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1. Introduction

Due to its applications in computer science, the theory of finite semigroups saw significant
advancements in the 1960s driven by developments in the theory of finite automata. This
connection with finite semigroups was first explored to obtain computational results.
In parallel, combinatorial and algebraic properties of finite semigroups were studied.
Eilenberg [6] established a correspondence between certain families of rational languages
and certain classes of finite semigroups, called pseudovarieties, which provided a suitable
framework for the bridges between the two theories.

There are many important pseudovarieties, often constructed from others by apply-
ing suitable operators. Some natural operators have been extensively studied. In this
paper, we introduce a new one which constructs the subpseudovariety generated by the
idempotent-generated semigroups of a given pseudovariety.

Several works have been dedicated to idempotent-generated semigroups. It is well
known that any finite semigroup embeds into a finite regular idempotent-generated semi-
group; this was proved by Howie [8] using full transformations semigroups. Howie [9]
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also proved that the full transformations subsemigroup consisting of all order-preserving
and contractive full transformations is idempotent generated. Laradji and Umar [10]
improved this result and showed that, in fact, every order-preserving and contractive full
transformation is expressible as a product of idempotents of the same type and with the
same range. The analogous result for the subsemigroup of contractive full transformations
also holds [10].

On the other hand, Pastijn [13] proved that every completely simple semigroup embeds
into an idempotent-generated one. Furthermore, Petrich [14] presents a concrete model
of the embedding due to Pastijn [13] of a semigroup into an idempotent-generated Rees
matrix semigroup that preserves some properties.

In this paper, while we do not obtain a complete characterization of the pseudovarieties
which are generated by their idempotent-generated semigroups, we prove that many
familiar pseudovarieties have this property. The techniques used for this purpose include
the representations of free profinite semigroups over R, J and DA due to Almeida and
Weil [3], Almeida [1], and Moura [12], respectively. In the cases of R and J, we also
observe an alternative approach based on some results concerning transformations of a
finite chain due to Pin [15] and Straubing [19] and the results concerning idempotent-
generated subsemigroups of full transformations from Howie and from Laradji and Umar.
On the other hand, the work of Petrich [14] allows us to show that the pseudovarieties
H̄ (where H is a pseudovariety of groups), CS and CR also have this property.

The new approach in the case of the pseudovarieties R and J is justified, as it gives
a significant improvement in terms of the generator rank and the idempotent generator
rank. More generally, we show that both ranks are infinite for every pseudovariety in the
interval [J,DS ]. We also prove that every semigroup in the subpseudovariety generated
by all n-generated members of any of the pseudovarieties J, R, L, DA divides a semigroup
in the same pseudovariety generated by at most n + 1 idempotents. We compare these
results with the works of Umar [20], and Laradji and Umar [10] concerning the ranks
and idempotent-ranks of the subsemigroups of all contractive full transformations, and
contractive and order-preserving full transformations, respectively. We observe that, in
fact, we decrease the number of idempotent generators of the idempotent-generated semi-
groups when we use the embeddings of the semigroups of R and J presented in this paper.

The paper is organized as follows. In § 2, we recall some basics of the theory of pseu-
dovarieties of semigroups and profinite semigroups and we introduce some notation con-
cerning operators on pseudovarieties. We also present a list of the pseudovarieties, and
bases of pseudoidentities defining them, that will be used in our study. In § 3, we observe
some properties of the operator ·E , we determine some pseudovarieties of the form VE

and we give a short introduction to the main question addressed in the paper: what are
the pseudovarieties that are generated by their idempotent-generated elements?

We present in the following sections some pseudovarieties having this property: in § 4
using the embedding in a Rees matrix semigroup constructed by Petrich, and in § 5 using
representations of the free profinite semigroup.

Finally, in § 6 we determine the generator rank and idempotent generator rank of
every pseudovariety in the interval [J,DS ] and we also determine a lower bound for
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the idempotent generator rank of the subpseudovarieties generated by all n-generated
members of any pseudovariety in the interval [J,DA]. In combination with the results of
§ 5, we improve the last result, showing that the lower bound is the exact value in the case
of the pseudovarieties J, R, L, DA. To introduce some relevant results in our study, we
develop some existing techniques that need to be recalled. Rather than including them
in § 2, we briefly introduce them when needed.

2. Preliminaries

We assume that readers are acquainted with notions concerning pseudovarieties of semi-
groups and profinite semigroups. We briefly recall some basics and we refer the reader
to [1,2,15] for detailed information.

For a semigroup S, let S1 be the monoid obtained by adjoining a neutral element 1
to S in case S does not already possess one, and S1 = S otherwise. We denote by E(S)
the set of idempotents of S and by 〈E(S)〉 the subsemigroup of S generated by E(S).
For s ∈ S, sω denotes the unique idempotent in the subsemigroup generated by s. We
say that a semigroup S divides a semigroup T , and we write S ≺ T , if there exists a
surjective homomorphism of a subsemigroup of T onto S.

A pseudovariety of semigroups is a class of finite semigroups that is closed under
taking subsemigroups, homomorphic images and finite direct products. Equivalently, a
pseudovariety of semigroups is a class of finite semigroups closed under taking division
and finite direct products. For example, S is the pseudovariety of all finite semigroups.

There are many ways to construct new pseudovarieties from known ones, one of which
is by applying operators to pseudovarieties. For example, given a pseudovariety V , the
following classes of finite semigroups are pseudovarieties:

• EV consists of all S ∈ S such that 〈E(S)〉 ∈ V ;

• DV consists of all S ∈ S such that, for every regular D-class D of S, D ∈ V ;

• for a pseudovariety H of groups, H̄ consists of all S ∈ S such that every subgroup
G of S belongs to H.

We also have other types of operators that construct new pseudovarieties by describing
the generators. The new pseudovariety is then the smallest pseudovariety containing
such semigroups. In this way, we introduce the operator ·E , which is the topic of this
paper. Given a pseudovariety V , we define VE as the pseudovariety generated by the
subsemigroups generated by the idempotents of each member of V , i.e.

VE = 〈〈E(S)〉 | S ∈ V 〉.

Note that VE ⊆ V as the indicated generators of VE belong to V .
Because it will be useful in our study, we now present an obvious observation about

the subsemigroup generated by a subset of idempotents of a given semigroup.

Lemma 2.1. Let S ∈ S and X ⊆ E(S). Then 〈E〈X〉〉 = 〈X〉. In particular, we have
〈E〈E(S)〉〉 = 〈E(S)〉 and 〈E〈E(D)〉〉 = 〈E(D)〉 for every regular D-class D of S.

https://doi.org/10.1017/S0013091509001795 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001795


548 J. Almeida and A. Moura

A semigroup equipped with a topology for which the multiplication is a continuous
function is called a topological semigroup. Finite semigroups are endowed with the dis-
crete topology. A topological semigroup S is a profinite semigroup (respectively, a pro-V
semigroup) if it is a compact semigroup which is residually finite (respectively, residually
in V ), which means that, for any two distinct elements of S, there exists a continuous
homomorphism into a finite semigroup (respectively, into a member of V ) that separates
them. Equivalently, profinite semigroups are compact 0-dimensional, which means that
the topology has an open basis consisting of clopen sets. The elements of a pseudovariety
V are pro-V semigroups.

