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Abstract

If A is a commutative C*-algebra and if ¢ : A — C is a continuous multiplicative functional such that ¢(x)
belongs to the spectrum of x for each x € A, then ¢ is linear and hence a character of A. This establishes
a multiplicative Gleason—Kahane—Zelazko theorem for C(X).
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1. Introduction

Let A be a complex Banach algebra with identity element 1, invertible group G(A)
and spectrum o(x) :={1€C: A1 — x ¢ G(A)} for each x € A. A famous result in
the theory of Banach algebras, colloquially known as the Gleason—Kahane—Zelazko
theorem, says that any linear functional ¢ : A — C which satisfies ¢(x) € o(x) for each
x € A is automatically multiplicative and hence a character of A. (For an elementary
proof, due to Roitman and Sternfeld, see [1, Theorem 4.1.1].) It is natural to ask
whether one can obtain a multiplicative version of the Gleason—Kahane—Zelazko
theorem. A first result in this direction was obtained by Maouche in the paper [2].
Specifically, Maouche showed that if A is a complex and unital Banach algebra
and if ¢ : A — C is a multiplicative functional on A such that ¢(x) € o(x) for each
x € A, then ¢ generates a corresponding character i, on A which agrees with ¢ on
G1(A), the connected component of G(A) containing the identity. He also gave an
example in the context of a commutative C*-algebra (that is, some C(X)) which shows
that ¢ is not necessarily equal to its induced character ¥4 and, in particular, that ¢
need not be linear. (It follows easily that ¢ is homogeneous, so the difficulty lies
with additivity.) With Maouche’s example, the current authors made the important
observation that the particular functional ¢ is not continuous and so, in an attempt
to obtain a multiplicative Gleason—-Kahane—Zelazko theorem, it would not seem
unreasonable to include continuity as part of the assumptions on ¢ as well (and even
then a proof could be hard). With the classical Gleason—Kahane—Zelazko theorem,
continuity of ¢ is not required and is part of the conclusion rather than the assumption.
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In [3, Section II], the current authors, together with Schulz, made some progress in
the case where A is a C*-algebra. Amongst a number of results, two of the highlights
are stated here as Theorems 1.2 and 1.4. For some results concerning a multiplicative
version of the related Kowalski—Stodkowski theorem, one may consult [4].

The aim of this short paper is to establish the multiplicative Gleason—Kahane—
Zelazko theorem for C(X) (a proof of which had eluded us for some time). Our
arguments, which are elementary but far from trivial, are similar in spirit to Roitman
and Sternfeld’s proof of the classical Gleason—Kahane—Zelazko theorem.

The following terminology will be convenient.

DeriniTioN 1.1. If A is a complex and unital Banach algebra, then a function¢: A —» C
is called a spectral functional on A if ¢(x) € o(x) for each x € A.

Tueorem 1.2 [3, Corollary 3.3 and Theorem 3.12]. Let A be a C*-algebra. Then
every continuous multiplicative spectral functional ¢ : A — C generates a unique
corresponding character gy on A which agrees with g on the closure of G(A). In
particular, if A has stable rank one, then ¢ is a character of A.

We point out the following instance of Theorem 1.2, which will be useful in the
next section.

CoroLLARY 1.3. Let A be a C*-algebra. Then every continuous multiplicative spectral
functional ¢ : A — C generates a unique corresponding character yrg on A which
agrees with 4 on the collection of self-adjoints.

TueOREM 1.4 [3, Theorem 3.13]. Let A be a von Neumann algebra and let ¢ : A — C
be a continuous multiplicative spectral functional on A. Then ¢ is a character of A.

2. Multiplicative spectral functionals on C(X)

We proceed through a series of lemmas, leading to the proof of Theorem 2.5.

Lemma 2.1. Let A be a commutative C*-algebra and let ¢ : A — C be a continuous
multiplicative spectral functional on A. If s is the corresponding character of ¢, then
ker ¢ = ker 4.

Proor. By Corollary 1.3, y4(x) = ¢(x) for all self-adjoint elements x of A. Then, since

P(OP(x™) = P(xx™) = hg(xx™)
= YW (X™) = Yp (W g(x)
= ()P,
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it follows that ¢(x) = 0 implies 4(x) = 0. For the reverse implication, suppose that
Yy(x) = 0. Consider qb(xe‘””*), where n € N. Using Theorem 1.2, we first calculate

P(xe™ ) = p(X)p(e ™)

= p(XWple™™)
— ¢(x)e—m//¢(x)l//¢(x*)

= ¢(x).
On the other hand, the continuous functional calculus implies that, for each n € N,

—nlal?

o(xe™™ ) = {ae ta € o(x)}

and hence, since ¢ is a spectral functional, there exists a sequence («,) in o(x) such
that
¢(xe_"”*) = ane_"lc'"lz.

