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Abstract

We prove the existence of solutions of Maxwell's equations for a conducting medium
whose constitutive parameters are piecewise constant on R3, and then examine the
convergence of these solutions in the quasi-static limit in which displacement currents are
neglected. Secondly, we examine the regularity of the limiting solution and the sense in
which the classical boundary conditions hold, namely, continuity of the tangential electric
field and the normal current density.

1. Introduction

The work described in this paper arose from a study of the electromagnetic
prospecting technique used by geophysicists. The aim of the technique is to
determine the extent and electrical properties of a conducting ore body, buried in
a layered conducting ground, from transient electromagnetic observations at the
surface. In the usual experimental arrangement, a horizontal transmitting loop is
laid upon the ground and is driven by a current pulse or current ramp. The fields
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[2 ] Regularity in the quasi-static limit 403

induced in the buried ore body then generate secondary currents in a receiving
loop, and these are recorded for subsequent analysis. In order to model this
technique, one must be able to solve Maxwell's equations in a structured medium.
When the structure is simple, such as in a layered medium without ore body, or a
spherical or cylindrical ore body in a non-conducting earth, then the techniques
of classical analysis yield solutions in series of special functions which are easily
computable and fairly reliable. In more complex structures, one is forced to use a
finite element or finite difference representation of the electromagnetic fields. In
addition, it is sometimes necessary to couple the finite element representation to
an integral representation in order to adequately account for boundary conditions
at infinity. The successful application of finite elements and subsequent analysis
of the errors presumes knowledge of the regularity of the electromagnetic fields
near the interfaces. According to classical electromagnetism the tangential compo-
nent of both the electric and magnetic field intensities must be continuous across
any interface between media with different constitutive parameters. However,
greater precision is needed in order to tackle the numerical analysis of Maxwell's
equations. In particular, in what sense must the tangential components be
continuous, and how discontinuous are the normal components? We were unable
to find definitive answers in the literature for Maxwell's equations in a complex
medium. Nor could we find results immediately applicable in the quasi-static
limit, used in the electromagnetic prospecting problem in which Maxwell's
equations degenerate into a parabolic system. This paper is an attempt to answer
these questions. As such it is a first step in extending the approach of [3] (for a
layered earth) to more complicated geometries.

In this paper we are concerned with existence and regularity results for
Maxwell's equations in a conducting medium,

(1)

V X E = -
V X H = edE/dt + J
V • J = -dp/dt

J = oE + K

in the quasi-static limit as e -» 0. The notation used here is standard:
(1) E and H are the electric and magnetic field intensities;
(2) p is the density of electric charge;
(3) J is the total current density, oE is the conduction current density, and K

is a known current density maintained by an external energy source;
(4) /i is the permeability, e the permittivity and a the conductivity.

We shall require that /x be constant on R3, but allow e and a to be piecewise
constant functions. More precisely, we suppose that fi1; fi2,..., fln are disjoint
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404 A. L. Carey and D. M. O'Brien (3 ]

open regions whose closures cover R3 and whose boundaries are smooth and that

e(x) = s,
x e fi

,!

', > 0,
a, > 0.

In addition, we shall suppose that the source K is switched on at time zero, and
that E, H and p are all zero prior to time zero. Consequently, p will vanish for
all time in the interior of regions where e/a is constant, except possibly at points
where V • K is non-zero, as the charge density will be a distribution concentrated
on the interfaces between regions with different values of e/a.

