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Abstract

In this paper, we consider an approach introduced in term rewriting for the automatic detection
of non-looping non-termination from patterns of rules. We adapt it to logic programing by
defining a new unfolding technique that produces patterns describing possibly infinite sets of
finite rewrite sequences. We present an experimental evaluation of our contributions that we
implemented in our tool NTI (Non-Termination Inference).
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1 Introduction

This paper is concerned with non-termination in logic programing, where one rewrites

finite sequences of terms (called queries) according to the operational semantics

described, for example, by Apt (1997). Rewriting is formalized by binary relations ⇒r

indexed by rules r from the logic program under consideration and non-termination by the

existence of an infinite rewrite sequence Q0 ⇒r1 Q1 ⇒r2 · · · (where the Qis are queries).

Our motivations are theoretical (study remarkable forms of infinite rewrite sequences)

and practical (help programmers to detect bugs by providing queries that run forever).

Most papers related to this topic provide necessary or sufficient conditions for the

existence of loops , that is , finite rewrite sequences Q0 ⇒r1 · · · ⇒rn Qn where Qn satisfies

a condition C that entails the possibility of starting again, that is , Qn ⇒r1 · · · ⇒rn Q2n

holds and Q2n also satisfies C, and so on. For example, Payet and Mesnard (2006) present

a sufficient condition, based on neutral argument positions of predicate symbols, which

is applied to elements of the binary unfolding (a set of rules that exhibits the termination

properties of logic programs, see the paper by Codish and Taboch (1999)).

In this paper, we are rather interested in non-looping non-termination, that is , infi-

nite rewrite sequences that do not embed any loop. The non-periodic nature of such

sequences makes them difficult to detect, while they can be produced from simple logic

programs, as those used in our experiments (Sect. 5). We are inspired by the approach

of Emmes et al. (2012), introduced in the context of term rewriting.1 This approach

1 The operational semantics of term rewriting differs from that of logic programing: a crucial difference
is that the rewrite relation of term rewriting is based on instantiation while that of logic programing
relies on unification.
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considers pattern terms (“abstract” terms describing possibly infinite sets of concrete

terms) as well as pattern rules built from pattern terms. From the term rewrite system

under analysis, it produces pattern rules that are correct , that is , they describe sets of

finite rewrite sequences w.r.t. the operational semantics of term rewriting. Nine inference

rules are provided to derive correct pattern rules, as well as a strategy for their automated

application and a sufficient condition to detect non-looping non-termination.

We adapt this approach to logic programing. Our main contributions are: (i) the

definition of a new unfolding technique that produces correct pattern rules w.r.t. the

operational semantics of logic programing (this gives a more compact presentation than

the nine inference rules of Emmes et al. (2012) and we do not need application strate-

gies); (ii) the definition of a restricted form of pattern terms, called simple, for which we

provide a unification algorithm (needed to compute the unfolding) that we prove correct;

(iii) an easily automatable sufficient condition to detect non-looping non-termination

from pattern rules built from simple pattern terms; (iv) the implementation of a non-

termination approach based on these notions in our tool NTI, that we have evaluated

on logic programs resulting from the translation of term rewrite systems used in the

experiments of Emmes et al. (2012). As far as we know, our approach is the first capable

of proving non-termination of these logic programs automatically.

The paper is organized as follows. Sect. 2 introduces basic definitions and notations

(a running example illustrating our contributions starts from Sect. 2.5), Sect. 3 presents

our adaptation of patterns to logic programing, Sect. 4 considers the notion of simple

pattern, Sect. 5 presents an experimental evaluation, Sect. 6 describes related work and

Sect. 7 concludes with future work.

2 Preliminaries

We let N denote the set of natural numbers. Let A be a set. Then, A is the set of finite

sequences of elements of A, which includes the empty sequence, denoted as e. We use the

delimiters 〈 and 〉 for writing elements of A and juxtaposition to denote the concatenation

operation, for example, 〈a0, a1〉 〈a2, a3〉= 〈a0, a1, a2, a3〉. We generally denote elements

of A using lowercase letters with an overline, for example, a.

2.1 Binary relations

A binary relation φ on a set A is a subset of A2 =A×A. For all ϕ⊆A2, the composition

of φ and ϕ is φ ◦ϕ=
{
(a, a′)∈A2

∣∣ ∃a1 ∈A : (a, a1)∈ φ∧ (a1, a
′)∈ϕ

}
. We let φ0 be the

identity relation and, for any n∈N, φn+1 = φn ◦ φ. Moreover, φ+ =
⋃ {φn | n> 0} (resp.

φ∗ = φ0 ∪ φ+) is the transitive (resp. reflexive and transitive) closure of φ. A φ-chain (or

chain if φ is clear from the context) is a (possibly infinite) sequence of elements of A such

that (a, a′)∈ φ for any two consecutive elements a, a′. For binary relations that have the

form of an arrow, for example, ⇒, we may write chains a0, a1, . . . as a0 ⇒ a1 ⇒ · · · .

2.2 Terms and substitutions

We use the same definitions and notations as Baader and Nipkow (1998) for terms. A

signature is a set of function symbols , each element of which has an arity in N (the 0-ary
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elements are called constant symbols). We denote function symbols by words in the sans

serif font, for example, f, 0, while. . .

Let Σ be a signature and X be a set of variables disjoint from Σ. For all m∈N,

we let Σ(m) denote the set of all m-ary elements of Σ. The set T (Σ, X) of all Σ-terms

over X (or simply terms if Σ, X are clear from the context) is defined as: X ⊆ T (Σ, X)

and, for all m∈N, all f ∈Σ(m) and all s1, . . . , sm ∈ T (Σ, X), f(s1, . . . , sm)∈ T (Σ, X).

For all s∈ T (Σ, X), we let Var(s) denote the set of variables occurring in s. We use the

superscript notation to denote several successive applications of a unary function symbol,

for example, s3(0) is a shortcut for s(s(s(0))) and s0(0) = 0.

A T (Σ, X)-substitution (or simply substitution if T (Σ, X) is clear from the context)

is a function θ from X to T (Σ, X) such that θ(x) �= x for only finitely many variables

x. The domain of θ is Dom(θ) = {x∈X | θ(x) �= x}. We let Ran(θ) =
⋃{Var(θ(x)) | x∈

Dom(θ)} and Var(θ) =Dom(θ)∪Ran(θ). We usually write θ as {x1 �→ θ(x1), . . . , xm �→
θ(xm)} where {x1, . . . , xm}=Dom(θ) (hence, the identity substitution is written as ∅).
A (variable) renaming is a substitution that is a bijection on X. We let S(Σ, X) denote

the set of all T (Σ, X)-substitutions.

