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1. Introduction

Asymptotic methods have been successfully used for more than a century in the quanti-
tative study of spectra of ordinary and partial differential operators and there is a vast
body of literature on the subject (see, for example, monographs [5, 9, 11, 14] and the
references therein). Notwithstanding the amount of research done in the area, there are
two distinct aspects of the problem that have, as a rule, been treated separately.

The underlying idea exploited in the first kind of setting is to try and find out how
eigenvalues and the corresponding eigenspaces in a parametrized family of operators
change upon a small perturbation of the parameters. This may lead to a more general
approach whereby the solution to the corresponding eigenvalue problem is sought as an
appropriate formal series (ansatz) whose terms are arranged by orders of smallness as
the perturbation goes to zero. The leading term of the series thus represents the unper-
turbed eigenfunction, while the higher-order terms describe the perturbed behaviour of
the eigenspace and depend on certain geometric characteristics of the considered family
of operators. From a physical point of view, this corresponds to understanding how a
change in the values of the input data or geometric parameters of the system will affect
the energy flux of the output. In brief, this is the objective of what is called perturbation
theory (the books [9, 10, 14] contain detailed descriptions of the method and a large
number of examples).
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The second issue concerning spectra of differential operators is the distribution of
eigenvalues. Thinking first of a problem with discrete spectrum {λn}∞

n=1, one would like
to understand how the spectrum behaves as n → ∞ (see [11] and numerous references
therein). Another important case is given by operators whose spectra have so-called band-
gap structure

⋃
[an, bn]. If the intervals (an, bn) are disjoint, one might enquire about the

asymptotics of the gap length an − bn−1 as n → ∞ (see [5,14]). Physical motivation for
this sort of question comes from the necessity to understand high-frequency oscillation
modes of a bounded region or high-frequency wave propagation in unbounded domains.

In this study we attempt at bringing together the two aspects of the subject outlined
above, by suggesting a perturbation-type ansatz that also contains certain information
about the distribution of eigenvalues. More precisely, consider a linear second-order ordi-
nary differential operator with periodic coefficients. It is well known that its spectrum
in L2(R) is purely continuous and has the band-gap structure mentioned above. At each
internal point of the spectrum there are two quasi-periodic generalized eigenfunctions
that form the fundamental system of solutions of the corresponding ordinary differential
equation (ODE). They are often referred to as Bloch eigenfunctions, or Bloch waves,
which originated in the work [1] (a good introduction to Bloch waves is also contained
in [4]). The ‘quasi-period’ of each of the Bloch waves can be described in terms of the
so-called quasi-momentum η. As the spectral parameter λ is varied along the given band,
the corresponding quasi-momentum η(λ) sweeps the segment [−π, π] in some way. The
pre-image of the Lebesgue measure on [−π, π] under the map η(λ) is usually referred to
as the integrated density of states. The derivative of this with respect to λ is called the
density of states. The reason for using such terminology is partly due to the fact that
there is an alternative, equivalent, definition of the density of states, via passing to the
limit in a sequence of spectral distribution functions for an ‘approximating’ family of
operators on bounded intervals [−N, N ] as N → ∞ (see, for example, [10]).

Using this as a starting point, we fix λ = λ0 and suggest a version of a perturbation
ansatz around a Bloch eigenfunction corresponding to λ0. As is customary in the method
of formal asymptotic expansion, this leads to a non-trivial sequence of recurrence relations
on the higher-order terms of the ansatz. Following rigorous analysis ensures that the
series in fact converges in a neighbourhood of the point λ0. Choosing the value of the
perturbation parameter in order to satisfy zero boundary conditions, we get an implicit
equation for the Dirichlet eigenvalues that are sufficiently close to λ0. This enables us to
pass to a double limit as N → ∞ and λ → λ0 and thus obtain an independent proof of
equivalence of the two definitions of the density of states.