In physical terms, the quasi-static limit is equivalent to the neglect of displace-
ment currents. This is usually a good approximation in the propagation of
low-frequency waves through conducting media, and also in the transient electro-
magnetic (TEM) response of a conducting medium when observations are made
long after the passage of the wave fronts. One practical application, already
mentioned, is to TEM prospecting, in which geophysicists measure the response
of the conducting earth to a controlled current source in the search for buried ore
bodies and oil deposits. This application has an extensive hterature, which can be
traced from the text by Wait [4],

Duvaut and Lions [1] have given an elegant existence proof for the case in
which e is non-zero, but their technique fails in the quasi-static limit. Our
approach is to deal directly with the equation for E, namely

Hea2E/at2 + podE/dl + V x ( v X E) = ~ixdK/dt (2)
which holds under our assumptions that \i is constant. We apply the Laplace
transform to equation (2) and solve the resulting elliptic problem,

{lies2 + pas + V XV x)e= -\isk (3)

where the lower-case e and k denote the Laplace transforms of E and K, and 5
is the Laplace transform variable. The solution of (3) satisfies a bound

where e* and o+ denote the minima of e and a. This bound is well behaved as
e+ -* 0, and so enables us to pass to the quasi-static limit.

An open and interesting question is what happens to the results if a* is zero
(with a not identically zero)? Explicit calculations for the special case of a half
space (ie. o(x) = 0, x3 > 0; a(x) = constant x3 < 0) show that the solution is
not L2, so that one expects solutions in weighted Sobolev spaces in general.

The classical boundary conditions are that the tangential components of e and
the normal component of ae should be continuous across any section, T, of the
interface between two regions, fl+ and fi_, with different constitutive parameters.
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[4] Regularity in the quasi-static limit 405

We use elliptic regularity to establish differentiability of e away from an interface
and then in order to analyse the boundary conditions, we resolve e into its
transverse component eT and longitudinal component eL,

e = eT + eL.

We then show that eT lies in the Sobolev space H2, which implies that all
components of eT are continuous. Next we show that n X eL, where n is the
normal to T, is continuous in the sense that the traces of n X eL on T from fi +

and S2_ are equal as distributions in H~1/2(T). Together, these results establish
the (weak) continuity of n X e across T. Lastly, we show that n. (ae) is
continuous across T in a similar sense.

Whether stronger continuity results are possible we leave as an open question.
We do not distinguish notationally between scalar and vector fields on R3, nor

between spaces of such fields. Thus, Hr will denote the usual Sobolev space of r
times weakly differentiable functions on R3 with the inner product

(« .«0r= Z

and corresponding norm

as well as the similar space of vector functions on R3 with inner product

(«,»),= Z / E D^.D-V,

and corresponding norm

When r = 0, we will omit the subscript from both the norm and inner product.
All other notation is standard and follows, for example, that in reference [1].

2. Existence

Our proof of the existence theorem follows the traditional approach in which
the initial-value problem for Maxwell's equations is converted into an elliptic
equation, after Laplace transformation of the time coordinate. In order to be able
to guarantee that the Laplace transform can be inverted, we have placed fairly
strong smoothness conditions on the source of the electromagnetic fields. In fact,
these conditions are too strong for the most commonly used model of the source
current, namely, a square current pulse. However, the conditions can be weakened
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but only at the expense of introducing distributional Laplace transforms, with
attendant notational complications, which we felt unwarranted for this paper. A
second feature of the proof is the division of the fields into longitudinal and
transverse components. The significance of this procedure is that the longitudinal
and transverse components have different regularity properties.

We begin with the classical result of Helmholtz, which asserts that any vector
field can be decomposed uniquely into longitudinal and transverse fields. Let PT

and PL denote the projections on L2 defined by:

3

PT+PL=l, (PL«),(i>) = E{P,PJ/P2)"J(P)> 1 = 1,2,3,
7 = 1

where " denotes the Fourier transform. Then in fact PL is an orthogonal
projection on Hr for any r > 0. To see this, note that

2)r\+\p\2)r\p •

and so if u is in Hr, then the right-hand side is finite, which establishes that uL

also lies in Hr. For any u e i/r, we let

uT = PTu and uL = PLu,

and call uT and uL the transverse and longitudinal components of u. It is easy to
check that these components satisfy

V X uL = 0 and V • uT = 0.