We denote by Ω̄AV the free pro-V semigroup on A, which is the unique (up to isomor-
phism of topological semigroups) pro-V semigroup such that every mapping µ : A → S

into a pro-V semigroup S can be extended to a unique continuous homomorphism
µ̂ : Ω̄AV → S such that µ̂ ◦ ι = µ, where ι : A → Ω̄AV is the natural generating function
(i.e. its image generates a dense subsemigroup of Ω̄AV ). The elements of Ω̄AV are called
implicit operations over V . For u ∈ Ω̄AV the sequence (un!)n converges and we denote
the limit by uω, which is the unique idempotent in the closed subsemigroup generated
by u.

An equality of the form u = v, with u, v ∈ Ω̄AS , is called a pseudoidentity and
|A| is its arity. The pseudoidentity is valid in a profinite semigroup S, and we write
S |= u = v, if, for every continuous homomorphism ϕ : Ω̄AS → S, we have ϕ(u) = ϕ(v).
It is easy to see that the validity of a pseudoidentity in a finite semigroup is preserved
under taking homomorphic images, subsemigroups and finite direct products. Conversely,
Reiterman’s Theorem [17] says that every pseudovariety is defined by some set of finitary
pseudoidentities. We end this section with a list of pseudovarieties that are used in this
paper and some corresponding bases of pseudoidentities defining them:

J = [[(xy)ωx = (xy)ω = y(xy)ω]] J -trivial semigroups;

R = [[(xy)ωx = (xy)ω]] R-trivial semigroups;

L = [[y(xy)ω = (xy)ω]] L-trivial semigroups;

A = [[xω+1 = xω]] aperiodic (or H-trivial) semigroups;

G = [[xω = 1]] groups;

LG = [[(xωy)ωxω = xω]] local groups;

CR = [[xω+1 = x]] completely regular semigroups;

CS = [[xω+1 = x, (xyx)ω = xω]] completely simple semigroups;

RB = [[x2 = x, xyx = x]] rectangular bands;

DA = [[((xy)ωx)2 = (xy)ωx]] regular D-classes are aperiodic semigroups;

DG = [[(xy)ω = (yx)ω]] regular D-classes are groups;

DO = [[(xy)ω(yx)ω(xy)ω = (xy)ω]] regular D-classes are orthodox semigroups;

DS = [[((xy)ωx)ω+1 = (xy)ωx]] regular D-classes are semigroups.

We reserve the letter H to denote an arbitrary pseudovariety of groups.
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3. Properties of the operator ·E

We now establish some basic properties of the operator ·E . We start by observing that the
definition given for VE , where V is a pseudovariety, is equivalent to VE being generated
by the idempotent-generated semigroups of V .

Lemma 3.1 and its corollaries below can be extracted from [4], where the operators ·E
and E· are studied from the viewpoint of congruences on the lattice of pseudovarieties of
finite semigroups. The proofs are presented here for the sake of completeness.

Lemma 3.1. The operator ·E has the following properties, where V and W are arbi-
trary pseudovarieties:

(i) VE = 〈T ∈ V | T = 〈E(T )〉〉;

(ii) V ⊆ W implies VE ⊆ WE ;

(iii) (V ∩ W )E ⊆ VE ∩ WE ;

(iv) (VE )E = VE ;

(v) (EV )E = VE ;

(vi) E (VE ) = EV .

Proof. (i) Let T = 〈E(S)〉 with S ∈ V . Since 〈E(S)〉 is a subsemigroup of S, it follows
that T ∈ V . By Lemma 2.1, we have that 〈E(T )〉 = 〈E〈E(S)〉〉 = 〈E(S)〉 = T . Hence,
the generators of the two pseudovarieties are the same.

(ii) This is immediate from the definition of VE , and (iii) follows from (ii).

(iv) The direct inclusion follows from VE ⊆ V and (ii). Conversely, since the generators
of VE are the semigroups 〈E(S)〉, with S ∈ V , it suffices to show that 〈E(S)〉 ∈ (VE )E ,
for all S ∈ V . Indeed, since 〈E(S)〉 ∈ VE , by Lemma 2.1 and the definition of ·E we have
〈E(S)〉 = 〈E〈E(S)〉〉 ∈ (VE )E .

(v) We have (EV )E = 〈〈E(S)〉 | S ∈ EV 〉 = 〈〈E(S)〉 | 〈E(S)〉 ∈ V 〉. Let us see
that the generators of (EV )E are in VE . In fact, as 〈E(S)〉 ∈ V , Lemma 2.1 yields
〈E(S)〉 = 〈E〈E(S)〉〉 ∈ VE . The reverse inclusion follows from V ⊆ EV and (ii).

(vi) Since VE ⊆ V , applying the increasing operator E·, we obtain E (VE ) ⊆ EV . If
S ∈ EV , i.e. 〈E(S)〉 ∈ V , then Lemma 2.1 gives that 〈E(S)〉 = 〈E〈E(S)〉〉 is one of the
generators of VE so that, in particular, S ∈ E (VE ). �

A natural question, for which we have no answer, is whether we always have equality
in part (iii) of Lemma 3.1. More generally, one may ask whether the operator ·E preserves
arbitrary intersections, while it is easy to see that it preserves arbitrary joins in the lattice
of all pseudovarieties of finite semigroups. The more general question can be viewed as
one of many similar questions arising from [4]. See [16] for related questions.

Corollary 3.2. Let V and W be pseudovarieties such that VE = V and EV = EW .
Then V ⊆ W .
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Proof. Applying the operator ·E to EV = EW and using property (v) of Lemma 3.1,
it follows that V = VE = (EV )E = (EW )E = WE ⊆ W . �

Corollary 3.3. Given two pseudovarieties V and W , the following conditions are
equivalent:

(a) VE = WE ;

(b) EV = EW ;

(c) VE ⊆ W ⊆ EV .

Proof. (a) ⇒ (b). From (a) and property (vi) of Lemma 3.1, it follows that EV =
E (VE ) = E (WE ) = EW .

(b)⇒ (c). The second inclusion in (c) follows from W ⊆ EW = EV . To show the
first inclusion, we recall that, by properties (iv)–(vi) of Lemma 3.1, ((EV )E )E = (EV )E
and E ((EV )E ) = EV = EW . Hence, by Corollary 3.2, (EV )E ⊆ W . Moreover, also by
property (v) of Lemma 3.1, VE = (EV )E ⊆ W .

(c) ⇒ (a). Applying the operator ·E to (c), by properties (ii), (iv) and (v) of Lemma 3.1,
we obtain VE = (VE )E ⊆ WE ⊆ (EV )E = VE and, therefore, WE = VE . �

In other words, given a pseudovariety V , the equations XE = VE and EX = EV in the
variable X are equivalent and the class of its solutions is the interval [VE ,EV ].