Then, since the spectrum is compact, we may assume without loss of generality that
the sequence (a,) is convergent; let @ be the limit. If & = 0, then

0 < ¢ = lanle™™ " < Ja|
implies that ¢(x) = 0. If @ # 0, then
0 = limla,le ™" = |p(x). o

The following result, which extends Lemma 2.1, will play a crucial role in the proof
of the main result.

Lemma 2.2. Let A be a commutative C*-algebra and let ¢ : A — C be a continuous
multiplicative spectral functional. Then |p(x)| = 4(x)| for each x € A.

Proor. By Lemma 2.1, we may assume that x ¢ ker ¢ = ker y4. For each n € N, define
A, by

A, = ¢(xe—n(x—l//¢(X)l)(X* —W(x)l))‘

As in the proof of Lemma 2.1, ¢(x) = A, = ape "l VsOF for some converging
sequence («,) in the spectrum of x. Let a be the limit of the sequence (a,). If
« # Yy(x), then lim A, = 0 = ¢(x), which gives a contradiction. Thus, & = 4(x) and
50 |¢(x)| < |a,| implies that [¢(x)| < [J4(x)]. Suppose that O < |¢(x)| < [iy4(x)| for some
x€A. By Lemma 2.1 and the first part of the proof, 0 < |¢(x*)| < |y4(x*)|. Using
Corollary 1.3 again,

IOl < g (Ol g ()] = g (xx™)
= 1p(xx™)| = p(x)] 1 (x™),

which is absurd. So, we may conclude that [¢(x)| = [y4(x)| for each x € A. O
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Lemma 2.3. Let A be a commutative C*-algebra and let ¢ : A — C be a continuous
multiplicative spectral functional. If ¢(x) = 0, then ¢(1 + x) = 1.

Proor. Using Lemma 2.2, we find that 4(x) = 0. The continuous functional calculus
allows us to construct f(x) = (1 + x)e™ € A. Evaluating ¢ at f(x) yields

H(1+x)e”™) = ¢ + x)p(e™)
=¢(1+ x)lﬂ¢(€7|xl) =¢(1+ x)e*h//‘»(x)l
= ¢(1 + x).

From the fact that ¢((1 + x)e™™) € o((1 + x)e™™), we deduce, as before, that there
exists @ € o(x) such that

H(A + x)e™™) = (1 + @)e ™ = ¢(1 + x).
Therefore, using Lemma 2.2,
11+ ale™™ =|p(1 + )| = s +x)| = 1= |1 +a| =€

It follows that
dl=1+a|l<1+|a| <€,

from which 1 + |a| = ¢/ forces @ = 0 and hence ¢(1 + x) = (1 + 0)e™® = 1. o

Lemma 2.4, Let A be a commutative C*-algebra and let ¢ : A — C be a continuous
multiplicative spectral functional. Then ¢(1 + x) = 1 + J4(x).

Proor. If y4(x) = —1, then, by Lemma 2.1, yy(1 +x) =0 =1 + x) = 1 + ih4(x).
Suppose that 4(x) # —1. Then
Yo(—Pp(01 +x) = 0 = ¢(—y(0)1 + x).
Using Lemma 2.3 and the fact that ¢ is homogeneous, we infer that
¢+ x) = p(1 + Yp()1 = Yp(D)1 + x)
= (A1 + y(x)) + x = hy(X)1)

w01
—(1+ 1//¢(x))¢(1 + %)

=1+ ¢/¢(x). [m]

THEOREM 2.5. Let A be a commutative C*-algebra and let ¢ : A — C be a continuous
multiplicative spectral functional. Then ¢ is a character of A.

Proor. It suffices to prove that ¢ agrees with ¢4 on all of A. Let x € A be arbitrary and
let n be a positive integer. Then, using Lemma 2.4,

1 1 1
o(A/n+x) = Zgb(l +nx) = ;(1 + ng(x)) = p + Yrp(x). 2.1

Letting n — oo on both sides of (2.1) and using the fact that ¢ is continuous at x € A,
we deduce that ¢(x) = 4(x). O
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By the Fuglede—Putnam—Rosenblum theorem [ 1, Theorem 6.2.5], the bicommutant
of a normal element of A is a commutative C*-subalgebra of A and so, together
with the fact that ¢ is multiplicative, we also have the following improvement on [3,
Corollaries 3.8 and 3.10].

CoroLLARY 2.6. Let A be a C*-algebra and let ¢ : A — C be a continuous
multiplicative spectral functional. Then ¢ agrees with 4 on the closure of the set
of all finite products of normal elements.
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