The application of θ ∈ S(Σ, X) to s∈ T (Σ, X), denoted as sθ, is defined as: sθ= θ(s)

if s∈X and sθ= f(s1θ, . . . , smθ) if s= f(s1, . . . , sm). Then, sθ is called an instance of s.

Application is extended to finite sequences of terms: 〈s1, . . . , sm〉 θ= 〈s1θ, . . . , smθ〉.
The composition of σ, θ ∈ S(Σ, X) is the T (Σ, X)-substitution denoted as σθ and

defined as: for all x∈X, σθ(x) = (σ(x))θ. This is an associative operation, that is , for all

s∈ T (Σ, X), (sσ)θ= s(σθ). We say that σ commutes with θ if xσθ= xθσ for all x∈X.

We say that σ is more general than θ if θ= ση for some η ∈ S(Σ, X).

Let s, t∈ T (Σ, X). We say that s unifies with t (or s and t unify) if sσ= tσ for

some σ ∈ S(Σ, X). Then, σ is a unifier of s and t. We let mgu(s, t) denote the set of

most general unifiers of s and t. All this is naturally extended to finite sequences of

terms.

2.3 The signature used in the paper

We regard the symbol e denoting the empty sequence as a special constant symbol.

To simplify the statements of this paper, from now on we fix a signature Σ and a set

H = {�n | n∈N \ {0}} of constant symbols (called holes) such that Σ, {e} and H are

disjoint from each other. We also fix an infinite countable set X of variables disjoint

from Σ∪ {e} ∪H. A term is an element of T (Σ, X) and most of the time a substitu-

tion is an element of S(Σ, X). Let n be a positive integer. An n-context is an element

of T (Σ∪H,X) that contains occurrences of �1, . . ., �n but no occurrence of another

hole. For all n-contexts c and all s1, . . . , sn ∈ T (Σ∪H,X), we let c(s1, . . . , sn) denote

the element of T (Σ∪H,X) obtained from c by replacing all the occurrences of �i

by si, for all 1≤ i≤ n. We use the superscript notation for denoting several succes-

sive embeddings of a 1-context c into itself: c0 =�1 and, for all n∈N, cn+1 = c(cn).

We denote by χ(1) the set of 1-contexts that contain no variable. Terms are generally

denoted by a, s, t, u, v, variables by x, y, z and contexts by c, possibly with subscripts and

primes.
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2.4 Logic programing

We refer to Apt (1997) for the basics of logic programing. To simplify our presenta-

tion, we place ourselves in the general framework of term reduction systems , that is , we

do not distinguish predicate/function symbols, terms/atoms . . . and we do not always

use the standard terminology and notations of logic programing (e.g., rule instead of

clause).

Definition 1.

A program is a subset of T (Σ, X)× T (Σ, X), every element of which is called a rule. A

rule (u, v) is binary if v is empty or is a singleton. We let � denote the set of binary

rules. For the sake of readability, we omit the delimiters 〈 and 〉 in the right-hand side

of a binary rule, which amounts to considering that �⊆ T (Σ, X)× (T (Σ, X)∪ {e}).
Given a rule (u, v), we let [(u, v)] = {(uγ, vγ) | γ is a renaming} denote its equivalence

class modulo renaming . For all sets of rules U , we let [U ] =
⋃

r∈U [r]. Moreover, for all

rules or sequences of terms S, we write r�S U to denote that r is a sequence of elements

of U variable disjoint from S and from each other.

The rules of a program allow one to rewrite finite sequences of terms. This is formalized

by the following binary relation, which corresponds to the operational semantics of logic

programing with the leftmost selection rule.

Definition 2.

For all programs P , we let ⇒P =
⋃ {⇒r | r ∈ P} where, for all r ∈ P ,

⇒
r
=
{
( 〈s〉 s, (v s)θ)∈ T (Σ, X)

2 | 〈(u, v)〉�〈s〉s [r], θ ∈mgu(u, s)
}

For all s∈ T (Σ, X), callsP (s) = {t∈ T (Σ, X) | 〈s〉⇒+
P 〈t, . . .〉} ∪ {e | 〈s〉⇒+

P e} is the

set of calls in the ⇒P -chains that start from s.

2.5 Binary unfolding

The binary unfolding of a program P (see the paper by Codish and Taboch (1999)) is a

set of binary rules, denoted as binunf (P ), that captures call patterns of P . It corresponds

to the transitive closure of a binary relation which relates consecutive calls selected in a

computation (Prop. 1 below). Non-termination for a specific sequence of terms implies

the existence of a corresponding infinite chain in this relation (Thm. 1 below).

More precisely, binunf (P ) is defined as the least fixed point of a function T β
P on the

power set of �. For all U ⊆�, T β
P (U) is constructed by unfolding prefixes of right-hand

sides of rules from P using U . Let (u, 〈v1, . . . , vm〉)∈ P :

(i) for each 1≤ i≤m, one unfolds v1, . . . , vi−1 with (u1, e), . . . , (ui−1, e) from U to

obtain a corresponding instance of (u, vi),

(ii) for each 1≤ i≤m, one unfolds v1, . . . , vi−1 with (u1, e), . . . , (ui−1, e) from U and

vi with (ui, v) from U to obtain a corresponding instance of (u, v),

(iii) one unfolds v1, . . . , vm with (u1, e), . . . , (um, e) from U to obtain a corresponding

instance of (u, e).
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This is formally expressed as follows, using the set id of identity binary rules , which

consists of every pair (f(x1, . . . , xm), f(x1, . . . , xm)) where f ∈Σ(m) and x1, . . . , xm are

distinct variables. The use of id allows one to cover case (i) above.

Definition 3.

For all programs P and all U ⊆�, we let

T β
P (U) = [(u, e)∈ P ]∪

⎡
⎢⎢⎣(uθ, vθ)

∣∣∣∣∣∣∣∣

r= (u, 〈v1, . . . , vm〉)∈ P, 1≤ i≤m

〈(u1, e), . . . , (ui−1, e), (ui, v)〉�r U ∪ id

if i <m then v �= e

θ ∈mgu ( 〈u1, . . . , ui〉 , 〈v1, . . . , vi〉 )

⎤
⎥⎥⎦

The binary unfolding of P is the set of binary rules binunf (P ) = (T β
P )

∗
(∅).

Intuitively, each (u, v)∈ binunf (P ) specifies that some instance of v belongs to

callsP (u). More generally, we have:

Proposition 1.

Let P be a program, (u, v)∈ binunf (P ) and σ ∈ S(Σ, X). Then, for some θ ∈ S(Σ, X),

we have vθ ∈ callsP (uσ).

Example 1.