It is natural to ask: for which pseudovarieties V is VE equal to V ? As an obvious exam-
ple, for every pseudovariety V of bands, since its semigroups consist only of idempotents,
we have VE = V . But, there are pseudovarieties that do not satisfy the equality V = VE .
Let us give some examples.

Example 3.4. For every pseudovariety H of groups, we have HE = I , where I =
[[x = y]] is the trivial pseudovariety.

Example 3.5. It is well known that LG is the class of all finite semigroups such that
all idempotents are J -equivalent and, therefore, they are in the minimal ideal of the
semigroup. So we have (LG )E = 〈〈E(S)〉 | S ∈ LG 〉 ⊆ CS � LG .

Example 3.6. It is well known that RB ∨G = CS ∩O, where O = [[(xωyω)ω = xωyω]]
is the class of all finite orthodox semigroups. So we have (RB ∨ G )E = (CS ∩ O)E = RB.

The notion of E -local pseudovariety, introduced in [11], enables us to determine (DO)E
and (DH)E , as we see in the following examples. Recall that a pseudovariety V is E -local
if it satisfies the following property: given S ∈ S , 〈E(S)〉 ∈ V if and only if 〈E(D)〉 ∈ V ,
for every regular D-class D of S.

Example 3.7. Let S ∈ DH. Since every regular D-class D of S is a group, it follows
that 〈E(D)〉 is trivial and, therefore, 〈E(D)〉 ∈ J. Since J is E -local [11, Example 3.6],
we have 〈E(S)〉 ∈ J. Hence, J ⊆ DH ⊆ EJ, where the first inclusion is trivial. Thus, it
follows from Corollary 3.3 that (DH)E = JE = J, where the last equality follows from
Corollary 3.14, which is proved below.
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Example 3.8. We observe that DO ⊆ EDA. Indeed, for S ∈ DO and a regular D-class
D of S, 〈E(D)〉 ∈ DA. Since DA is E -local [11, Proposition 3.5], we have 〈E(S)〉 ∈ DA.
Hence, S ∈ EDA. Since DA ⊆ DO ⊆ EDA, it follows from Corollary 3.3 that (DO)E =
(DA)E = DA, where the last equality follows from Corollary 5.6.

In an attempt to identify the pseudovarieties that are generated by their idempotent-
generated elements, we present the results below and in §§ 4 and 5. We start by suggesting,
as an easy exercise, the result from Howie [8] that states that any finite semigroup embeds
into a finite regular idempotent-generated semigroup, so that, in particular, we have the
following result.

Proposition 3.9 (Howie [8]). SE = S .

On the other hand, Pin [15] and Straubing [19] obtained the following representation
theorems for R-trivial monoids and J -trivial monoids, respectively.

Theorem 3.10 (Pin [15, Theorem IV.3.6]). A finite monoid is R-trivial if and
only if it is a submonoid of EX , the submonoid consisting of all contractive total trans-
formations of some finite chain X.

Theorem 3.11 (Straubing [19]). A finite monoid is J -trivial if and only if it divides
CX , the submonoid of all order-preserving and contractive transformations of some finite
chain X.

Combining these theorems with the following results about idempotent-generated sub-
semigroups of total transformations due, respectively, to Laradji and Umar [10] and to
Howie [9], we obtain Corollary 3.14.

Theorem 3.12 (Laradji and Umar [10, Theorem 1.3]). The monoid EX is idem-
potent generated.

Theorem 3.13 (Howie [9, Theorem 3.2]). The monoid CX is idempotent gener-
ated.

Corollary 3.14. The equality VE = V holds if V is any of the pseudovarieties R, L, J.

Similarly, using embeddings into idempotent-generated semigroups of the same type
from Pastijn [13] concerning completely simple semigroups and completely regular semi-
groups, we obtain the following results.

Proposition 3.15 (Pastijn [13, Corollary 3.7]). (CS)E = CS .

Proposition 3.16 (Pastijn [13, Theorem 3.5]). (CR)E = CR.

Using Proposition 3.15 we may establish an equality in Example 3.5, as we see below.

Example 3.17. By Proposition 3.15 and property (ii) of Lemma 3.1 and since CS ⊆
LG , it follows that CS = (CS)E ⊆ (LG )E . Thus, and by Example 3.5, we have (LG )E =
CS .
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In § 4 we return to the last two results and we show how to prove them using the
general construction of Petrich [14]. In § 5, we prove that the pseudovarieties R, L and J
are fixed points of the ·E operator by a different approach, namely by using implicit oper-
ations. While, using transformation semigroups, the number of idempotent generators of
the idempotent-generated semigroup depends on the cardinality of the embedded semi-
group, in this method the number of idempotent generators of the idempotent-generated
semigroup is controlled by the number of generators of the embedded semigroup. How-
ever, for the case V = R, the first method enables us to show that, in fact, there exists an
embedding of an R-trivial semigroup into an idempotent-generated R-trivial semigroup.
In the other cases, we just prove a division property. The second method is also used to
prove the equality for the pseudovariety DA, while we do not know how to apply the first
method.

4. An embedding into a Rees matrix semigroup

In [5] one can find a proof of Howie’s result that every (finite) semigroup can be embedded
into an idempotent-generated (finite) semigroup. The proof is attributed to J.-F. Perrot
and depends on a construction that was later used and extended by Pastijn [13] to obtain
such embedding results within special classes of semigroups. Petrich [14] reformulated
Perrot’s construction in a new notation that made it considerably more transparent. We
reformulate Pastijn’s embedding results for completely simple [13, Corollary 3.7] and
completely regular [13, Theorem 3.5] semigroups in Petrich’s language.

We briefly recall the construction of this embedding. Let S be a semigroup (not nec-
essarily finite). We consider the Rees matrix semigroup ΦS = M(S1, S1, Σ; Q), with
Σ = {σ, τ}, where σ and τ are two distinct symbols that are not in S, and Q = (qαs) is
the sandwich matrix with entries

qσs = 1, qτs = s, s ∈ S1.

The mapping
ϕS : s → (1, s, σ), s ∈ S,

embeds S into ΦS, although it is not the unique embedding from S into ΦS. Petrich
determined the set of idempotents of ΦS, which is

E(ΦS) = {(s, t, σ) ∈ ΦS | t ∈ E(S1)} ∪ {(s, t, τ) ∈ ΦS | t = tst}, (4.1)

and described Green’s relations on ΦS as follows.

Lemma 4.1 (Petrich [14, Lemma 4.3]). Let (s, t, α), (u, v, β) ∈ ΦS. Then

(i) (s, t, α) L (u, v, β) if and only if t L v and α = β,

(ii) (s, t, α) R (u, v, β) if and only if s = u and t R v,

(iii) (s, t, α) H (u, v, β) if and only if s = u, t H v, and α = β,

(iv) (s, t, α) D (u, v, β) if and only if t D v.
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Thus, ΦS has the same number of D-classes as S1 and each D-class D′ of ΦS, which
corresponds to a D-class D of S, has the following number of L-classes and R-classes,
respectively: 2 · |L-classes of D| and |S1| · |R-classes of D|. Each H-class of ΦS has the
same number of elements of the corresponding H-class in S1.