In order to formulate the existence and regularity results we need some technicali-
ties. The first of these we record as

LEMMA 1. u e Hr+1 if and only if u e Hr, V X u e Hr and V • u e Hr,

To prove this, use the identity

| / > x M | 2 = / 7 2 | M | 2 - | / > - u | 2

to give

Consequently, u e Hr+1 if and only if all terms on the right are finite, that is,
u G Hr,v X u e Hr and V • u e Hr.
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[ 61 Regularity in the quasi-static limit 407

We now turn to the Laplace-transformed version of the operator in equation
(2), namely,

q + A,
where

q = fits2 + pas,
and A is the operator defined as follows. Let

D(A) = [u\u e L 2 , v X u e L2 and V x ( v X u) <= L2),

and let A denote the operator on L2 with domain D(A) and action

Au = V x ( v X u), M G D(A).
Note that Lemma 1 shows that D(A) has an alternative characterisation:

D{A) = {u\u e L2, V X u e H1}.

We shall show that the equation
(q + A)u=f

has a unique solution u in />(/<) for any / in L2. From this solution we shall
construct the solution of Maxwell's equations by inverse Laplace transformation.
To do this we need a second technical result, namely that A is non-negative and
self-adjoint. The former is easy, since for any u e D(A),

(u,Au) = / | v X u\2

so A is non-negative.
We prove next that A is closed. Suppose that { M, } is a sequence in D(A) which

converges to u in L2 and that {Au,} converges to v in L2. Because V X (v X
",) ~* V X (v X u) in £>', and because v e L2, we see that V X (v X u) e L2.
Consequently, u e D(A) and Au = v. Hence A is closed.

Now let M* G ^K^*)- Then the form u -» (>4M, M*) is certainly continuous for
all M e D. For such u,

= / V x ( v X M) • u«

= j u-V X ( v X «„).

Thus, V X (v X M*) e L2 from which it follows that Au^&L2 and u*
Since A is symmetric, this establishes that D(A) = D(A*), and hence that A is
self-adjoint.

We may now state the main result of this section.

THEOREM. Let

s = a + i0,
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and require that a > 0. The equation

(q + A)u=f (4)

has a unique solution for any f in L2. If e+ and a* denote the minima of e and a,
then

(5)

Lastly, iff is holomorphic in s in the region a > 0 > 0, then so too is u.

Proof. The proof uses a Galerkin approximation and relies on the positivity of
A, e and a. Let vlt v2,... be a basis for D(A) and suppose that

m

" = E C,U,,
( = 1

where cx, c2,...,cm are chosen so that
m

T,ci(vj,(q + A)vi) = (vJ,f). (6)
/ = i

Note, firstly that det(i>7, (q + A)vi) =£ 0. Indeed, if this were not so, there would
exist c1, c2, • • • ,cm such that

and hence that

(u,(q + A)u) = 0. (7)

Since A is positive, equation (7) implies that

(u,eu){a2-P2)+(u,au)a^0 (8)

and

(u,eu)2aP+(u,ou)P = 0 (9)

The only possible solution of (9) is ft = 0, since e > 0, a > 0 and a > 0, which is
inconsistent with (8). Returning to equation (6), we find that

m m

E c,cj{vJ,(q+A)vl)= E Cj{oJtf)
,,j = \ 7 = 1

SO

(u,(q + A)u) = (u,f). (10)

Since A > 0, we obtain

(u,eu)(a2 - 02) +{u,au)a < real(W)/) (11)

and

,/). (12)
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Because e, a and a are all positive, /? and imag(«,/) must have the same sign.
Multiply (11) by a, (12) by /? and add to obtain

(u,eu)a(a2 + 02) +(u,ou)(a2 + 02) < areal(w,/)
Hence,

\s\2[(U,eu)a+(u,ou)}^2\s\\(u,f)\

It now follows that

from which we obtain

For each in we may construct in this way a solution of (6), which we now
denote by um. The sequence {um} is bounded, so we can select a subsequence
{um } such that um -» u weakly as i -* oo. Consider the equation

(vj, (q + A)um) = (vjj) for fixed j *s w,..