Let P be the program which consists of the rules

r1 = (while(x, y), 〈gt(x, y), add(x, y, z),while(z, s(y))〉)
r2 = (gt(s(x), 0), e) r3 = (gt(s(x), s(y)), gt(x, y))

r4 = (add(x, 0, x), e) r5 = (add(x, s(y), s(z)), add(x, y, z))

r6 = (while(x, y), le(x, y))

r7 = (le(0, x), e) r8 = (le(s(x), s(y)), le(x, y))

and which corresponds to the imperative program fragment

while (x > y) { x = x + y; y = y + 1; }
Rule r1 is used to continue the loop and r6 is used to stop it. Note that this imperative

fragment does not terminate if it is run from integers x, y such that x> y > 0.

Let us compute some elements of binunf (P ) by applying Def. 3 .

• Obviously, we have [r2]∪ [r4]⊆ T β
P (∅).

• Let us unfold the whole right-hand side of r1, that is let us consider i=m= 3. We

have

〈 (gt(s(x1), 0), e), (add(x2, 0, x2), e) ,

(while(x3, y3),while(x3, y3)) 〉�r1 [r2]∪ [r4]∪ id

and θ= {x �→ s(x1), y �→ 0, z �→ s(x1), x2 �→ s(x1), x3 �→ s(x1), y3 �→ s(0)} is the mgu

of 〈gt(s(x1), 0), add(x2, 0, x2),while(x3, y3)〉 and 〈gt(x, y), add(x, y, z),while(z, s(y))〉.
Consequently, the set (T β

P )
2(∅) contains the binary rule (while(x, y)θ,while(x3, y3)θ)

= (while (s(x1), 0) ,while (s(x1), s(0))).

• More generally, we have [r′n | n∈N]⊆ binunf (P ) where, for all n∈N, r′n =(
while(sn+1(x), sn(0)),while(s2n+1(x), sn+1(0))

)
.

https://doi.org/10.1017/S1471068425100100 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100100


E. Payet6

The binary unfolding exhibits the termination properties of a program:

Theorem 1

(see the paper by Codish and Taboch (1999)). Let P be a program and s be a sequence

of terms. Then, there is an infinite ⇒P -chain that starts from s if and only if there is

an infinite ⇒binunf (P )-chain that starts from s.

Example 2

(Ex. 1 cont.). For all n>m> 0, we have the infinite ⇒P -chain

〈while(sn(0), sm(0))〉 (⇒
r1

◦ m⇒
r3

◦⇒
r2

◦ m⇒
r5

◦⇒
r4

)
〈
while(sn+m(0), sm+1(0))

〉

(⇒
r1

◦m+1⇒
r3

◦⇒
r2

◦m+1⇒
r5

◦⇒
r4

) · · ·

and also the infinite ⇒binunf (P )-chain

〈while(sn(0), sm(0))〉 ⇒
r′m

〈
while(sn+m(0), sm+1(0))

〉 ⇒
r′m+1

· · ·

We note that none of these chains embeds a loop: in the ⇒P -chain, the number of appli-

cations of r3 and r5 gradually increases and, in the ⇒binunf (P )-chain, a new binary rule

(not occurring before) is used at each step.

3 Patterns

In this section, we describe our adaptation to logic programing of the pattern approach

introduced by Emmes et al. (2012). Our main idea is similar to that of Payet and

Mesnard (2006), that is , unfold the program and try to prove its non-termination from

the resulting set. To this end, based on the binary unfolding mentioned previously

(Def. 3), we introduce a new unfolding technique that produces patterns of rules (Def.

10) and a sufficient condition to non-termination that we apply to the generated patterns

(Thm. 3).

First, we recall the definition of pattern term and pattern rule, that we formulate

differently from Emmes et al. (2012) to fit our needs. In particular, we introduce the

concept of pattern substitution.

Definition 4.

A pattern substitution is a pair θ= (σ, μ)∈ S(Σ, X)2, rather denoted as σ 	 μ. For all

n∈N, we let θ(n) = σnμ. We say that θ describes the set {θ(n) | n∈N} ⊆ S(Σ, X).

For instance, if σ= {x �→ s(x), y �→ s(y)} and μ= {x �→ s(x), y �→ 0} then θ= σ 	 μ is a

pattern substitution. For all n∈N, we have θ(n) = σnμ= {x �→ sn+1(x), y �→ sn(0)}.
From pattern substitutions, we define pattern terms.

Definition 5.

A pattern term is a pair p= (s, θ) where s∈ T (Σ, X) and θ is a pattern substitu-

tion. We denote it as s 	 θ or s 	 σ 	 μ if θ= σ 	 μ. For all n∈N, we let p(n) = sθ(n).

We say that p describes the set {p(n) | n∈N} ⊆ T (Σ, X). For all s∈ T (Σ, X), we let

s� = s 	 ∅ 	 ∅.
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For instance, p= gt(x, y) 	 {x �→ s(x), y �→ s(y)} 	 {x �→ s(x), y �→ 0} is a pattern term. For

all n∈N, we have p(n) = gt(sn+1(x), sn(0)).

Then, from pattern terms one can define pattern rules.

Definition 6.

A pattern rule is a pair r= (p, q) of pattern terms. It describes the set of binary rules

rules(r) = {(p(n), q(n)) | n∈N}. We let � denote the set of pattern rules.

Example 3

(Ex. 1 cont.). Let u=while(x, y) be the left-hand side of r1, σ= {x �→ s(x), y �→ s(y)},
σ′ = {x �→ s(x)} and μ= {x �→ s(x), y �→ 0}. The pattern terms

p= uσ 	 σ 	 μ=while(s(x), s(y)) 	 σ 	 μ

q= uσ2 	 σσ′ 	 μ=while(s2(x), s2(y)) 	 {x �→ s2(x), y �→ s(y)} 	 μ
respectively describe the sets of terms

{
p(n) =while

(
sn+2(x), sn+1(0)

) ∣∣ n∈N
}

and{
q(n) =while

(
s2n+3(x), sn+2(0)

) ∣∣ n∈N
}
. Moreover,

rules((p, q)) =
{(

while(sn+2(x), sn+1(0)),while(s2n+3(x), sn+2(0))
) ∣∣ n∈N

}
= {r′n | n> 0} ⊆ {r′n | n∈N} ⊆ binunf (P ) (see Ex. 1)

The notion of correctness of a pattern rule is defined by Emmes et al. (2012) in the

context of term rewriting. We reformulate it as follows in logic programing.

Definition 7.

Let P be a program. A pattern rule r is correct w.r.t. P if rules(r)⊆ binunf (P ). A set

U of pattern rules is correct w.r.t. P if all its elements are.

