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PERTODIC SOLUTIONS OF QUASILINEAR
NON-AUTONOMOUS SYSTEMS WITH IMPULSES

S.G. HrisTova AnND D.D., Bainov

The paper considers a system of differential equations with

impulse perturbations at fixed moments in time of the form

z(t)

Alt)x + f(¢) + ex(t, =z, €) , t# t; s

Ax|t=ti = th(t'z,) + ai + 811: (x(]‘;i\, 5) .

where x € Rn , € 1s a small parameter,

Ax|t=t'-= x[ti+0) - x(ti—o).
1

Sufficient conditions are found for the existence of the periodic
solution of the given system in the critical and non-critical

cases.

Systems with impulses find a growing application in mathematical
modelling related to control theory, radiophysics, pharmacokinetics,
biology and so on. Hence the necessity to organize a mathematical theory

of systems with impulses.

The first papers in this theory [2], [3] are related to the names of
Miliman and Mishkis. A growing interest in this theme followed their

initial works. A number of papers have been published, as for instance,
Received 25 September 198k.
Copyright Clearance Centre, Inc. Serial-fee code: 000L-9727/85

$A2.00 + 0.00.
185

https://doi.org/10.1017/50004972700004688 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004688

186 S.G6. Hristova and D.D. Bainov

(41, (51, (61, (83, [9]1, [10]1, L11], as well as the monographs [1] and [7].
We could note, however, that the results of these contributions are only of
quantitative nature. There is need to carry out investigations, along with
the qualitative study of the solutions of impulsively perturbed systems,
concerning approximate analytic and numeric methods helping to find these
solutions, since the integration of systems with impulses in closed form is

possible only in exceptional cases.

The present paper deals with the problem of existence and approximate
determination of the periodic solutions of a system of differential

equations with impulses of the form

z(t)

A(t)x + f(t) + eX(t, =z, €) , t # ti ,

(1)

Ax!t=ti = Bix(ti—o) ta, + eIiLx(ti-o], e) ,

where z € R’ s f:R~> 7 , X :RxQ-> 7 » I s Q-+ "B (ic¢ z) ,

A(t) and B(t) are nxn-dimensional matrices, ti €R (i €2) are fixed

points for which ti+l > ti and }1m ti = 1o |
1400

Ax|t=ti = x(ti+o) - x(ti-o) , Q={(z,€) € xR: |z =e, |e| <e*},

¢ =const >0, €* >0, Z is the set of non-zero integers.

By P denote the points with coordinates (£, x(t)) vhere x{(t) is

the solution of equation (1).

The motion of the point P may be described in the following way.
The point starts its motion at the point [to, xo) and moves along the

integral curve (t, x(t)) of the system of ordinary differential equations
(2) z = A(t)x + fl(t) + ex(t, =z, €)

till the moment tl > ¢, when the point P "instantly" jumps from

0
position (tl, x(tl—O]) into the position (tl, x(tl+0)] , where

x(t,+0) = x(t,-0) + Bix(t,-0) + a, + eI, (x(,-0), €) . Further the point

1
P moves along the integral curve (t, x(t)] of system {2) with initial

condition z(tl) = x(tl+0) till the moment t2 > tl and so on.

Therefore the solution of system (1) is a piecewise continuous

https://doi.org/10.1017/50004972700004688 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004688

Systems with impulses 187

function x(t) with first order discontinuity at the points ti , which

i € Z , satisfies equation (2), while for ¢t = ¢,

for t € (ti’ t’l:"'l) s 1

it satisfies the Jump condition

x(t,+0) - z(t,-0) = B.x(t,-0) + a; + eI, (x(¢,-0), €) .

Besides, the function x(t) will be viewed as continuous from the

left at the jump points ¢ = ti , T € Z , that is

z(t,) = z(t,-0) = lim z(t ) .
€40

1. Basic assumptions and definitions

Consider the homogeneous linear system with impulses

x=Alt)x , t# ti .

(3)
Az|,_, = Bx(t;-0) .
1

DEFINITION 1. We will say that the system (3) is non-critical with
respect to T if it does not have a nontrivial periodic solution with

period T .

DEFINITION 2. We will say that the system (3) is critical with
respect to T if it has at least one nontrivial solution which is periodic

with period T .