2. Setting of the problem

Consider the following sequence of eigenvalue problems,

u′′(x) + λq(x)u(x) = 0, (2.1)

u(0) = u(N) = 0, (2.2)

where q(x) is a positive periodic continuous function (without loss of generality, the
period is assumed to be equal to 1), λ > 0 is the spectral parameter and N is a positive
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integer. Problem (2.1), (2.2) describes eigenmodes of a string with mass density q(x)
whose ends are clamped at the points x = 0 and x = N . We would like to study the
distribution of the eigenvalues λ around a given value λ0 as N → ∞. This leads to the
classical notion of the density of states of the periodic operator in (2.1) (see [7,10,13]).

3. Formal asymptotic procedure

With the above purpose in mind, we fix the length of the physical domain N and look
for the eigenfunctions u(x) in the following formal asymptotic form as λ → λ0:

u(x) ∼ exp
( ∞∑

n=0

(λ − λ0)nSn(x, λ0)
)

. (3.1)

This ansatz can be viewed as an ‘infinite-order Bloch wave’, since its principal term
coincides with the classical Bloch eigenfunction (cf. [1,4]). In the expansion (3.1), the
functions Sn(x, λ0) do not have to be periodic, but their derivatives with respect to x

are required to be 1-periodic in x. Henceforth, we will use the notation Sn(x) along with
Sn(x, λ0).

We first use formal substitution of the series (3.1) into Equation (2.1) to find a sequence
of recurrence relations for the functions Sn(x) as follows:

S′′
0 (x) + (S′

0(x))2 + λ0q(x) = 0, (3.2)

S′′
1 (x) + 2S′

1(x)S′
0(x) + q(x) = 0, (3.3)

S′′
n(x) +

∑
i+j=n

S′
i(x)S′

j(x) = 0, n � 2. (3.4)

Clearly, the function S0(x) has to be complex, since Equation (3.2) does not have solu-
tions among real periodic S′

0(x). More careful examination of (3.2) leads to the conclusion
that this equation is solvable if and only if the value λ0 belongs to one of the so-called
Bloch bands∗ of the spectrum of the self-adjoint periodic operator in the L2(R) generated
by Equation (2.1) (the related background is provided in [4]). In the case when (3.2) is
solvable, the space of solutions of the ODE (2.1) is spanned by two quasi-periodic Bloch
eigenfunctions, which correspond to two complex-conjugate solutions of Equation (3.2).

To solve the eigenvalue problem (2.1), (2.2), we must now ensure that zero boundary
conditions (2.2) are satisfied. To this end, notice that real and imaginary parts of expres-
sion (3.1) can be chosen as the basis of the space of solutions of the ODE (2.1), i.e. the
required eigenfunction u(x) can be sought in the following form,

u(x) ∼ A1 exp
( ∞∑

n=0

(λ − λ0)n Re(Sn(x))
)

cos
( ∞∑

n=0

(λ − λ0)n Im(Sn(x))
)

+ A2 exp
( ∞∑

n=0

(λ − λ0)n Re(Sn(x))
)

sin
( ∞∑

n=0

(λ − λ0)n Im(Sn(x))
)

,

∗ In Floquet theory, these bands are also referred to as stability intervals (see the monograph [5] for
a discourse on Floquet theory).
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where A1 and A2 are constants that may depend on λ. Without loss of generality, we can
set Sn(0) = 0, n � 0, and infer consequently that A1 = 0, due to the condition u(0) = 0.
Hence

u(x) ∼ A2 exp
( ∞∑

n=0

(λ − λ0)n Re(Sn(x))
)

sin
( ∞∑

n=0

(λ − λ0)n Im(Sn(x))
)

, (3.5)

and the condition u(N) = 0 leads to the equation

∞∑
n=0

(λ − λ0)n Im(Sn(N)) = mπ, (3.6)

where m ∈ Z. The eigenfunction (3.5) is a (formal) linear combination of the two conju-
gate solutions of the form (3.1). We show next that each of the formal expansions (3.1)
defines a valid function u(x) that satisfies the ODE (2.1), before proceeding to the inter-
pretation of condition (3.6).