So, if a pattern rule (p, q) is correct w.r.t. P then, for all n∈N, we have (p(n), q(n))∈
binunf (P ), that is , by Prop. 1, 〈p(n)〉⇒+

P 〈q(n)θ, . . .〉 for some θ ∈ S(Σ, X). Intuitively,

this means that for all n∈N, a call to p(n) necessarily leads to a call to q(n). For instance,

in Ex. 3, we have rules((p, q))⊆ binunf (P ), hence (p, q) is correct w.r.t. P and we have〈
while(sn+2(x), sn+1(0))

〉⇒+
P

〈
while(s2n+3(x), sn+2(0))

〉
for all n∈N.

The next result allows one to infer correct pattern rules from a program. It considers

pairs of rules that have the same form as (r2, r3), (r4, r5) and (r7, r8) in Ex. 1. It uses

the set of contexts χ(1) (see Sect. 2.3).

Proposition 2.

Suppose that a program P contains two binary rules r= (u, v) and r′ = (u′, e) such that

• u= c(c1(x1), . . . , cm(xm)), v= c(x1, . . . , xm) and u′ = c(t1, . . . , tm),

• {c1, . . . , cm} ⊆ χ(1) and c is an m-context with Var(c) = ∅,
• x1, . . . , xm are distinct variables and t1, . . . , tm are terms.

Then, (p, e�) and (q, v�) are correct w.r.t. P where p= v 	 σ 	 μ, q= u 	 σ 	 ∅ and

σ= {xk �→ ck(xk) | 1≤ k≤m, ck(xk) �= xk}
μ= {xk �→ tk | 1≤ k≤m, tk �= xk}

Example 4.

Let us regard (r2, r3) and (r4, r5) from Ex. 1 .
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• r2 = (c(t1, t2), e) and r3 = (c(c1(x), c1(y)), c(x, y)) for t1 = s(x), t2 = 0, c=

gt(�1,�2) and c1 = s(�1). So by Prop. 2 , (p1, e
�) and (q1, gt(x, y)

�
) are correct

w.r.t. P where

p1 = gt(x, y) 	 {x �→ s(x), y �→ s(y)} 	 {x �→ s(x), y �→ 0}
q1 = gt(s(x), s(y)) 	 {x �→ s(x), y �→ s(y)} 	 ∅

Let n∈N. Then, we have (p1(n), e
�(n))∈ binunf (P ). Hence, by Prop. 1 , e�(n)η ∈

callsP (p1(n)) for some η ∈ S(Σ, X). But e�(n)η= eη= e so by Def. 2 ( callsP ) we

have 〈p1(n)〉⇒+
P e where p1(n) = gt(sn+1(x), sn(0)).

• r4 = (c′(t′1, t
′
2, t

′
1), e) and r5 = (c′(c′1(x), c

′
2(y), c

′
2(z)), c

′(x, y, z)) for t′1 = x, t′2 = 0,

c′ = add(�1,�2,�3), c
′
1 =�1 and c′2 = s(�1). So, by Prop. 2 , the pattern rule (p2, e

�)

is correct w.r.t. P where p2 = add(x, y, z) 	 {y �→ s(y), z �→ s(z)} 	 {y �→ 0, z �→ x}.
Unification for pattern terms is not considered by Emmes et al. (2012). As we need it

in our development (see Def. 10 below), we define it here.

Definition 8.

Let p and q be pattern terms and θ be a pattern substitution. Then, θ is a unifier of p and

q if, for all n∈N, we have p(n)θ(n) = q(n)θ(n). Moreover, θ is a most general unifier

(mgu) of p and q if, for all n∈N, θ(n)∈mgu(p(n), q(n)). We let mgu(p, q) denote the

set of all mgu’s of p and q.

for example, if p= f(x, y) 	 {x �→ s(x)} 	 {x �→ 0} and q= f(x, y) 	 {y �→ s(y)} 	 {y �→ 1},
then θ= {x �→ s(x), y �→ s(y)} 	 {x �→ 0, y �→ 1} is a unifier of p and q. Indeed, for all n∈N,

θ(n) = {x �→ sn(0), y �→ sn(1)} is a unifier of p(n) = f(sn(0), y) and p(n) = f(x, sn(1)). All

these notions are naturally extended to finite sequences of pattern terms.

We also need to adapt the notion of equivalence class modulo renaming (see Sect. 2.4).

Definition 9.

For all U ⊆�, we let [U ] =
⋃

r∈U [r] where [r] = {r′ ∈� | rules(r′)⊆ [rules(r)]}.
Hence, [r] consists of all pattern rules r′ that describe a subset of [rules(r)]. For

instance, if p= f(x, y) 	 {x �→ s(x)} 	 {x �→ 0} and p′ = f(s(x), y′) 	 {x �→ s(x)} 	 {x �→ 0},
then (p′, e�)∈ [(p, e�)]. Indeed, we have rules((p′, e�)) = {(f(sn+1(0), y′), e) | n∈N} ⊆
[(f(sn(0), y), e) | n∈N] = [rules((p, e�))].

Now we provide a counterpart of Def. 3 (binary unfolding) for pattern rules. A notable

difference, however, is the use of an arbitrary set B instead of E = {(u�, e�) | (u, e)∈ P}.
The set B plays a similar role to the pattern creation inference rules of Emmes et

al. (2012). Using suitable sets B’s (as those consisting of rules provided by Prop. 2),

we get an approach that computes pattern rules finitely describing infinite subsets of

binunf (P ), that is , an approach that unfolds “faster” (see Ex. 5). We let patid denote

the set of all pairs (f(x1, . . . , xm)
�
, f(x1, . . . , xm)

�
) where f ∈Σ(m) and x1, . . . , xm are

distinct variables. For all rules r, the notation �r is naturally extended to sets of pat-

tern rules, according to the following definitions: the set of variables of a pattern term

p= s 	 σ 	 μ is Var(p) =Var(s)∪Var(σ)∪Var(μ) and that of a pattern rule r= (p, q) is

Var(r) =Var(p)∪Var(q).
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Definition 10.

For all programs P and all B, U ⊆�, we let

Tπ
P,B(U) = [B]∪

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
(u 	 σ 	 μ,

v 	 σiσ 	 μiμ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

r= (u, 〈v1, . . . , vm〉)∈ P, 1≤ i≤m

〈(p1, e�), . . . , (pi−1, e
�), (pi, v 	 σi 	 μi)〉

�r U ∪ patid

if i <m then v �= e

σ 	 μ∈mgu (〈p1, . . . , pi〉 , 〈v1�, . . . , vi�〉)
σ commutes with σi and μi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The pattern unfolding of P using B is the set patunf (P, B) = (Tπ
P,B)

∗
(∅).

Example 5.