It is obvious that if S is a finite semigroup, so is ΦS. Note that ΦS is generated by
the set of idempotents {(s, 1, σ) | s ∈ S1} ∪ {(1, 1, τ)}, which gives an immediate proof
of the result from Howie (see Proposition 3.9). Petrich also showed that this embedding
preserves other properties of S [14, Theorem 5.4]. In particular, he proves the following
corollary.

Corollary 4.2 (Petrich [14, Theorem 5.4]). Every semigroup of H̄, where H is a
pseudovariety of groups, embeds into an idempotent-generated semigroup of H̄.

Choosing some specific subsemigroups of ΦS, we can prove the following results.

Proposition 4.3. Every semigroup of CS embeds into an idempotent-generated semi-
group of CS .

Proof. Note that, if S ∈ CS , then ΦS has at most two D-classes: the one corresponding
to D, D′, and the other corresponding to the neutral element added to S. If we show that
D′ is generated by its idempotents, then it suffices to consider the embedding ϕ′

S : s �→
(1, s, σ) from S into the semigroup D′.

Let (1, s, σ), with s ∈ S, be any element of ϕS(S) and let e ∈ E(S) be such that e H s.
Then one can compute (1, e, τ) · (s, e, σ) = (1, s, σ) with (1, e, τ), (s, e, σ) ∈ E(D′). Hence,
the group H-class {(1, s, σ) | s ∈ S} is contained in 〈E(D′)〉. Since all H-classes of 〈E(D′)〉
have the same number of elements, we conclude that 〈E(D′)〉 = D′. Hence, S embeds
into 〈E(D′)〉, which is an idempotent-generated completely simple semigroup. �

Proposition 4.4. Every semigroup of CR embeds into an idempotent-generated semi-
group of CR.

Proof. Let S ∈ CR. We want to determine an idempotent-generated completely reg-
ular subsemigroup of ΦS where S embeds. Let H be an H-class of S. Since H is a group,
the H-classes of ΦS of the form {s} × H × {σ}, with s ∈ S1, and {1} × H × {τ} are
groups. Let t be any element of S and let Ht be the H-class of S containing this element.
We observe that the H-classes of the form {s} × Ht × {τ}, with s �J t, are groups. Let
e ∈ E(S) be such that e H t. Then there exist x, y ∈ S such that e = xsy = exsye.
Hence, e L sye and, since Le ∩ Rsye is a group, we have that esye H e and es R e. By
Green’s Lemma, it follows that

µs : Ht → Hts

u �→ us

is a bijection. Let v ∈ Ht be such that vs is the idempotent of Hts. Since vsv H v

and µs(vsv) = vsvs = vs = µs(v), then vsv = v and (s, v, τ) is the idempotent of
{s} × Ht × {τ}.
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Now, we observe that if an H-class of ΦS of the form {s} × Ht × {τ} is a group, then
s �J t. Thus, if there exists u ∈ Ht such that (s, u, τ) is an idempotent, then usu = u,
and so s �J u H t. So, we have identified all maximal subgroups of ΦS.

We consider the subsemigroup T of ΦS generated by the following idempotents:

(s, t, σ) with t ∈ E(S1) and s �J t; (s, t, τ) with t = tst.

Basically, we chose all idempotents of the R-classes whose H-classes are groups. Thus, the
product of any two idempotents in the same D-class is also in this D-class and, specifically,
in an H-class containing an idempotent of the set of generators. Let us see what the
product is of two idempotents of the set of generators that are not in the same D-class. Let
(s, t, α) and (u, v, β) be two such idempotents. We have (s, t, α) · (u, v, β) = (s, tqαuv, β).
As s �J t, we have s �J tqαuv. Hence, this product is in an H-class that contains an
idempotent of the set of generators of T .

Note that the H-classes of the form {1} × H × {σ}, where H is an H-class of S1 are
in T . In fact, given a ∈ S1, we have (1, a, σ) = (1, e, τ) · (a, e, σ), where e ∈ E(S1) is
such that e H a, and (1, e, τ) and (a, e, σ) are idempotents of T . It follows that T is the
subsemigroup of ΦS consisting of the R-classes of ΦS whose H-classes are groups.

Hence, T is a completely regular semigroup and ϕ′′
S : s �→ (1, s, σ) is an embedding of

S into T . �

In the above proof, we may reduce the choice of the idempotents and we may consider
the subsemigroup of T generated by the following idempotents:

(1, e, τ), (a, e, σ) with a ∈ S and e ∈ E(S) such that e H a.

This subsemigroup is also a union of R-classes of ΦS whose H-classes are groups; the
H-classes of the form {1} × H × {σ}, where H is an H-class of S1, are also in this
subsemigroup. However, to simplify the proof, we considered the subsemigroup T .

Example 4.5. Consider the completely regular semigroup

S = 〈a, b, c, d | a3 = a, b2 = b, c3 = c, d2 = d, ab = ba, cb = bc, ada = a,

ac = ca = bd = db = cd = dc = 0〉.

We present in Figure 1 a D-class of ΦS to illustrate the distribution of the idempotents.
We also observe that T consists of the R-classes of ΦS whose H-classes are groups, as
we have mentioned previously.

Corollary 4.6. The pseudovarieties H̄, CS and CR satisfy the equality VE = V .

When we work with the pseudovarieties DS and DA, and since the regular D-classes
of the semigroups of these pseudovarieties are completely simple semigroups, one may
ask whether the construction used in Proposition 4.4 may lead to a proof of existence of
an embedding from every semigroup of any of these pseudovarieties into an idempotent-
generated semigroup of the same pseudovariety. However, in the following example, we
observe that this is not the case.
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Figure 1. An embedding for a completely regular semigroup

Example 4.7. Consider the semigroup S = 〈a | a3 = a2〉. We look at the subsemi-
group T of ΦS generated by the idempotents of the same type as those of Proposition 4.4
(see Figure 2). Note that neither the element (1, a, σ) nor any element of the D-class Da

is in T . We have to choose the idempotent (a, 1, σ) to be a generator of T , but, in that
case, T is no longer an element of DS (and, consequently, of DA).

We end this subsection with no answer for the question: does VE = V for any of the
pseudovarieties DS or DA? In the following section we see that, in fact, the pseudovariety
DA satisfies such equality.

5. Representations by implicit operations

We refer the reader to [2] for detailed information about profinite semigroups and to
standard references for the basics of topology. By an embedding of topological semigroups
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Figure 2. An embedding for a monogenic monoid

we mean a semigroup homomorphism that is simultaneously a homeomorphism with the
image subspace. A clopen subset of a topological space is one that is simultaneously
closed and open.

Theorem 5.1. Let V be a pseudovariety such that, for every n, there exists m such
that Ω̄nV embeds in 〈X〉 for some X ⊆ E(Ω̄mV ). Then VE = V .