4. Rigorous convergence of the formal ansatz

We would like to ensure that, under the formal procedure described above, the series in
the right-hand side of (3.1) converges as λ → λ0 for any x, so that (3.5) defines a function
u(x, λ), which is twice differentiable with respect to x and satisfies Equation (2.1). To
this end, we prove the following statement.

Theorem 4.1. For any given value of N , the following three power series converge
uniformly with respect to x ∈ [0, N ] and λ in a certain neighbourhood of the point λ0:

∞∑
n=0

|λ − λ0|n|Sn(x)|,
∞∑

n=0

|λ − λ0|n|S′
n(x)|,

∞∑
n=0

|λ − λ0|n|S′′
n(x)|. (4.1)

Proof. Note first that each of the Equations (3.4), being a first-order linear ODE on
the function S′

n(x), can be rewritten as follows,

(S′
n(x) exp(2S0(x)))′ = − exp(2S0(x))

∑
i+j=n
i,j�1

S′
i(x)S′

j(x),

from which we obtain

S′
n(x) = − exp(−2S0(x))

(∫ x

0
exp(2S0(τ))

∑
i+j=n
i,j�1

S′
i(τ)S′

j(τ) dτ + Cn

)
.
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The constant Cn in the above equation is found from the condition of periodicity of the
function S′

n(x), thus giving

S′
n(x) = − exp(−2S0(x))

(∫ x

0
exp(2S0(τ))

∑
i+j=n
i,j�1

S′
i(τ)S′

j(τ) dτ

+ (exp(2S0(1) − 2S0(0)) − 1)−1
∫ 1

0
exp(2S0(τ))

∑
i+j=n
i,j�1

S′
i(τ)S′

j(τ) dτ

)
. (4.2)

Before proceeding further with the proof of the theorem, we make the following obser-
vation adopted from the work [2].

Observation. For any n ∈ N, the following inequality holds:∑
i+j=n

1
(i + 1)2(j + 1)2

� 16
(n + 2)2

. (4.3)

Employing induction, we show next that there are D, α > 0 such that, for any n � 1,
the following uniform estimate holds:

|S′
n(x)| � Dn

α(n + 1)2
. (4.4)

Trivially, since the function S′
1(x) is periodic, it is bounded and hence, for any α > 0,

there is a value D > 0 such that the bound (4.4) holds for any x ∈ [0, N ] when n = 1. It
is important that, since S′

n(x) is 1-periodic, the constant D can be chosen independent
of N . (Note that D may still depend on λ0.) Assume now that the inequality (4.4) is
satisfied for any n � l − 1, where l � 2 is a given index. We would like to get the
estimate (4.4) for n = l. Clearly, due to periodicity of the function S′

m(x), it is sufficient
to estimate it on the interval [0, 1]. In view of formula (4.2), the induction hypothesis
and the above observation, there is a positive constant M , which is determined by the
function S0(x), such that the following inequalities are valid:

|S′
l(x)| � M

∑
i+j=l
i,j�1

Di

α(i + 1)2
Dj

α(j + 1)2
< M

16Dl

α2(l + 2)2
.

Hence, if we choose α � 16M , then

|S′
l(x)| <

Dl

α(l + 1)2
,

thus completing the induction step.
Inequalities (4.4), together with Equations (3.4), allow us to get suitable uniform esti-

mates on the functions Sn(x), S′′
n(x). To this end, notice first that, due to the condition

Sn(0) = 0, we get Sn(x) =
∫ x

0 S′
n(τ) dτ . Hence, invoking (4.4),

|Sn(x)| � N max
x∈[0,N ]

|S′
n(x)| � NDn

α(n + 1)2
. (4.5)
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Finally, Equations (3.4), estimate (4.4) and relation (4.3) imply that, for n � 2, the
following inequalities hold:

|S′′
n(x)| �

∑
i+j=n
i,j�1

|S′
i(x)||S′

j(x)| �
∑

i+j=n
i,j�1

Di

α(i + 1)2
Dj

α(j + 1)2
<

16Dn

α2(n + 2)2
. (4.6)

Inequalities (4.4)–(4.6) imply that, for any fixed value of N , the series (4.1) converge
uniformly for |λ − λ0| � D−1 and x ∈ [0, N ]. �

Therefore, if |λ − λ0| � D−1, the exponent in (3.1) defines a function u(x), which
satisfies the differential equation in (2.1) due to the relations (3.2)–(3.4). As a byproduct,
we get the following statement about analyticity of the function S0(x) with respect to λ.