Let B be the set consisting of the rules (p1, e
�) and (p2, e

�) of Ex. 4 . Let us compute

some elements of patunf (P, B) by applying Def. 10 . We have {(p′1, e�), (p′2, e�)} ⊆ [B]⊆
Tπ
P,B(∅) where p′1 and p′2 are renamed versions of p1 and p2 respectively:

p′1 = gt(x1, y1) 	 {x1 �→ s(x1), y1 �→ s(y1)} 	 {x1 �→ s(x1), y1 �→ 0}
p′2 = add(x2, y2, z2) 	 {y2 �→ s(y2), z2 �→ s(z2)} 	 {y2 �→ 0, z2 �→ x2}

Let us unfold the whole right-hand side of r1 ∈ P , i.e., let us consider i=m= 3. We have

〈(p′1, e�), (p′2, e�), (p′3, p′3)〉�r1 T
π
P,B(∅)∪ patid where p′3 =while(x3, y3)

�
. The right-hand

side of r1 is 〈v1, v2, v3〉= 〈gt(x, y), add(x, y, z),while(z, s(y))〉. Let S = 〈v1�, v2�, v3�〉 and
S′ = 〈p′1, p′2, p′3〉. We show in Ex. 11 that ρ 	 ν ∈mgu(S, S′) where

ρ= {x �→ s(x), y �→ s(y), z �→ s2(z), x2 �→ s(x2), x3 �→ s2(x3), y3 �→ s(y3)}
ν = {x �→ s(x1), y �→ 0, z �→ s(x1), x2 �→ s(x1), x3 �→ s(x1), y3 �→ s(0)}

So, r′′ = (u 	 ρ 	 ν,while(x3, y3) 	 ρ 	 ν)∈ (Tπ
P,B)

2(∅) where u=while(x, y) is the left-hand

side of r1. It describes the set of binary rules{
r′′n =

(
while(sn+1(x1), s

n(0)),while(s2n+1(x1), s
n+1(0))

) ∣∣ n∈N
}

and we have [r′′n | n∈N] = [r′n | n∈N] (see Ex. 1 ).

The following result corresponds to the Soundness Thm. 7 of Emmes et al. (2012).

Theorem 2.

Let P be a program and B ⊆� be correct w.r.t. P . Then, patunf (P, B) is correct w.r.t. P .

Finally, we adapt the non-termination criterion of Emmes et al. (2012) to our setting.

Theorem 3.

Let P be a program and B ⊆� be correct w.r.t. P . Suppose that patunf (P, B) contains

a pattern rule of the form (u 	 σ 	 μ, uσa 	 σbσ′ 	 μμ′) where σ′ commutes with σ and μ.

Then, for all n∈N and all θ ∈ S(Σ, X), there is an infinite ⇒P -chain that starts from

〈uσnμθ〉.
Example 6.

Let us regard the pattern rule (p, q) of Ex. 3 . As rules((p, q))⊆ {r′n | n∈N} with

{r′n | n∈N} ⊆ [r′n | n∈N] = [r′′n | n∈N] = [rules(r′′)] (see Ex. 5 ), we have (p, q)∈
[r′′]⊆ patunf (P, B). Moreover, B is correct w.r.t. P (see Ex. 4 ) and (p, q) =
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(uσ 	 σ 	 μ, (uσ)σ 	 σσ′ 	 μ) (see Ex. 3 ) where σ′ commutes with σ and μ. By Thm. 3 , for

all m, n∈N and θ= {x �→ sn(0)}, the sequence 〈(uσ)σmμθ〉 starts an infinite ⇒P -chain,

with

〈(uσ)σmμθ〉= 〈
uσm+1μθ

〉
=
〈
while

(
s(n+1)+(m+1)(0), sm+1(0)

)〉

Hence, for all n>m> 0, the sequence 〈while(sn(0), sm(0))〉 starts an infinite ⇒P -chain.

This had already been observed in Ex. 2 .

4 Simple patterns

In practice, to implement the approach presented in the previous section, one has to find

a way to compute mgu’s of pattern terms and to check the non-termination condition of

Thm. 3. In this section, we introduce a class of pattern terms of a special form, called

simple, that is more restrictive but for which we provide a unification algorithm as well

as a non-termination criterion that is easier to check than that of Thm. 3. We describe

them using a new signature that consists of unary symbols only:

Υ=
{
ca,b : a unary symbol

∣∣∣ c∈ χ(1), (a, b)∈N
2
}

Any symbol ca,b ∈Υ represents all successive embeddings of c into itself of the form

ca×n+b where n∈N. Hence, for all u∈ T (Σ∪Υ, X) and all n∈N, we let u(n) be the

element of T (Σ, X) obtained from u by replacing every ca,b ∈Υ by ca×n+b. Moreover,

for all θ ∈ S(Σ∪Υ, X) and all n∈N, we let θ(n) be the element of S(Σ, X) defined as:

for all x∈X, (θ(n))(x) = (θ(x))(n). In the rest of this section, we consider elements of

T (Σ∪Υ, X) modulo the following equivalence relation.

Definition 11.

The binary relation ∼⊆ T (Σ∪Υ, X)2 is defined as: u∼ v iff u(n) = v(n) for all n∈N.

It is an equivalence relation and we let [u] denote the equivalence class of u w.r.t. ∼.

The following straightforward result can be used to simplify (Σ∪Υ)-terms.

Lemma 1.

For all c∈ χ(1), a, b, a′, b′ ∈N and u∈ T (Σ∪Υ, X) we have ca,b(ca
′,b′(u))∼ ca+a′,b+b′(u)

and c(u)∼ c0,1(u).

Example 7.

Let c= f(�1, 0,�1)∈ χ(1). Then, c1,1 ∈Υ. Let u= c1,1(1)∈ T (Σ∪Υ, X). For all n∈N,

we have u(n) = cn+1(1). For instance, u(1) = c2(1) = f(f(1, 0, 1), 0, f(1, 0, 1)). We note

that v= c1,0(c(1))∼ c1,0(c0,1(1))∼ u; indeed, for all n∈N, v(n) = cn(c(1)) = u(n). Let

θ= {x �→ u} ∈ S(Σ∪Υ, X) and n∈N. We have (θ(n))(x) = (θ(x))(n) = u(n) and, for all

y ∈X \ {x}, (θ(n))(y) = (θ(y))(n) = y(n) = y. Hence, θ(n) = {x �→ u(n)}.
Definition 12.

A pattern term p= s 	 σ 	 μ is called simple if, for all x∈Var(s), σ(x) = ca(x) and μ(x) =

cb(t) for some c∈ χ(1), a, b∈N and t∈ T (Σ, X). Then, we let υ(p) = [sθp] where
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θp =

{
x �→ u

∣∣∣∣ x∈Var(s), σ(x) = ca(x), μ(x) = cb(t)

if σ(x) = x then u= μ(x) else u= ca,b(t)

}

A pattern rule (p, q) is called simple if p and q are simple.