DEFINITION 3. The following system with impulses will be called a

generating system of system (1):

z=At)z+ f(£) , t#t, ,

(4)

Ax) =B.x+a, .
1 1

t=t.
i
We will say that the set of conditions (A) holds provided the

following conditions are satisfied:

Al. the function f : R ~» A is periodic in ¢ with period
T , and it is piecewise continuous with discontinuity points

of first order at the points ¢, , i €2

.
*
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A2. the function X : R X Q +-Rn is piecewise continuous in ¢

with discontinuity points of first order at the points ti R

1 € Z , it is periodic in ¢ with period T and satisfies

the Lipschitz condition
Ix(¢, =, €)-x(¢, y, e)ll = Kllz-yll , (¢, =z, €), (t, y, €) € R x Q3

A3. the matrix A(t) is periodic with period T and piecewise
continuous with discontinuity points of first order at the

points ¢, , T €7

Ak,  the matrices (E+Bi] are non-singular (¢ € Z) ;

AS5. the functions I; : Q- 7 are continuous and satisfy the

Lipschitz condition in their first argument,

HIi(x, e)-Ii(y, e)ll = Kle—yH uniformly in % , when
(z, €), (y, €) €Q
A6. a natural number p exists such that

.=t + .. =B, .. = a.

t1+p tt T, Bz+p Bz N az+p az 5

I, .

i+p i

2. The non-critical case

Consider the case when the system (3) is non-critical with respect to
T . Then, in view of [1Z2], the system (L) has a unique T-periodic

solution ¢(t) given by the formula

7
(5) o(t) = { Gt, Of(t)dt+ Y G(¢t, t.) (E+B.)'la. .
Jo o<t <t v v ¢

where

() E-X( T, ost<t

IA

T,
(6) G(t, 1) =

IA

t

1A

x(¢) [E-x(T) 1 (M x v , o T=sT,

X(t) is the fundamental matrix of solutions of the system (3) for which
xX(0) = E .
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To find the T-periodic solution of the system (1) we will employ the

method of subsequent approximations.

Set
(n x(o)(t) = o(t) .

k
Construct a sequence of functions x( )(t) , k=1,2, ... , vhere

the function x(k)(t) is a T-periodic solution of the system

a0 X (8) + £le) + ex(e, 25

éik)(t) (¢), €) , t#t,,

(8)

Ax(k)lt=ti Bix(k)(ti] ta;+ eIiLx(k_l)(ti), e] .

The fact that the system (3) is non-critical with respect to T

implies that the system (8), for k =1 , has a unique T-periodic solution

x(l)(t) given by the formula

(1) T
o (t) = f clt, Df(n+ex(t, o(1), €)ldr
0

v % 6t ) (B+B) M ayrer, (0(t,)  €)]
0<ti<T

where the function G(t, T) is defined by means of the equality (5).

Analogously, for every k = 2 , the system (8) has a unique

T-periodic solution written in the form
T

9 F(z) = [ a(t, O [FD+ex(t, 25 (), €)]ar
0

-1 (k-1)
+ 0(%@ G(¢, t;) (B+B,) E’i*ai (x (2,), e):[ .

Taking into consideration the representation (5) of the function o(¢t)

and the equality (9), we get

T
(10) 2KV (2) = o(2) + e[f o, Dxft, XD (1), e)ar
0

e(t, £.) (E+8.) 1. (251 (2, ]
oL o ) A AN
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Conditions A2, A5 and the equality (10) imply that a constant X > 0
exists such that
(11) IS (1) * ) < Felle* (20252 (0

Therefore, for |e| < min(e*, 1/X) and ¢ € [0, T] , the sequence of
functions {x(k)(t)}: is uniformly convergent. The results obtained above
may be used to state the following theorem.

THEOREM 1. [Let the following conditions hold:

(1) the set of conditions (A) holds;

(2) the system (3) is non-critical with respect to T .

Then a number €. > 0 exists such that for |e| <¢

1 1
has a unique T-periodic solution x(t, €) which, for € = 0, coincides

the system (1)

with the solution of the generating system (L).

3. The critical case
Consider the case when the system (3) is critical, that is it has m
linearly independent T-periodic solutions ¢(l)(t), w(z)(t), e w(m)(t).

Consider the system

_ T
-Ay , t# ti ,

«
!