Corollary 4.2. For any x ∈ [0, +∞), the series
∑∞

n=0(λ − λ0)nSn(x) defines a real-
analytic function of λ, which coincides with S0(x, λ). Hence, for any λ0 from the spectrum
and every x ∈ [0, +∞), the following formula holds:

Sn(x, λ0) =
1
n!

∂n

∂λn
S0(x, λ)

∣∣∣∣
λ=λ0

. (4.7)

5. Density of states

In this section we clarify how Equation (3.6) is related to the desired distribution of the
eigenvalues.

Consider the Bloch eigenfunctions for the periodic operator in (2.1) corresponding to
the eigenvalue λ0 from the spectrum in the following form (cf. [4,5]):

u±(x, λ0) = exp(v(x, λ0) ± i(w(x, λ0) + η(λ0)x)). (5.1)

In this expression and in what follows, for any λ from the spectrum, η(λ) denotes the
value of the so-called dual variable, or quasi-momentum η ∈ [−π, π] corresponding to the
eigenvalue λ. In formula (5.1), the function v(x, λ0) is 1-periodic in x and w(x + 1, λ0) −
w(x, λ0) = 2πl0 for some integer l0 and any x ∈ R. Thus the functions (5.1) are bounded
solutions of the equation

u′′(x) + λ0q(x)u(x) = 0. (5.2)

It is easy to see that, as we mentioned before, solvability of Equation (3.2) is equivalent
to the existence of bounded solutions of (5.2) of the above type. If such solutions exist,
i.e. the value λ0 belongs to one of the bands of the spectrum, we can set either

S′
0(x, λ0) = v′(x, λ0) + i(w′(x, λ0) + η(λ0))

or

S′
0(x, λ0) = v′(x, λ0) − i(w′(x, λ0) + η(λ0)).
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In what follows, it does not make a difference which of the two we use, and we consider
S′

0(x, λ0) = v′(x, λ0) + i(w′(x, λ0) + η(λ0)). The function S0(x, λ0) can then be found
along the following lines:

S0(x, λ0) =
∫ x

0
S′

0(τ, λ0) dτ

=
∫ x

0
(v′(τ, λ0) + i(w′(τ, λ0) + η(λ0))) dτ

= v(x, λ0) − v(0, λ0) + i(w(x, λ0) − w(0, λ0) + η(λ0)x).

Hence, due to periodicity properties of the functions v(x, λ0) and w(x, λ0), equality (3.6)
takes the form

2πl0N + η(λ0)N + (λ − λ0) Im(S1(N, λ0)) + R(N, λ) = mπ, m ∈ Z, (5.3)

where, due to estimates (4.5), we have R(N, λ) = O(N(λ − λ0)2) as λ → λ0, uniformly
with respect to N . By virtue of the corollary in the previous section, we get

Im(S1(N, λ0)) = Im
(

∂S0(N, λ)
∂λ

∣∣∣∣
λ=λ0

)
= Nη′(λ0),

and therefore Equation (5.3) can be written as follows:

λ = λ0 − mπ − 2πl0N − η(λ0)N
Nη′(λ0)

+
R(N, λ)
Nη′(λ0)

.

This allows us to infer that the number of eigenvalues of problem (2.1) found in the
interval (λ0 − ∆λ, λ0 + ∆λ) is equal to the number of integer values m such that

−∆λ <
mπ − 2πl0N − η(λ0)N

Nη′(λ0)
+

R(N, λ)
Nη′(λ0)

< ∆λ. (5.4)

It is easy to see now that (5.4) is equivalent to the bounds

−∆λ + O((∆λ)2) <
mπ − 2πl0N − η(λ0)N

Nη′(λ0)
< ∆λ + O((∆λ)2). (5.5)

Before making the main statement, we introduce the following definition (see, for exam-
ple, [7]).