The next result follows from Def. 5 and Def. 12.

Lemma 2.

For all simple pattern terms p, all u∈ υ(p) and all n∈N we have p(n) = u(n).

Example 8.

The pattern term p= s 	 σ 	 μ= f(s(x), y) 	 {x �→ s2(x)} 	 {x �→ s(x1), y �→ 0} is

simple. For c= s(�1), we have 〈σ(x), μ(x)〉= 〈
c2(x), c(x1)

〉
and σ(y) = y. So

υ(p) = [sθp] where θp =
{
x �→ c2,1(x1), y �→ 0

}
. Moreover, sθp = f(s(c2,1(x1)), 0) =

f(c(c2,1(x1)), 0)∼ f(c2,2(x1), 0). For all n∈N, p(n) = sσnμ= f(s2n+2(x1), 0) = (sθp)(n).

We note that the pattern rules (p, e�) and (q, v�) produced from Prop. 2 are simple. In

Ex. 4, υ(p1) = [gt(c1,11 (x), c1,01 (0))] and υ(p2) = [add(x, c1,01 (0), c1,01 (x))] where c1 = s(�1).

Example 9.

We illustrate the fact that non-termination detection with simple pattern terms is more

restrictive than with the full class of pattern terms. Let P be the program consisting of

r1 = (while(x, y), 〈isList(y),while(x, cons(x, y))〉)
r2 = (isList(nil), e)

r3 = (isList(cons(x, y)), isList(y))

Let c= cons(x,�1). Then, 〈while(x, cn(nil))〉 (⇒r1 ◦⇒n
r3 ◦⇒r2)

〈
while(x, cn+1(nil))

〉
holds

for all n∈N. Hence, for all n∈N, 〈while(x, cn(nil))〉 starts an infinite ⇒P -

chain. To detect that, one would need an unfolded pattern rule of the form

(while(x, y) 	 σ 	 μ,while(x, y)σ 	 σ 	 μ) where σ= {y �→ c(y)} and μ= {y �→ nil}. Such a

rule satisfies the condition of Thm. 3 but is not simple because c �∈ χ(1) (Var(c) �= ∅).
We also define simple substitutions.

Definition 13.

A substitution θ ∈ S(Σ∪Υ, X) is called simple if, for all x∈X, θ(x)∈ [ca,b(t)] for some

c∈ χ(1), a, b∈N and t∈ T (Σ, X). Then, we let υ−1(θ) denote the pattern substitution

σ 	 μ such that: for all x∈X, if θ(x)∈ [ca,b(t)] then σ(x) = ca(x) and μ(x) = cb(t).

The next result follows from Def. 4 and Def. 13.

Lemma 3.

For all simple substitutions θ and all n∈N, θ(n) = (υ−1(θ))(n).

Example 10.

Let θ= {x �→ c2(1), y �→ c(c2,1(c1,2(c(0))))} where c= s(�1). We have θ(x)∈
[c0,2(1)], θ(y)∈ [c3,5(0)] and θ(z)∈ [c0,0(z)] for all z ∈X \ {x, y}. So, υ−1(θ) =

{y �→ c3(y)} 	 {x �→ c2(1), y �→ c5(0)}. For all n∈N, we have θ(n) = {x �→ c2(1), y �→
c(c2n+1(cn+2(c(0))))}= {x �→ c2(1), y �→ c3n+5(0)}= (υ−1(θ))(n).
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4.1 Unification of simple pattern terms

For all sequences S = 〈p1, . . . , pm〉 of simple pattern terms, we define υ(S) =

{〈u1, . . . , um〉 | u1 ∈ υ(p1), . . . , um ∈ υ(pm)}.
Unification Algorithm 1

Let S and S′ be sequences of simple pattern terms. Let S1 ∈ υ(S) and S′
1 ∈ υ(S′).

• If mgu(S1, S
′
1) contains a simple substitution θ then return υ−1(θ)

• else halt with failure.

Partial correctness follows from the next theorem.

Theorem 4.

If the unification algorithm successfully terminates then it produces a pattern substitution

which is an mgu of the input sequences.

In practice, as S1 and S′
1 are sequences of elements of T (Σ∪Υ, X), one can use

any classical unification algorithm (Robinson, Martelli-Montanari. . .) to compute θ ∈
mgu(S1, S

′
1). Then, it suffices to check whether θ is simple, for instance using Lem. 1.

Example 11

(Related to Ex. 5). Consider the sequences of simple pattern terms S = 〈v1�, v2�, v3�〉
and S′ = 〈p′1, p′2, p′3〉 where v1 = gt(x, y), v2 = add(x, y, z), v3 =while(z, s(y)) and

p′1 = gt(x1, y1) 	 {x1 �→ s(x1), y1 �→ s(y1)} 	 {x1 �→ s(x1), y1 �→ 0}
p′2 = add(x2, y2, z2) 	 {y2 �→ s(y2), z2 �→ s(z2)} 	 {y2 �→ 0, z2 �→ x2}
p′3 =while(x3, y3)

�

Let c= s(�1), S1 = 〈gt(x, y), add(x, y, z),while(z, c(y))〉 and
S′
1 = 〈gt(c1,1(x1), c

1,0(0)), add (x2, c
1,0(0), c1,0(x2)),while(x3, y3)〉

We have S1 ∈ υ(S) and S′
1 ∈ υ(S′). Moreover, θ ∈mgu(S1, S

′
1) where

θ= {x �→ c1,1(x1), y �→ c1,0(0), z �→ c1,0(c1,1(x1)),

x2 �→ c1,1(x1), x3 �→ c1,0(c1,1(x1)), y3 �→ c(c1,0(0))}
We note that θ(x)∈ [c1,1(x1)], θ(y)∈ [c1,0(0)], θ(z)∈ [c2,1(x1)], θ(x2)∈ [c1,1(x1)], θ(x3)∈
[c2,1(x1)] and θ(y3)∈ [c1,1(0)]. So, θ is a simple substitution and the algorithm produces

the pattern substitution υ−1(θ) = ρ 	 ν where

ρ= {x �→ s(x), y �→ s(y), z �→ s2(z), x2 �→ s(x2), x3 �→ s2(x3), y3 �→ s(y3)}
ν = {x �→ s(x1), y �→ 0, z �→ s(x1), x2 �→ s(x1), x3 �→ s(x1), y3 �→ s(0)}

By Thm. 4 , ρ 	 ν ∈mgu(S, S′).