(12)

7\ 7
L '(E+Bi]3iy (¢,-0) »
1

conjugate to the system (3), where AT and BT denote the transposes of
A and B .

In view of [12], the system (12) has m 1linearly independent
Tperiodic solutions %\ (&), w2 (), ..., '™ (z) .

Moreover, the system (4) has a T-periodic solution if and only if the

following equality holds:

an [ (s, ¥y s 3 (W9 (2), E8) "a;) = 0
‘0 O<t <7 i e ’
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where the symbol (e, ¢) denotes scalar product.

Consider the auxiliary system

x( t)

m .

Alt)x + flt) + ex(t, x(t), €) + ¥ wiq>(’“)(t) s tE b
i=1

(14)

t=t,

Az = Ba(t,) + a, + eI (2(2), €) ,

where w; (£Z=1, ..., m) are constants to be determined.

The constants w, (=1, ..., m} are defined as a solution of the

non-homogeneous system of linear algebraic equations:

m T .
()
(15) .gi d .+ € !O (x(t, (), €), v (¢))dt
(4) -1
v (¢), (B+B.) I (=(t.), =0,
+€o<t§<T< (6), (B3,) 721, (x(2), €))
Jj=11,2, ..., n , where

T . .
(2) ()
d;; = fo (o 7 (2), WII(2) )t .

Let x*(t) be a partial T-periodic solution of the generating systen

(4). Then every T-periodic solution of (4) has the form

x(t) = Afi(p(l)(t) + b§¢(2)(t) P Afr’ncp('")(t) + z*(t)

where A& =const , T =1, ...

Consider an arbitrary fixed point Mp € A . MQ = Mg, Mg, ey MO]

m

and denote by £ . a neighbourhood of the point Mp .

P

Then the following theorem holds.

THEOREM 2. Let the following conditions hold:

(1) the set of conditions (A) holds;

(2) the system (3) has m Linearly independent T-periodic

solutions ¢(l)(t), ¢(2)(t), e w(m)(t) N
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(3) equality (13) holds, where ljl(l)(t), ¢(2)(t), e, w(m)(t)
are m linearly independent T-periodic solutions of the

system (12).

Then the system (14) has an m'-parametric family of T-periodic

solutions of the form
(16) zx*(t, M, €) = Mrp(l)(t) + ...+ M;F(m)(t) + x*(t) + ex(t, M, €) ,

where M= (M , M

l, 2’
t€R, ME Q.O, le| = €e*, it is continuous in the parameters

M
My eees Mo 1t is periodic in t with period T and has discontinuities

.y Mm] s the funetion %(t, M, ) 1is defined for

of first order at the points t, -

Proof. The proof of the theorem will be accomplished by help of the

method of successive approximations.

(1)

As an initial approximation x (t) we choose the T-periodic
solution of the system (1L) for € =0 , that is, the 7T-periocdic solution
of the system

. < (1) (¢}
x(t) = Alt)e + f(£) + ) W70 7 (t) . t#t,
=1
(17)
Aol g =B tag s
Z
where the ordered m-tuple W__(Ll), Wél), ceay Wr(nl) is a solution of the
. m (1) _
system (15) for € = 0 . Since det (dij]l # 0 , then Wi =0,
27=1, ..., m , and the system (17) coincides with the generating system
(4). Therefore, constants Ml’ M2, e Mm exist such that
2
2 Mgy = oM e) v mp® o)+ L u o™ e) 4 at(e)

(k)

The approximation x (t) 1is defined as a T-periodic solution of

the system with impulses
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#5y = ae)z () + Fie) + ex(e, K8, €)

m .
) ng)q,(”)(t) L tEE,

1=1
(18) ( (o1}
(k) - k) k-1
b,y =By U (t) ey + el (£;) E} ,
where the constants Wik) , 12=1, ..., m are a solution of the linear

system of algebraic equations
(19) ’2”: a. Wk 4 e fT(x(t x(k'l)(t) €) lp(j)(t\)dt
7:=l ij i JO £ H) 3 N

(), @)1 |51 (6, =0
+€o<f§;<T<w (). Ee2,) 71| (ﬁ)’€]> ’

J=1, ..., m.
The system (19) has a unique solution since det(dij]T £0 .