Proof. Let V be a pseudovariety satisfying the above conditions. Let S ∈ V and let
ϕ : Ω̄nV → S be a continuous surjective homomorphism. Let µV : Ω̄nV → 〈X〉 ⊆ Ω̄mV
be an embedding, with X ⊆ E(Ω̄mV ). We consider the following diagram:

Ω̄nV
µV ��

ϕ

��

T

φ|T
��

� � �� Ω̄mV

φ

��
S ∈ V φ(T ) ⊆ 〈E(F )〉 F ∈ V

where T is the image of µV .
We claim that there is a family of clopen subsets (Us)s∈S of Ω̄mV , pairwise disjoint,

such that Us ∩ T = µV (ϕ−1(s)). We proceed to prove the claim. For each s ∈ S, let
As = µV (ϕ−1(s)) and A′

s = T \ As. Since {s} is a clopen subset of S, ϕ−1(s) is a clopen
subset of Ω̄nV and µV (ϕ−1(s)) is a clopen subset of T . Since As and A′

s are closed sets
of the closed subspace T of Ω̄mV , As and A′

s are closed subsets of Ω̄mV . Moreover, since
Ω̄mV is compact and zero dimensional, then As and A′

s are, respectively, separated by
some disjoint clopen sets Vs and V ′

s . We choose an arbitrary ordering for the elements of
S: s1, . . . , s|S|. Let Us1 = Vs1 and recursively, for i = 2, . . . , |S|, let Usi

= Vsi
\ (

⋃
j<i Usj

).
Note that, for every i, Usi is also a clopen subset of Ω̄mV and (Us)s∈S is a family satisfying
the claim.
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Since Ω̄mV is a pro-V semigroup and, for all s ∈ S, Us is a clopen subset, there exists
a continuous homomorphism φs : Ω̄mV → Fs with Fs ∈ V such that Us = φ−1

s (φs(Us))
(see [1, 2]). Let φ : Ω̄mV → F =

∏
s Fs be the continuous homomorphism such that

φ = (φs)s∈S . Then Us = φ−1(φ(Us)) for all s ∈ S. We consider the diagram

Ω̄nV
φ ◦ µV

����������
ϕ

��
S ��

ρ
���� φ(T ) � � �� 〈E(F )〉

We show that S is a homomorphic image of φ(T ): more precisely, we show that there
exists ρ : φ(T ) → S such that the diagram commutes. It suffices to show that, for w, z ∈
Ω̄nV , if (φ ◦ µV )(w) = (φ ◦ µV )(z), then ϕ(w) = ϕ(z). Let s1 = ϕ(w), s2 = ϕ(z) and
suppose that s1 �= s2. Since Us1 ∩ Us2 = ∅, we have that φ(Us1) ∩ φ(Us2) = ∅. Now,
µV (w) ∈ µV (ϕ−1(s1)) = Us1 ∩ T and, therefore, φ(µV (w)) ∈ φ(Us1 ∩ T ). Similarly, we
obtain φ(µV (z)) ∈ φ(Us2 ∩ T ). It follows that φ(µV (w)) �= φ(µV (z)).

We conclude that S divides 〈E(F )〉. Since F ∈ V , it follows that 〈E(F )〉 ∈ VE and,
therefore, S ∈ VE . This shows that V ⊆ VE , while the reverse inclusion is always verified.

�

From Theorem 5.1, to conclude that VE = V , it suffices to exhibit an embedding
µV : Ω̄nV → 〈X〉 with X ⊆ E(Ω̄mV ), for every integer n. We do not know if, conversely,
such an embedding always exists in the case when VE = V .

For V ∈ {R, L, J,DA}, we consider the unique continuous homomorphism µV such that

µV : Ω̄nV → Ω̄n+1V

xi �→ xω
i yω,

where y is a new variable and we prove that µV is an embedding. In each case, we depend
heavily on a suitable representation of the profinite semigroup Ω̄nV .

Let us start with the pseudovariety R. We use the representation of implicit operations
over R by means of labelled ordinals due to Almeida and Weil [3]. We briefly recall it. Let
A be an alphabet with |A| = n and let rLO(A) be the set of reduced A-labelled ordinals.
Recall that an A-labelled ordinal is a pair (α, l), where α is an ordinal and l : α → A is a
labelling function. The content of (α, l), c(α, l), is the range of l. The cumulative content
of a limit ordinal β � α, ←−c (β), is the set of all letters a ∈ A such there exists a sequence
(γk)k of ordinals with

⋃
k γk = β, γk < β and l(γk) = a for all k. An A-labelled ordinal

(α, l) is said to be reduced if l(β) /∈ ←−c (β) for each limit ordinal β < α.
Let (α, l) ∈ rLO(A). For each a ∈ A, let γa be the smallest ordinal such that γa < α

and l(γa) = a (i.e. γa is the position of the first occurrence of a). We set γa = 0 if l(γ) �= a,
for all γ < α. Let α1 = max{γa | a ∈ A} (i.e. the first occurrence of the last appearing
letter) and let β1 be such that α = α1+1+β1, with (α1, l1), (β1, m1) ∈ rLO(A), l1 = l|α1

and m1(γ) = l(α1 + 1 + γ), where γ < β1. We call the equality α = α1 + 1 + β1 the
left basic partition of (α, l). We iterate this process while βi �= 0. Let β0 = α, m0 = l
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and βi = αi+1 + 1 + βi+1 with αi+1 and βi+1 constructed in the same way. While
βi �= 0, we obtain ordinals (αi, li) and (βi, mi), with i � 1, where li+1 = mi|αi+1

and
mi+1(γ) = mi(αi+1 + 1 + γ), γ < βi+1. Almeida and Weil showed that

α =
∑
i�1

(αi + 1)

and they define the product in rLO(A) that follows. Let (α, l), (β, m) ∈ rLO(A). If α is
not a limit ordinal, then

(α, l)(β, m) = (α + β, l′), (5.1)

where l′(γ) = l(γ) if γ < α and l′(α + γ) = m(γ) if γ < β. If α is a limit ordinal, then
we write β = β1 + β2, where β1 is the smallest ordinal such that m(β1) /∈ ←−c (α). The
product is given by

(α, l)(β, m) = (α + β2, l
′), (5.2)

where l′(γ) = l(γ) if γ < α and l′(α+γ) = m(β1 +γ) if γ < β2. Almeida and Weil proved
that rLO(A) equipped with this operation is isomorphic to Ω̄nR.

Proposition 5.2. The function µR : Ω̄nR → Ω̄n+1R is an embedding.

Proof. We denote by ψA : Ω̄nR → rLO(A) the isomorphism defined by Almeida and
Weil [3], where |A| = n. Let B = {a, b : a ∈ A} with b /∈ A. We consider the following
diagram:

Ω̄nR
µR ��

ψA

��

Ω̄n+1R

ψB

��
rLO(A)

ν
����� LO(B)

with ν defined by

ν : rLO(A) → LO(B)

(α, l) �→ ((ω + ω)α, l′),

where LO(B) is the set of B-labelled ordinals and

l′ : (ω + ω)α → B,

β �→
{

l(γ) if β = (ω + ω)γ + k with γ < α, k ∈ ω,

b if β = (ω + ω)γ + ω + k with γ < α, k ∈ ω.