A natural choice for S1 and S′
1 in our unification algorithm is to consider, for all

p= s 	 σ 	 μ in S ∪ S′, the term sθp ∈ [sθp] (see Def. 12). But this leads to an incomplete

approach, that is , an approach that may fail to find a unifier even if one exists.

Example 12.

Let p= s 	 {x �→ c(x)} 	 ∅ and q= s 	 {x �→ c2(x)} 	 {x �→ y} where s= f(x), c= s(�1) and

c2 = c2. Then, p and q are simple. Let θ= {x �→ c(x)} 	 {x �→ y}. For all n∈N, we have
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p(n) = f(cn(x)) and q(n) = f(c2n(y)), hence θ(n) = {x �→ cn(y)} is a unifier of p(n) and

q(n). Therefore, θ is a unifier of p and q. On the other hand, we have sθp = f(c1,0(x)) and

sθq = f(c1,02 (y)). As c1,0 and c1,02 are different symbols, mgu(sθp, sθq) = ∅. So, from sθp
and sθq, the unification algorithm fails to find a unifier for p and q. Now, let us choose

the term u= f(c1,0(c1,0(y))) in [sθq]. The substitution η= {x �→ c1,0(y)} is simple and

belongs to mgu(sθp, u). So, the unification algorithm succeeds and returns υ−1(η) = θ.

4.2 A non-termination criterion

Now, we provide a non-termination criterion that is simpler to implement than that of

Thm. 3. It relies on pattern rules of the following form, which is easy to check in practice.

Definition 14.

We say that a pattern rule r= (p, q) is special if it is simple and there exists

c(ca1,b1
1 (t1), . . . , c

am,bm
m (tm))∈ υ(p) and c(c

a′
1,b

′
1

1 (t1ρ), . . . , c
a′
m,b′m

m (tmρ))∈ υ(q)

such that c is an m-context with Var(c) = ∅, ρ∈ S(Σ, X) and

1. ∀i : (ti ∈X)∨ (ti ∈ T (Σ, X)∧Var(ti) = ∅),
2. ∀i, j : (ti ∈X ∧ ti = tj)⇒ ci = cj ,

3. {(ai, a′i) |Var(ti) = ∅}= {(e, e)} with 0< e, {(ai, a′i) | ti ∈X}= {(a, a′)} with

a≤ a′,
4. {(bi, b′i) |Var(ti) = ∅}= {(b, b′)} with b≤ b′, {(bi, b′i) | ti ∈X}= {(d, d′)},
5. k= (b′ − b)/e∈N and a= a′ ⇒ 0≤ (d′ − d)− a× k.

Then, we let α(r) = 0 if a= a′ and α(r) = a×k−(d′−d)
a′−a otherwise.

The existence of a special pattern rule implies non-termination:

Theorem 5.

Let P be a program and B ⊆� be correct w.r.t. P . Suppose that patunf (P, B) contains a

special pattern rule r= (p, q). Then, for all n∈N such that n≥ α(r) and all θ ∈ S(Σ, X),

there is an infinite ⇒P -chain that starts from 〈p(n)θ〉.
Example 13.

In Ex. 5 , the set patunf (P, B) contains the pattern rule r′′ = (p, q) and we have

while(s1,1(x1), s
1,0(0)) = c

(
ca1,b1
1 (t1), c

a2,b2
2 (t2)

)
∈ υ(p)

while(s2,1(x1), s
1,1(0)) = c

(
c
a′
1,b

′
1

1 (t1), c
a′
2,b

′
2

2 (0)
)
∈ υ(q)

(with a slight abuse of notation when writing s1,1, s1,0 and s2,1). Moreover,

• {(ai, a′i) |Var(ti) = ∅}= {(a2, a′2)}= {(1, 1)}= {(e, e)} with 0< e,

• {(ai, a′i) | ti ∈X}= {(a1, a′1)}= {(1, 2)}= {(a, a′)} with a< a′,
• {(bi, b′i) |Var(ti) = ∅}= {(b2, b′2)}= {(0, 1)}= {(b, b′)} with b≤ b′,
• {(bi, b′i) | ti ∈X}= {(1, 1)}= {(d, d′)},
• k= (b′ − b)/e= (1− 0)/1 = 1∈N.
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So, α(r) = 1×1−(1−1)
2−1 = 1. Then, by Thm. 5 , for all n∈N such that n≥ 1

and all θ ∈ S(Σ, X), there is an infinite ⇒P -chain that starts from 〈p(n)θ〉=〈
while(sn+1(x1), s

n(0))θ
〉
. This corresponds to what we observed in Ex. 2 and Ex. 6 .

For instance, from n= 1 and θ= {x1 �→ 0}, we get: there is an infinite ⇒P -chain that

starts from
〈
while(s2(0), s(0))

〉
.

Def. 14 requires that A1 = {i |Var(ti) = ∅} and A2 = {i | ti ∈X} are not empty. This

can be lifted as follows. If A1 = ∅ or A2 = ∅ then we demand that a1 = . . .= am = a,

b1 = . . .= bm = b, a′1 = . . .= a′m = a′ and b′1 = . . .= b′m = b′. Moreover:

• if A1 = ∅ then we replace 3–5 in Def. 14 by a≤ a′ and a= a′ ⇒ b≤ b′; we also let

α(r) = 0 if a= a′ and α(r) = b−b′
a′−a otherwise;

• if A2 = ∅ then we demand that a= a′ and we replace 3–5 in Def. 14 by 0<a and

k= (b′ − b)/a∈N; we also let α(r) = 0.

5 Experimental evaluation

We have implemented the approach of Sect. 4 in our tool NTI, which is the only tool

participating in the International Termination Competition2 capable of disproving termi-

nation of logic programs (LPs). We used the natural choice for S1 and S′
1 in the unification

algorithm, even if it leads to an incomplete approach (see end of Sect. 4.1). We ran NTI

on 41 LPs obtained by translating term rewrite systems (TRSs) of the Termination

Problem Data Base3 (TPDB) that are known to be non-looping non-terminating. These

LPs are small but they are representative of the kind of non-termination that we want to

capture. We used the following configuration: MacBook Pro 2020 with Apple M1 chip,

16 GB RAM, macOS Sequoia 15.4.1. Table 1 shows the results for 7 LPs obtained from

directory AProVE_10 (which consists of 14 TRSs but we discarded those that translate

to LPs that are not in the scope of our technique, i.e., LPs that terminate or involve

1-contexts which are not elements of χ(1), see Ex. 9). Table 2 shows the results for 34 LPs

obtained from directory EEG_IJCAR_12, originally proposed to evaluate the approach of

Emmes et al. (2012) (it consists of 49 TRSs but, again, we discarded those that translate

to LPs that are out of scope). The tables have the following structure: column “Program”

gives the name of the program together with its number of rules and relations, “Mode”

gives the mode of interest (i means input , i.e., a term with no variable), “NTI” gives the

non-terminating term provided by NTI, “#unf” gives the number of generated unfolded

rules and “Time(ms)” gives the time in milliseconds (we used a time-out of 10 s). The

4 programs marked with † are LP translations of TRSs that have not been proven non-

terminating by any TRS analyzer participating in the competition until 2024. The results

show that our approach succeeds on them. On the other hand, our approach fails on 5

programs. Our results can be reproduced using our tool and the benchmarks available

at https://github.com/etiennepayet/nti.

