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i. Short recapitulation of Sparre Andersen's results

E. Sparre Andersen [i] x) presented to the XVth International
Congress of Actuaries, New York, 1957, a model of a collective risk
process with a positive gross risk premium where the epochs of
claims formed a renewal process. Let *F(M) (where u denotes the
original risk reserve) denote the ruin probability in this model.
Generalizing the classical result Sparre Andersen deduced the
inequality

Y(«) < e~Ru

where R is a suitable positive number depending on the distribu-
tion function (continuous to the right), P(y), — 00 < y < 00,
P(o) < 1, for the amounts of claims in case a claim occurs and also
depending on the distribution function, K(t), t > o, K(o) = 0, for
the times between the epochs of successive claims, (The times
between the epochs of successive claims, the inter-occurrence times,
are assumed to be independent and identically distributed random
variables. The time between the starting point and the epoch of the
first claim is assumed to be independent of and to have the same
distribution function as the inter-occurrence times. The amounts of
claims are assumed to be independent of each other and of the
epochs of claims and to be identically distributed.)

In fact,

R = sup {G I a < Q,f(a) = p{a) k{—ca) <

1) Numbers in brackets refer to the list of references at the end of the
paper.
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GENERALIZATION OF RUIN THEORY IOO,

where

p(s) = J egy dP(y),

k(s) = J e>* dK{t),
0

Q is the greatest positive value, for which p(s) is analytic and regular
in the strip o < Re(s) < Q and c > o is the constant gross risk
premium per unit of time.

Thus it is assumed that Q > o, corresponding to the same as-
sumption in the Cramer theory ([3] p. 52). Of course, as in the
Cramer theory it is also assumed that

pi = J V dP{y) is finite.

Furthermore, it is assumed that

ki = J t dK{t) is finite,
0

and that
Pi

corresponding to the Cramer assumption ([3] p. 46) that X =
= c — pi > o .

Specializing to the Poisson case, dK(t) = e~l dt, we easily retrieve
the Cramer definition ([3] p. 53),

R — sup {CT I a < Q , 1 + ca — p(a) > o }

since in this case we have

k{s) = —?— •
V I S

At this point we observe that the net risk premium in the case of
the non-Poisson renewal process is not proportional to time.
However, as a consequence of the well-known renewal theorem
([4] p. 347), the net risk premium for a time-interval of length
h in the long run is proportional to h. (If K(t) is arithmetic as e.g. in
the deterministic case: K(t) — z{t — &i) some caution is needed).

https://doi.org/10.1017/S0515036100010837 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010837


110 GENERALIZATION OF RUIN THEORY

In fact the formula for the net risk premium in the time interval
(Ti, Ta] is

V(Ti,Ta)=pi £ [K»*{T,)

where Kn* as usual denotes the nth convolution of K with itself.

We get

V(Ti, T2) - * ~ (T2 — Ti), T2 — Ti = h, Ti. ->• 00.

pi
The assumption c > — thus is an assumption that in the long run

the safety loading is positive.

Considering the risk reserve

X(t) = u + ct — Y{t),

where Y(t) is the accumulated amounts of claims, Sparre Andersen
wrote this reserve in the form

X{t) = u - j - S (ck — yi) + c{t — h — t2—....—1»)

where h + t% + • • • • + k, i'• = 1. 2, . . . . are the epochs of claims
and yt are the corresponding amounts and

h + h + .... +tn<t<h + t2+ . . . . + tn + i.

(If t < ^1, we have X(t) = u + ct). Since ruin only can occur when t
is an epoch of claim as a consequence of the assumption c > 0, Sparre
Andersen could reduce the ruin problem to the consideration of a
denumerable number of linear inequalities involving the t% 's and
the yt's . The existence of the ruin probabilities for a finite or in-
finite period could thus easily be proved.

Sparre Andersen derived an integral equation for Y(«) and
proved that there are no other solutions subjected to be bounded
by e~Ru.