Definition 5.1. The function ρ(λ0), defined for any λ0 ∈ R by the formula

ρ(λ0) = lim
∆λ→0

(2∆λ)−1 lim
N→∞

N−1#{λ : λ eigenvalue of (2.1), |λ − λ0| � ∆λ}, (5.6)

is called the density of states of the operator d2/dx2 + λq(x) in L2(R).

It is convenient to use the bounds (5.5) to calculate the density of states in our case.
As a result, we obtain the following classical theorem.
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Theorem 5.2. For any value λ from the interior of the spectrum of the operator
d2/dx2 + λq(x) in L2(R), its density of states ρ(λ) and the quasi-momentum η(λ) are
related by the formula

ρ(λ) =
η′(λ)

π
. (5.7)

Proof. Indeed, Equations (5.5) and (5.6) imply that

ρ(λ0) = lim
∆λ→0

(2∆λ)−1 lim
N→∞

N−1#
{

m ∈ Z : −∆λ + O((∆λ)2)

<
mπ − 2πl0N − η(λ0)N

Nη′(λ0)
< ∆λ + O((∆λ)2)

}

= lim
∆λ→0

(2∆λ)−1 lim
N→∞

N−1#
{

m ∈ Z : 2l0 +
η(λ0)

π
− η′(λ0)

π
∆λ + O((∆λ)2)

<
m

N
< 2l0 +

η(λ0)
π

+
η′(λ0)

π
∆λ + O((∆λ)2)

}

= lim
∆λ→0

(2∆λ)−1
(

2
η′(λ0)

π
∆λ + O((∆λ)2)

)

=
η′(λ0)

π
.

�

Note. The ‘clamping points’ in (2.2) were chosen to be at x = 0 and x = N merely for
the sake of convenience. From a physical point of view, the choice u(− 1

2N) = u( 1
2N) = 0

might seem more natural. Of course, our approach is invariant with respect to such
translation of coordinates.

Theorem 5.2 is well known in the spectral theory of operators with periodic coefficients
(see, for example, [7]). The procedure described above suggests an alternative way for
its derivation by means of a classical method of asymptotic expansion. The resulting
system of recurrence relations contains essential information about the spectrum of the
corresponding differential operator.

6. Concluding remarks

(1) The above asymptotic technique can be implemented in order to prove formula (5.7)
in a number of other problems of mathematical physics. In particular, the above
holds for the ‘electric conduction’ operator (d/dx)a(x)d/dx + λ, where a(x) is a
positive 1-periodic function representing conductivity of the material and for the
Hill–Schrödinger operator −d2/dx2 + V (x) − λ with a periodic potential V (x).

(2) One of the strengths of our method is that it is equally applicable in the case of
other types of boundary conditions for the operator on the bounded interval. For
example, one could consider periodic, skew-periodic or Sturm–Liouville boundary
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conditions at the endpoints of the segment [0, N ], and obtain the formula (5.7) in
those settings as well (cf. [6,10,13]).

(3) An asymptotic expansion of the type (3.1) was considered in the paper [2] in
connection with a study of high-frequency eigenmodes of the equation for a string
with rapidly oscillating periodic density,

u′′(x) + νq(x/ε)u(x) = 0, u(0) = u(1) = 0, (6.1)

as ε → 0. Making the change of variable y = x/ε in (6.1), we arrive at the problem

u′′(y) + νε2q(y)u(y) = 0, u(0) = u(ε−1) = 0.

In the paper [2], the above ansatz is used to investigate the behaviour of the
eigenvalues and the corresponding eigenfunctions when νε2 → 0; the same authors
in [3] study the case νε2 → ∞. Thus our present work can also be viewed as an
attempt to ‘fill the gap’ between these two extreme situations.

(4) The series (3.1) can be viewed as a ‘local’ analogue of the classical WKB-type
expansion, which has been used to study the asymptotics of eigenfunctions for
large λ (see, for example, [3,8,12]).
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