2 http://termination-portal.org/wiki/Termination˙Competition
3 http://termination-portal.org/wiki/TPDB
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Table 1. Logic programs obtained from TPDB/TRS_Standard/AProVE_10

Program (#rules, #rel) Mode NTI #unf Time(ms)

andIsNat (3, 2) f(i,i) f(0,0) 5 100
double (3, 2) f(i) f(0) 4 100
ex1 (3, 2) f(i,i) f(0,0) 4 100
ex2 (3, 2) g(i) g(0) 4 100
ex3 (4, 2) g(i,i) g(0,0) 12 100
halfdouble (7, 4) f(i) f(0) 10 100
isNat (3, 2) f(i) f(0) 4 100

Table 2. Logic programs obtained from TPDB/TRS_Standard/EEG_IJCAR_12

Program (#rules, #rel) Mode NTI #unf Time(ms)

emmes-nonloop-ex1_1 (5, 4) f(i,i) f(s(0),0) 6 90
emmes-nonloop-ex1_2 (7, 5) † f(i,i) f(s(0),0) 38 120
emmes-nonloop-ex1_3 (7, 5) † f(i,i) f(s(0),0) 38 120
emmes-nonloop-ex1_4 (7, 5) f(i,i) f(s(0),0) 29 120
emmes-nonloop-ex1_5 (7, 5) f(i,i) f(s(0),0) 29 130
emmes-nonloop-ex2_1 (6, 4) † f(i,i) f(s(0),0) 26 120
emmes-nonloop-ex2_2 (5, 3) f(i,i) f(s(0),0) 8 100
emmes-nonloop-ex2_3 (6, 4) † f(i,i) f(s(0),0) 26 120
emmes-nonloop-ex2_4 (8, 5) f(i,i) f(s(0),0) 140 240
emmes-nonloop-ex2_5 (8, 5) f(i,i) f(s(0),0) 140 270
emmes-nonloop-ex3_1 (6, 4) f(i) f(s(0)) 30 120
emmes-nonloop-ex3_2 (6, 4) f(i) f(s(0)) 30 110
emmes-nonloop-ex3_3 (8, 5) f(i) f(s(0)) 78 180
emmes-nonloop-ex3_4 (8, 5) f(i) f(s(0)) 178 270
emmes-nonloop-ex4_1 (7, 4) f(i) f(0) 12 100
emmes-nonloop-ex4_2 (9, 5) f(i) f(0) 40 140
emmes-nonloop-ex4_3 (9, 5) f(i) f(0) 40 130
emmes-nonloop-ex4_4 (9, 5) f(i) f(0) 39 140
emmes-nonloop-ex5_1 (9, 5) f(i) f(s(0)) 40 140
emmes-nonloop-ex5_2 (8, 4) f(i) f(s(0)) 14 100
emmes-nonloop-ex5_3 (9, 5) f(i) f(s(0)) 40 140
enger-nonloop-ex_payet (6, 3) while(i,i) ? 1296 time out
enger-nonloop-isDNat (3, 2) f(i) f(0) 4 90
enger-nonloop-isTrueList (3, 2) f(i) f(nil) 4 90
enger-nonloop-swap_decr (5, 3) f(i) ? 41017 time out
enger-nonloop-swapX (3, 2) g(i) g(0) 4 90
enger-nonloop-swapXY (3, 2) g(i,i) g(0,0) 4 90
enger-nonloop-swapXY2 (3, 2) g(i,i) g(0,0) 4 90
enger-nonloop-toOne (5, 3) f(i) f(s(0)) 7 90
enger-nonloop-unbounded (3, 2) h(i,i) h(s(0),0) 4 90
enger-nonloop-while-lt (3, 2) while(i,i) while(0,0) 4 90
rybalchenko-nonloop-popl08 (15, 7) while(i,i) ? 9505 time out
velroyen-nonloop-AlternatingIncr_c (11, 6) while(i) ? 2035 time out
velroyen-nonloop-ConvLower_c (12, 6) while(i) ? 1341 time out
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6 Related work

The only other approach we are aware of for proving non-looping non-termination of

logic programs is that of Payet (2024). Roughly, it detects infinite chains of the form

s0 (⇒∗
r1 ◦⇒r2) s1 (⇒∗

r1 ◦⇒r2) · · · where (r1, r2) is a recurrent pair of binary rules (we

note that the infinite ⇒P -chain of Ex. 2 does not have this form). This approach seems

to address another class of non-loopingness (compared to that of this paper): it is not

able to disprove termination of the programs of Tables 1 and 2 and, on the other hand,

it is able to disprove termination of programs4 on which our approach fails.

Loop checking (see, e.g., the paper by Bol et al. (1991)) is also related to our work. It

attempts to prune infinite rewrites at runtime using necessary conditions for the existence

of infinite chains (hence, there is a risk of pruning a finite rewrite). In contrast, our

approach uses a sufficient condition (see Thm. 3 and Thm. 5) to prove the existence of

atomic goals that start a non-terminating chain.

Tabling (see, e.g., the paper by Sagonas et al. (1994)) is another related technique that

avoids infinite rewrites by storing intermediate results in a table and reusing them when

needed. Only loops of a particular simple form are detected (i.e., when a variant occurs

in the evaluation of a subgoal). We are not aware of any tabling-based approach that can

capture non-looping non-termination.

Another related technique is that of Payet and Mesnard (2006) which proves the

existence of loops using neutral argument positions of predicate symbols.

7 Conclusion

We have presented a new approach, based on a new unfolding technique that generates

correct patterns of rules, to disprove termination of logic programs. We have implemented

it in our tool NTI and we have successfully evaluated it on logic programs obtained by

translating TRSs from the TPDB.

Future work will be concerned with completeness of our unification algorithm, extend-

ing Prop. 2 to get more initial pattern rules and taking into account 1-contexts with

variables in simple pattern terms (to deal with programs as that of Ex. 9). We also

plan to adapt our approach to TRSs and to compare it to that of Emmes et al. (2012).

Moreover, we will compare our approach to that of Payet (2024) on a theoretical level.
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