If we introduce O(w) = 1 — 'F(w) the probability of non-ruin,
Sparre Andersen's integral equation can be written

O(«) = J dK(v) " / "* («* + cv — x) dP(x).
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This equation is well-known in the Poisson case (see [4] p. 181). As
in this particular case the general equation has the following
simple meaning: Let v denote the epoch of the first claim. Then non-
ruin can only occur if u -\- cv is not less than the amount x of the
claim at v and the probability of non-ruin in this case is O(w +
-f- cv — x) since the process starts anew after the claim has oc-
curred but on a new risk reserve level. Taking account of the
distribution functions for v and x the equation follows.

2. Further results

Let O(w, T) denote the probability of non-ruin in the interval
(o, T\. Then, in the same simple way as for <&{u) we obtain the
equation

O(«, T) = J dK(v) 7*0 (« + cv — x, T — v) dP{x) + J dK{v).
O - 0 0 T

The type of unicity which Sparre Andersen proved for T = 00
can in the same way be proved here.

The equations for ®(M) and <J>(w, T) can be solved by application
of the Wiener-Hopf technique used by Cramer ([3] section 5.8) in
the Poisson case. The application in the general case turns out to be
simple. There are two reasons for that. First, we have restricted
ourselves to the case c > o, second, the above simple equations lend
themselves equally well to the application of the Wiener-Hopf tech-
nique as the deeper Cramer integral equations ([3] p. 61). (These
latter equations do not seem to have direct analogues in the general
case. However, assuming K(t) to be exponential one may derive
them from the above equations.)

Following Cramer we introduce

Y(«, z) = J ezx drY(u, x), u > 0, I = Re(z) < o.

Letting

0(w, z) = 1 —• *¥{u, z) = 1 + J ^T dz O(M, T), U > 0, \ < 0
0

(by definition ®(w, 0) = 1 — Y(w, 0) = 1) we easily obtain the
following equation from the integral equation for ®(w, T)
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<D(«, z) = J (i — ez") i # ( f ) + J £zu rfi£(i>) J O (w + cv —
0 0 " c o

— x, z) dP(x), u > o, \ < o

Since 0(M, O) — ®(w, OO) = O(w) we obviously retrieve the inte-
gral equation for O(w) if we let z = o in the last equation.

In analogy with the Cramer treatment we now define

<D(M, Z) = o for u < o (T(M, Z) = S(M) — 0(M, 2) for every real M),

D(M, Z) = o for M > o,

Q(«, z) = f(i — e*v) dK(v) + fe**dK{v) 7*0 (« + c»— *, z) dP(x)
0 0 - co

for u < o,

and get

<!>(u,z)+Cl(u,z)= $(i—e*v)dK(v)+ Se*vdK(v) J O(M+CT—x,z)dP(x)
0 0 - 00

for — 00 < u < 00.

Letting

9(s, z) = J e«« du O(«, 2), i?e(s) < i?, ^ < o,

co(s, z) = J esu du Q(M, 2), Re(s) > 0, ^ < o,

we get

9(s, z) (1 — A(z — cs) p{s)) = — w(s, z).

Here we observe that in the Poisson case dK(v) = e~v dv, we have

Pis)
1 — &(z — cs) p(s) = 1 —

I -\- CS Z

which function plays an essential role in Cramer's treatment. In fact,
Cramer shows the factorization identity ([3] p. 60)

i _ _J>®_ = B(s,z)
1 + cs — z ~~ A (s, z)
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where

log A(s, z) = J esx dxM(x, z), analytic and regular for Re(s) < R,
0

0

log B (s, z) = — J esx dxM(x, z) analytic and regular for Re(s) > o,

M(x,z)= i i>! fvn^e-^-z)v {Pn*(x + cv) — i) dv.
n - 1 0

However, in the general case an analogous factorization of
1 — k(z — cs) p(s) can be effected. The generalized M(x, z) has the
form

M(x, z) = S i/« je™(P"*(x + cv) — 1) dKn*{v)
n = 1 0

If K(v) is continuous the connections between the generalized
A(s, z), B(s, z) and M(x, z) are unchanged. If K(v) is discontinuous
some obvious caution is needed.

