Interpolated Derivatives
By B. Spamn
(Received 21st July, 1955.)

In a previous paper [Spain, Proc. Roy. Soc. Edinburgh, Vol. LX (1940),
134], I have shown that the application of the cardinal function to the
problem of interpolating the derivatives yields the result
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This formula is valid for > a (the constant of integration), and R(n) < 0.
The analytical continuation for R(n) >0 is indicated in the paper just
quoted. The first term is the familiar expression for a fractional derivative,
but the second term is not Riemann’s complementary function. Further-
more, this result is unsatisfactory because it is impossible to perform the
repeated operation of a fractional derivative of a fractional derivative.

The cardinal function interpolation requires the derivatives to be given
for both positive and negative valuesof n. Insteadlet ustry and interpolate
by the Gregory-Newton formula for negative values of n. The sth
repeated integral of f(z) can be written
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The Gregory-Newton formula is
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and F(n) the function to be interpolated is given at the points
b, b+w, ..., b+ws, .... In our prpblem w=>b=1 and so bt+ws=14s
and by substitution we have
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where L,(x) is the normalised Laguerre polynomial of degree r (Kaczmarz
and Steinhaus, Theorie der Orthogonalrethen, 140) defined by
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with the orthogonal properties
] 0 if » ¢t,

j e L (2) Ly(x)de =
0 Lif r=t.

The summation we require is readily obtained if we expand z® for non-
integral n > 0 in a series of Laguerre polynomials. That is, write

o= 3 A L)
r=0
and by the orthogonal properties of the Laguerre polynomials we have
G0 1 0 dr
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Since n > 0, repeated application of integration by parts yields
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and so F(n41)= I‘_(nITI) Sj (x—u)y™ f(u)du.
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That is, D f(x) = Tn) L (x—u)*1 f(u) du.

We see that the Gregory-Newton interpolation formula does give the
familiar generalisation of the fractional derivative.

Sir Jon Cass COLLEGE,
Loxpox,
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