We prove that the diagram commutes, i.e. that ν = ψB ◦ µR ◦ ψ−1
A . Let

(
α =

∑
i�1

(αi + 1), l
)

∈ rLO(A).
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Since ψ−1
A , ψB and µR are homomorphisms, we proceed by induction on |c(αi, li)|, which

is finite and less than |c(α, l)|, and we obtain

∏
i�1

(ψ−1
A (αi, li)ai) � µR ��

∏
i�1

(µR(ψ−1
A (αi, li))aω

i bω)

�

ψB

��(
α =

∑
i�1

(αi + 1), l
)�

ψ−1
A

��

(δ, m) =
∑
i�1

(((ω + ω)αi, l
′
i) + (ω + ω, gi))

where ai = mi−1(αi) and

gi : ω + ω → B

β �→
{

ai if β < ω,

b if β = ω + γ with γ < ω.

We want to prove that (δ, m) = ν(α, l) = ((ω + ω)α, l′). Indeed, we have

δ =
∑
i�1

((ω + ω)αi + (ω + ω))

= (ω + ω)α1 + (ω + ω) + (ω + ω)α2 + (ω + ω) + · · ·
= (ω + ω)(α1 + 1 + α2 + 1 + · · · )

= (ω + ω)
∑
i�1

(αi + 1)

= (ω + ω)α,

where the third equality follows from [18, Exercise 1.41], and

m : (ω + ω)α → B

β �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l′i(γ) if β = (ω + ω)
( i−1∑

j=1

(αj + 1)
)

+ γ,

with γ < (ω + ω)αi,

gi(γ) if β = (ω + ω)
( i−1∑

j=1

(αj + 1)
)

+ (ω + ω)αi + γ,

with γ < (ω + ω),

where we set
∑0

j=1(αj + 1) = 0. In the first case, it follows that

m(β) = l′i(γ)

=

{
l′i(δ) if γ = (ω + ω)δ + k, with δ < αi, k ∈ w,

b if γ = (ω + ω)δ + ω + k, with δ < αi, k ∈ w,
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=

{
l(α1 + 1 + · · · + αi−1 + 1 + δ) if γ = (ω + ω)δ + k,

b if γ = (ω + ω)δ + ω + k,

=

{
l(η) if β = (ω + ω)η + k,

b if β = (ω + ω)η + ω + k,

= l′(β),

where η =
∑i−1

j=1(αj + 1) + δ. In the second case, for η =
∑i−1

j=1(αj + 1) + αi, we have

m(β) = gi(γ)

=

{
ai if γ < w,

b if γ = w + δ with δ < w,

=

{
l(α1 + 1 + · · · + αi−1 + 1 + αi) if β = (ω + ω)η + δ,

b if β = (ω + ω)η + ω + δ,

=

{
l(η) if β = (ω + ω)η + δ,

b if β = (ω + ω)η + ω + δ,

= l′(β)

and, therefore, m = l′. It follows that the diagram commutes and ν is a homomorphism
from rLO(A) into rLO(B), where the product involved is the one defined by formu-
lae (5.1) and (5.2). Thus, µR is injective if and only if ν is injective. Let (α, l) and (β, m)
be reduced labelled ordinals such that ν(α, l) = ν(β, m). By [18, Exercise 3.41], we have

(ω + ω)α = (ω + ω)β =⇒ α = β

and
l′ = m′ =⇒ l(γ) = m(γ) for all γ < α =⇒ l = m.

Hence, (α, l) = (β, m) and ν is injective. �

The dual result for the pseudovariety L follows by duality.

Proposition 5.3. The function µL : Ω̄nL → Ω̄n+1L is an embedding. �

Now, we consider the pseudovariety J of J -trivial semigroups. We use the representa-
tion by canonical form of implicit operations over J obtained by the first author [1, § 8.2].
Consider the variety V of type (2, 1) defined by the set of identities

Σ = {(xy)z = x(yz), (xy)ω = (yx)ω = (xωyω)ω, xωx = xω = xxω, (xω)ω = xω}.

We may reduce any term in the variables x1, x2, . . . using the following Noetherian and
confluent system of reduction rules:
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(rr1) to eliminate parentheses concerning the application of the operation of multiplica-
tion;

(rr2) to substitute any subterm of the form tω by uω, where u is the product, in increasing
order of the indices, of the variables occurring in t;

(rr3) to absorb in factors of the form uω any adjacent factors in which only occur variables
of u.

A term of V is called a word if it does not involve the unary operation ·ω, and it is called
idempotent if it is of the form tω, for some term t. The content c(t) of a term t is the set
of variables occurring in t. The factorization in canonical form of a term t is t = t1 · · · tn,
where

(cf1) each ti is a word or an idempotent,

(cf2) each idempotent ti is of the form uω, where u is a product of variables with the
indices in strictly increasing order,

(cf3) given two consecutive idempotents ti and ti+1, the sets c(ti) and c(ti+1) are incom-
parable,

(cf4) two consecutive terms ti and ti+1 are not both words,

(cf5) if ti is a word and ti+1 is an idempotent, then the last letter of ti is not in c(ti+1),

(cf6) if ti+1 is a word and ti is an idempotent, then the first letter of ti+1 is not in c(ti).

Let FnV be the V-free algebra on {x1, . . . , xn}. The semigroup Ω̄nJ may be seen as
an algebra of type (2, 1), where all elements are constructed using the operations of
multiplication and omega power and the variables {x1, . . . , xn}. Then we have a natural
surjective homomorphism

ψ : FnV → Ω̄nJ

xi �→ xi, i = 1, . . . , n,

and [1, Theorem 8.2.7] establishes that ψ is, in fact, an isomorphism. We are now able
to prove the desired proposition.

Proposition 5.4. The function µJ : Ω̄nJ → Ω̄n+1J is an embedding.

Proof. By the above, showing that µJ is injective is equivalent to establishing that

ν : FnV → Fn+1V
xi �→ xω

i yω

is injective. Let w, z ∈ FnV be such that ν(w) = ν(z) and let w = w1 · · ·wm and
z = z1 · · · zn be the respective factorizations in canonical form. We want to determine
the factorizations in canonical form of ν(w) and ν(z). Let i ∈ {1, . . . , m}. Suppose that wi
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is a word, i.e. wi = xi1 · · ·xik
. Then ν(wi) = xω

i1
yω · · ·xω

ik
yω. Note that this factorization

is in canonical form, because it is a product such that two consecutive idempotents have
incomparable contents. Suppose now that wi is an idempotent, i.e. wi = (xi1 · · ·xil

)ω with
i1 < · · · < il. Then ν(wi) = (xω

i1
yω · · ·xω

il
yω)ω = (xi1 · · ·xil

y)ω applying the reduction
rule (rr2). Note that i1 < · · · < il < y (assuming that the new letter y is larger than
any of the others) and, therefore, the last presented factorization of ν(wi) is in canonical
form. Therefore, an idempotent of FnV has as image an idempotent of Fn+1V and a word
of length k has as image a product of 2k idempotents of Fn+1V, in canonical form.