With the generalized A(s, z) and B(s, z) we get

<b (s, z) w(s, z)
7 7 — = — ^7 7, o < Re(s) < R.
A(s,z) B(s, z) K '

Observing tha t the left member is analyt ic , regular and bounded
for Re(s) < R — e and t h a t the r ight member has the same proper ty
in Re(s) > s, where e is an arb i t ra ry positive number we conclude
t h a t bo th members represent a constant for fixed z.

Thus we get

m (s, z) cp (o, z) I
"77 = T^ " = T7 7,Re(s)<R,Z,<o
A(s,z) A{o,z) A{o,z)' w ' s -

or
A(s,z)

<p (s, z) = -j- •
r v ' .4(0,2)

From this identity it is now possible to deduce analogues of
Cramer's explicit expressions for T(w), Y(«, z), and ^(u, T) ([3]
pp. 67-68). In order to secure absolute convergence in the expres-
sions for T(M, Z) we assume some condition of the following type

k(z — cs) = O(r~a), T = Im(s) -> ± 00, a > o,

which i.a. is satisfied by each F-distribution for a suitable choice of a.
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114 GENERALIZATION OF RUIN THEORY

After this precaution we can write down the following analogues
of Cramer's formulas ([3] p. 67 formulas (99) and (102))

Ylu z) - X

1 ' ] " 27t*Z(o^)
w > 0, \ <o, 0 < CT < JR,

(2 = 0 gives *F(M) )

li f l~6 Y(, 7) = —. lim f l

27Ti y^.., Jr^co J *]
- Y

It is also possible to deduce (after some precaution) an asymptotic
formula for ^(u) analogous to Cramer's corresponding formula
([3] P- 68)

Y(w) = C e~Ru + 0(<r<* + 8>M), u -> 00

where 6 > o and

f(R) B(R, o)
C f { ) k { ) m

3. Final remarks

A complete account of the considered generalization including
detailed proofs will be given in a forthcoming paper in the Skan-
dinavisk Aktuarietidskrift [6]. I will also draw the attention to
three recent papers by Brans [2] where he has treated the general
problem of a risk process, where the epochs of claims form a renewal
process. Brans—-like Prabhu [5] in the Poisson case—uses queue-
theoretic methods.

REFERENCES

[1] ANDERSEN, E. SPARRE, 1957: On the collective theory of risk in the case
of contagion between the claims. Transactions XVth International
Congress of Actuaries, New York, vol. II, 219-229.

[2] BRANS, J. P., 1966-1967: Le probleme de la ruine en theorie collective du
risque. Cas non markovien. Premiere partie. Le montant total des sinistres.
Existence et mesurabilite de la ruine. Deuxieme partie. Cas des opera-
tions a capitaux-risques negatifs. Le processus {ZN(t), t>o\ Zx{o) = u}.
Troisieme partie. Cas des operations a capitaux-risques positifs. Le pro-
cessus {Zp(t), t>o\ Zp{6) = u}. Cahiers du Centre d'Etudes de Recherche
Operationelle, Bruxelles, 8, 159-178, 9, 5-31, 117-122.

https://doi.org/10.1017/S0515036100010837 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010837


GENERALIZATION OF RUIN THEORY 115

[3] CRAMER, H., 1955: Collective risk theory. Jubilee volume of Forsdkrings-
aktiebolaget Skandia.

[4] FELLER, W., 1966: An Introduction to Probability Theory and its Applica-
tions, vol. II. Wiley.

[5] PRABHU, N. U., 1961: On the ruin problem of collective risk theory. The
Annals of Mathematical Statistics, 32, 757-764.

[6] THORIN, O., 1970: Some remarks on the ruin problem in case the epochs of
claims form a renewal process. Skandinavisk Aktuarietidskrift, LIII,
29-50.

https://doi.org/10.1017/S0515036100010837 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010837



