Rv̄0

, (C.5)

where we have used g(0, z0) = 0. Continuing, we must expand the partial derivatives
in v̄ and μ into their respective derivatives in terms of ρ and z using the chain rule,

∂v̄g(ρ, z) = ∂g

∂ρ

∂ρ

∂v̄
+ ∂g

∂z

∂z

∂v̄
= ∂g

∂ρ
ρ

(
2v̄ + ρ̄ ′

ρ̄

)
+ ∂g

∂z
2v̄z, (C.6)

∂μg = ∂g

∂ρ

∂ρ

∂μ
= ∂g

∂ρ

∂ρ

∂(cos θ)
≈ ∂g

∂ρ

∂ρ

−θ∂θ
= ∂g

∂ρ

ρ̄(v̄)z

−θ
= −∂g

∂ρ

ρ

θ 2
. (C.7)

One of the beautiful aspects of this derivation is that this specific choice of variables
results in a simple form of the derivative in μ. Furthermore, it can be shown that
the derivatives of (2.19) are

∂g

∂z

∣∣∣∣
z=z0,ρ=0

= − 2q0w

z0(w2 − 1)
, (C.8)

∂g

∂ρ

∣∣∣∣
z=z0,ρ�1

= − q0ρ

2z2
0

[
1

(w + 1)2
− 1

(w − 1)2

]
. (C.9)

Now, we can plug it all back in together,

1
Rv̄0

=
∂g
∂ρ

ρ
(
2v̄ + ρ̄′

ρ̄

)
+ ∂g

∂z
2v̄z

q0
2z2

0

[
1

(w+1)2
− 1

(w−1)2

]
ρ2

θ2

∣∣∣∣
z=z0,ρ→0

. (C.10)
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Next, we notice that ρ → 0 and ∂ρg ∝ ρ, so the ∂ρg term in the numerator is
negligible. We also see that ρ2/θ 2 = ρ̄2z2

0 for z = z0 and θ � 1, giving

1
Rv̄0

= 2v̄0

ρ̄(v̄0)2

(
w2 − 1

)
. (C.11)

Solving for w we find (2.21). For the collision operator of Najmabadi et al. (1984),
ρ̄(v̄)2 = 2v̄2/(Zs − 1/4v̄2), so their equivalent expression would be

w2 = 1 + 1
R(Zs − 1/4v̄2

0)
, (C.12)

which agrees with the results of Najmabadi et al. (1984). For Dougherty, we use
ρ̄(v̄)2 = 4v̄4/Zs , so the matching condition becomes the second equality in (2.21).
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