Consider now the product wiwj with j = i+1. Note that, by the definition of canonical
form, wi and wj are not both words. Suppose that wi is a word and wj is an idempotent.
Then

ν(wiwj) = xω
i1y

ω · · ·xω
ik

yω · (xj1 · · ·xjl
y)ω = xω

i1y
ω · · ·xω

ik
(xj1 · · ·xjl

y)ω,

applying the reduction rule (rr3). By hypothesis, xik
/∈ c(wj) and we conclude that the

last factorization of ν(wiwj) is in canonical form. If wi is an idempotent and wj is a
word, or if both wi and wj are idempotents, then we have, respectively, the following
canonical forms for wiwj :

ν(wiwj) = (xi1 · · ·xik
y)ωxω

j1y
ω · · ·xω

jl
yω

and

ν(wiwj) = (xi1 · · ·xik
y)ω(xj1 · · ·xjl

y)ω.

Let ν(w) = w̄1 · · · w̄m′ and let ν(z) = z̄1 · · · z̄n′ be the factorizations in canonical form of
ν(w) and ν(z), respectively. Since ν(w) = ν(z), by [1, Theorem 8.2.8] we have m′ = n′

and w̄i = z̄i, for all i. Three cases can occur for each factor w̄i: w̄i = xω
j , w̄i = yω or

w̄i = (xj1 · · ·xjl
y)ω, for some j, l. Note that the content of the idempotent in the last

case has cardinal bigger than 1, while in the other cases it is 1. We recover w as follows.
In the first two cases, we substitute w̄i by xj and by 1, respectively. In the last case, we
substitute w̄i by (xj1 · · ·xjl

)ω. It is easy to see that the canonical forms of w and z are
recovered and they are equal. It follows that w = z and ν is injective. �

Finally, we treat the case of DA using the representation of implicit operations over DA
by means of labelled orderings obtained by Moura [12], which is similar to the case of
the pseudovariety R. So, we omit most details and we refer the reader to [12] as needed.
In that paper, we proved that there is a bijection between the free profinite semigroup
over DA, Ω̄ADA, and the set of all reduced A-labelled ∗-linear orderings, rLO∗(A).

Proposition 5.5. The function µDA : Ω̄nDA → Ω̄n+1DA is an embedding.

Proof. Since Ω̄ADA and rLO∗(A) are isomorphic, it suffices to prove that the follow-
ing mapping is injective:

ν : rLO∗(A) → rLO∗(B)

(o, l) �→ ((ω + ω∗)2o, l′).
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By [12], ν(o, l) is constructed from (o, l) in the following way: each position of o is
replaced by the ordering (ω + ω∗)2 and, if this position is labelled a ∈ A, the label of
each position on the resulting ordering is a or b, depending on whether the position is in
the first or second term of the form ω + ω∗. Thus, given two consecutive positions p < q

from ν(o, l), one and only one of the following cases can occur (for some a ∈ A):

• l′(p) = l′(q) = a;

• l′(p) = l′(q) = b;

• l′(p) = a and l′(q) = b;

• l′(p) = b and l′(q) = a.

In the first three cases, both positions are in the same interval (ω + ω∗)2 of o, resulting
from the replacement of a position of o labelled a, for some a ∈ A. In the fourth case,
the positions are in consecutive intervals corresponding to the replacement of consecutive
positions of o. We split (ω + ω∗)2o into intervals Ip, p ∈ o, of the form (ω + ω∗)2, that
are maximal for the following condition:

Ip = Ip,1 ∪ Ip,2,

where Ip,1 is an interval whose elements are labelled with the same letter of A and Ip,2

is an interval whose elements are labelled with b. It follows that

(ω + ω∗)2o =
⋃
p∈o

Ip

and l′(p̄) = l(p), for all p̄ ∈ Ip,1, with Ip = Ip,1∪Ip,2 satisfying the above condition. Thus,
we may recover (o, l) from ((ω +ω∗)2o, l′) considering the ordering of such intervals with
the labelling function that labels each interval by a if the set of labels of its positions is
{a, b}. �

Combining Propositions 5.2–5.5 with Theorem 5.1, we obtain the following result, of
which only the case of DA has not already been proved by the alternative approach
referred to in § 3.

Corollary 5.6. The pseudovarieties R, L, J and DA satisfy the equation VE = V .

It remains an open problem whether the pseudovariety DS satisfies the equality
VE = V . This motivates the study of the free profinite semigroup over DS , for which no
representation result is currently known.

6. Ranks

For a pseudovariety V we consider the following associated parameters:

(i) rankV is the least positive integer n such that V is defined by a set of pseu-
doidentities on at most n variables, unless there is no such n, in which case we let
rankV = ∞;
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(ii) for a positive integer n, V (n) denotes the pseudovariety generated by all n-gener-
ated members of V , that is the class of all finite continuous homomorphic images
of Ω̄nV ;

(iii) the generator rank of V , denoted grankV , is the least positive integer n such that
V = V (n), unless there is no such n, in which case we set grank V = ∞;

(iv) the idempotent generator rank of V , denoted idgrankV , is the least positive inte-
ger n such that V is generated by its members which are generated by at most
n idempotents, unless there is no such n, in which case we set idgrank V = ∞.

The following are simple observations concerning these parameters.

Lemma 6.1. Let V be a pseudovariety and n be a positive integer. Denote by Σn the
set of all pseudoidentities in at most n variables that are valid in V . Then the following
hold:

(i) rankV � n if and only if V = [[Σn]];

(ii) grankV � n if and only if V = V (n);

(iii) idgrankV � n implies V = VE (n);

(iv) grankV � idgrankV .

Lemma 6.2. Let x1, . . . , xn be n distinct variables and consider the word ui =
x1 · · ·xi−1xi+1 · · ·xn. Then the pseudoidentity

(uω
1 · · ·uω

n)ω+1 = uω
1 · · ·uω

n (6.1)

holds in DS(n − 1) but not in J(n).

Proof. Ordering the variables by increasing order of the indices, the canonical form
of the implicit operation over J determined by the left-hand side of the pseudoidentity
(6.1) is (x1 · · ·xn)ω, while the right-hand side is already in canonical form. By [1, Theo-
rem 8.2.7] it follows that Ω̄nJ fails (6.1), whence we see that J(n) fails.

Let ϕ : Ω̄nS → Ω̄n−1DS be any continuous homomorphism. We need to show that ϕ

identifies the two sides of (6.1), that is that ϕ(uω
1 · · ·uω

n) is regular. Now, by [1, Theo-
rems 8.1.10 and 8.2.7], ϕ(uω

1 · · ·uω
n) is regular if and only if it has the same content as

some ϕ(uω
i ). Since c(ϕ(uω

1 · · ·uω
n)) contains at most n − 1 variables, there is an index

i ∈ {1, . . . , n} such that

c(ϕ(uω
1 · · ·uω

n)) =
⋃

j∈{1,...,n}\{i}
c(ϕ(xj)),

whence c(ϕ(uω
1 · · ·uω

n)) = c(ϕ(uω
i )). �

The following result is an immediate application of Lemma 6.2.
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Proposition 6.3. Every pseudovariety in the interval [J,DS ] has infinite grank.