Condition (3) of Theorem 2 implies that the equality
m

T . .
(20) Jfo (rorex(e, 5 He), €) ¢ 3 WP n), w19 (0) hae
1=1

+ 0<tZi<T <w(j) [ti), (E+Bi]_l [ai+in [x(k_l)[ti) , e]]) =0,

is fulfilled.
The equality (20) yields that the system (18) has a T-periodic
solution x(k)(t) , k=2.

In view of conditions A2 and A5 the sequence of T-periodic functions

{x(k)(t)} is uniformly convergent for sufficiently small g€ and tends to
the T-periodic solution x*(t, M, €) of the system (1k).

Moreover, the representation (16) holds for the function

x*(t, M, ) .
Thus Theorem 2 is proved.

Let the system (1) have a T-periodic soclution x(t, M, €) , which,

for € = 0 , coincides with the solution x(t) of the generating system

https://doi.org/10.1017/50004972700004688 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004688

194 S.G. Hristova and D.D. Bainov

(),

(21) 2(2) = oM (e) + .+ i (2) 4 ar(e)

Since z(t, M, €) 1is a periodic solution of the system (1), then, in

view of [12], the equality

T
(22) P.(M, €) =Io (x(t, z(¢, M, €), €), e (t))dt

+ ) <‘P (E’+B] I((i’M’ e],e]):

O<t <T

holds.

Eqaulity (22) for € = 0 implies the necessary condition for the
existence of the periodic solution of the system (1) which, for € =0 ,
coincides with the function x(t) defined by the equality (21). These

conditions have the form
0 T 0 ()
(23) P,(M, 0) = ;[ (x(t, =(t, M, 0}, 0}, v/ () \d¢
0]

g
£ Y <w(J) , (2+8.) lIi[:c[ti, P, o], o]) =0 .

0<t <T

0
Therefore, the constants Mb in equality (21) should satisfy the
system (23).

The results obtained give us grounds to formulate the following

theorem.

THEOREM 3. Let conditions (A) hold, and let the system (3) be
eritical with respect to T . Then the necessary condition for the system
(1) to have a T-periodic solution which would coincide with the solution
x(t) of the generating system (4) for € =0, the function z(t) being
defined by the equality (21), is that the constants Mg s d=1, ...,m,

should satisfy the system (23).

We will .give the necessary and sufficient conditions for existence of
the periodic solution of quasilinear systems having impulse perturbation in

the critical case.
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Let the auxiliary system (14) have a T-periodic solution z*(t, M, €)
for which
(24) * (£, M, 0) = Ml(p(l)(t) oo+ Mm(p(m)(t) + z*(¢t)

Introduce the notation

(25) w, = eP (M, €) = € Jo(x t, x*(t, M, €), €], 77 (¢) )¢

vy ), @)L m ), Q) G
o<t <T T Z A Z
Z
THEOREM 4. [Let the conditions of Theorem 2 hold. Then the necessary
and sufficient condition for the system (1) to have T-periodic solution
x(t, €) that would coincide, for € = 0 , with the solution z(t) of the
generating system (M) defined by the equality (21), is that the system of

equations
0 .
(26) Pﬁ(M, €y =0, =1, ..., m,
have solution M,(e) , i =1, ..., m, for le| = e, < €t , for which
(27) M.0) =M, i=1,...,m.
17 ’L, 3 bl

Proof. Necessity. Let the system (1) have a T-periodic solution
x(t, €) . Substitute it in the auxiliary system (1k) and we get the

following identities:

AN )
(28) Y we gy zo .
i=1

i .
Since w( )(t) , T
equalities (28) imply that W{ =0, =1, ..., m.

1, ..., m , are linearly independent, then the

Sufficiency. In view of Theorem 2 the system (14) has a T-periodic
solution x*(t, M, €) of the form (16). Let the system (26) have a
solution Mi(s) satisfying the equalities (27). Substitute Mi(s) in

equality (2L4) and we obtain w, = 0, =1, ..., m . Therefore, in this

case the system (14) coincides with the system (1) and the function
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defined by the equality (16), for

M = @Ml(e), M2(€), cees MH(E)] will be a T-periodic solution of the

system (1) that coincides with the function x(f) for € =0 , the

function being defined by the egqualities (21).

L1l

[2]

£33

(4]

(51

(6]

(71

[&]

[91

Thus Theorem 4 is proved.
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