Proof. Let V be a pseudovariety in the interval [J,DS ] and suppose that it has finite
grank m. Then for n > m we have V = V (n−1) = V (n). This entails that V is contained
in DS(n − 1) and contains J(n), which contradicts Lemma 6.2. �

In contrast, the pseudoidentity definitions of the pseudovarieties J, R, L, DA, DG ,
DO, DS given at the end of § 2 show that the rank of each of them is 2. Indeed, the
smallest pseudovarieties defined by one-variable pseudoidentities containing the first four,
respectively the last three, of these are respectively A and S .

There are pseudovarieties whose generator rank is smaller than its rank. As an example,
we consider the pseudovariety V = J(2). It is obvious that V = V (2) and so the generator
rank of V is 2 (note that, for example, the semigroup 〈e, f | e2 = e, f2 = f, fe = 0〉
is in J(2) \ J(1)). Since, by Proposition 6.3, J has infinite generator rank, it follows that
J(2) � J. Now, by Lemma 6.4, we conclude that J(2) has rank bigger than 2.

Lemma 6.4. Let Σ2 be the set of all pseudoidentities in at most two variables that
are valid in J(2). Then [[Σ2]] = J.

Proof. Let u, v ∈ Ω̄2S be such that the pseudoidentity u = v holds in J(2). For every
semigroup S ∈ J and every continuous homomorphism ϕ : Ω̄2S → S, the elements ϕ(u)
and ϕ(v) belong to a 2-generated subsemigroup of S, which in turn is in J(2). Thus, we
have the equality of ϕ(u) and ϕ(v) and so the pseudoidentity u = v holds in J.

For the direct inclusion, it suffices to note that, if u = v is a pseudoidentity in at most
two variables that is valid in J, then it is obviously valid in J(2), and so it belongs to
Σ2. Since rank J = 2, it follows that [[Σ2]] ⊆ J. �

At this point, we do not know what the rank of the pseudovariety J(2) is, or even
whether it is finite. Of course, if J(2) is finitely based, then it has finite rank; but we also
do not know if that is the case.

For the idgrank, we can prove the following results.

Lemma 6.5. We define, recursively, two sequences of implicit operations as follows:
for n � 3, we put

v3 = (x1x2)ωx3 · x2
1 · x3(x1x2)ω,

w3 = (x1x2)ωx3 · x1 · x3(x1x2)ω,

vn+1 = (x1 · · ·xn)ωxn+1 · vn · xn+1(x1 · · ·xn)ω,

wn+1 = (x1 · · ·xn)ωxn+1 · wn · xn+1(x1 · · ·xn)ω.

(a) If S is a semigroup from DA generated by n � 2 idempotents, then S satisfies the
pseudoidentity vn+1 = wn+1.

(b) The pseudovariety J(n) fails the pseudoidentity vn+1 = wn+1.
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Proof. (a) By hypothesis, there exists some continuous homomorphism π : Ω̄nDA → S

that maps the free generators xi to idempotents.
We proceed by induction on n. Given ϕ : Ω̄n+1S → S, we must show that ϕ(vn+1) =

ϕ(wn+1). Since π is onto and Ω̄nS is free profinite, ϕ factors through π, say as ϕ = π ◦ψ

for some continuous homomorphism ψ : Ω̄n+1S → Ω̄nDA.
At the basis of the induction, let us consider first the case n = 2. If ψ(x1x2) has

full content, then ϕ((x1x2)ω) belongs to the minimum ideal of S. Since this ideal is a
rectangular band and both ϕ(v3) and ϕ(w3) are L and R-below ϕ((x1x2)ω), they are
both equal to this idempotent. Otherwise, ψ(x1x2) only involves one of the free generators
of Ω̄nDA and so ϕ(x1) is an idempotent, in which case the equality ϕ(v3) = ϕ(w3) is
trivially verified.

For the general case n > 2, similarly, if ψ(x1 · · ·xn) has full content, then ϕ(vn+1) =
ϕ(wn+1). Otherwise, let T = 〈x1, . . . , xn〉 so that ϕ(T ) is a semigroup of DA generated
by at most n−1 idempotents. By the induction hypothesis, it satisfies the pseudoidentity
vn = wn, whence we obtain ϕ(vn) = ϕ(wn). Taking into account the definition of vn+1

and wn+1, we conclude that ϕ(vn+1) = ϕ(wn+1).

(b) Let ϕ = Ω̄n+1S → Ω̄nJ be the continuous homomorphism that fixes x1 and sends
each other xi to xi−1. Consider the factorizations of vn+1 and wn+1 in idempotents
and maximal explicit factors between them which results from the recursive definition
of these implicit operations. Then a straightforward induction shows that both these
factorizations and the result of applying ϕ to each factor (and eliminating the repetition
of x1 within each ω-power) are in canonical form. Hence, ϕ(vn+1) �= ϕ(wn+1) by [1,
Theorem 8.2.7]. Since Ω̄nJ is residually finite, this shows that there is some member of
J(n) that fails vn+1 = wn+1. �

In view of the definitions, Lemma 6.5 yields the following result.

Proposition 6.6. The inequality idgrankV (n) > n holds for every pseudovariety V
in the interval [J, DA]. �

Combining Propositions 6.6, 5.4, 5.2, 5.3 and 5.5 yields the following result.

Corollary 6.7. The equality idgrankV (n) = n + 1 holds for every pseudovariety V
in {J,R, L,DA}. �

We finish the paper with a brief comparison of the results obtained here for the equality
V = VE , with V ∈ {J,R, L}, and the results that follow from the work of Straubing [19]
and Howie [9], and of Pin [15] and Laradji and Umar [10], respectively.

Straubing showed that an n-element J -trivial monoid divides Cn+1, and Pin proved
that a finite R-trivial monoid with cardinal n embeds into En.

On the other hand, several works deal with the ranks and idempotent ranks of vari-
ous finite transformation semigroups. Recall that the rank of a finite semigroup is the
minimum number of generators, and the idempotent rank of an idempotent-generated
finite semigroup is the minimum number of idempotent generators. Gomes and Howie [7]
showed that the rank and idempotent rank of the subsemigroup of Tn consisting of all
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full transformations with range less than n are both equal to n(n − 1)/2. The rank and
idempotent rank of the subsemigroup of all contractive finite full transformations are
both equal to n + 1, as shown by Umar [20]. Finally, Laradji and Umar [10] proved that
the rank and idempotent rank of the subsemigroup of all contractive and order-preserving
finite full transformations are both equal to n. We refer the reader to [10,21] for detailed
information on this topic.

Therefore, in the results quoted in § 3 that follow from the works of the authors cited
above, the idempotent rank of the idempotent-generated semigroup is related to the
cardinality of the embedded semigroup. In this section together with § 5, we proved that
any finite semigroup of J, R, L or DA with rank n divides an idempotent-generated
semigroup of the same type with idempotent rank at most n + 1 (see Corollary 6.7). So,
here the control on the number of generators is related with the number of generators of
the embedded semigroup, which may be much smaller than its cardinality.
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