Then

In the limit as / -* oo,

Since this holds for all j , we have

{v,qu) +(Av,u) = (v,f) for all v e D(A),

so the form

v —> (Av, U)

is continuous on D(A) in the L2 topology. Thus, u e D(A*) = D{A), and

{v,(q + A)u)=(v,f).

This shows that u is a solution of

(q + A)u=f
Clearly,

Since (q + A) is an entire function of s, (q + A)'1 will be holomorphic
wherever it exists: in particular, (q + A)'1 will be holomorphic for a > 0. Thus,
if / is holomorphic for a > 0 > 0, so too will be u.

A corollary of this theorem is the existence of a unique solution of (2), provided
that the source current density K is sufficiently well behaved to permit the
inversion of the Laplace transform.
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COROLLARY. Suppose that the V'-valued function K has the following properties
(1) K has support 0 < t < oo;
(2) K is infinitely differentiable with respect to t;
(3) K is Laplace transformable for real s > 0.

Then the equation

Hed2E/dt2 + (iadE/dt + V x ( v X E) = ~ndK/dt

has a unique solution with the same properties.

REMARK. At the cost of quite considerable notational complexity, one could use
the same argument to prove existence and uniqueness for sources K which are
distributions in the / variable, provided one also invokes results on distributional
Laplace transforms. We attempted to write these results down, but found that the
additional machinery merely obscured the essential simplicity of our arguments,
and so we decided to omit this refinement.

It is worth noting the class of sources for which the spatial distribution is fixed
and only the amplitude changes with time. An example is a fixed conducting loop
driven by a current source. For such a source, K is separable,

K{t,x) = L(t)M(x),

and will certainly satisfy the conditions of the lemma if M is an L2 function and
L is a smooth, Laplace transformable function with support 0 < t < oo.

3. Quasi-static limit

The quasi-static limit represents the physically interesting situation in which a
wave process degenerates into a diffusion process. More precisely, the limit
applies to observations in a bounded region of space long after wave fronts from
the sources have passed. Mathematically, the limit is fairly subtle, because it
corresponds to the vanishing of the coefficient of the second-order time derivative
in the wave equation.

In order to examine the limit as e -» 0, we replace £ by Xe and allow X to
approach zero while e is held fixed. Let Ex and ex denote the corresponding
solutions of (2) and (3). We observe that:

so
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where e* is the maximum value of e. Clearly, ex -* e0 pointwise in s as X -» 0.
Since

where C is any vertical contour in the right half plane, we have

°<\ \ s \ \ \ k ( s ) \ \ .

Since \\k\\ decreases faster than any power of | j | , the appearance of the extra
power of s in the integrand does not affect the convergence of the integral, so we
find that Ex -> Eo in L2 as X -» 0.

The results of this and the preceding section are not surprising on physical
grounds. From a practical viewpoint they imply that a numerical computation of
a solution to (2) for e = 0 should be in good agreement with the true solution
under the conditions prevailing in the geophysical context.

On the other hand, it is unusual in an elliptic problem to obtain solutions
which are only L2, especially when the source term can be made as smooth as one
likes. The ' bad' behaviour of the solutions is, as we shall see in the next section,
due entirely to the assumption that e, o are only piecewise constant. (If e, a are
smooth then it is straightforward to show that the smoothness of the solution is
determined entirely by that of the source.) Knowing a priori precisely how bad
the solutions are is an essential input to formulating a finite-element numerical
scheme for solving (2).

4. Regularity

We shall establish four regularity results
(1) away from interfaces, all fields are smooth if the source K is smooth;
(2) the transverse component, eT, lies in H2, and so is certainly continuous;
(3) the longitudinal component, eL, lies in L2, but cannot lie in Hl;
(4) n X e and n • (ae) are continuous across any interface F in the sense of

distributions in H'1/2(r).
These results are not necessarily optimal, but they do show that the electromag-
netic fields cut across the boundaries of the conventional Sobolev spaces. None-
theless, result (4) is all that is needed to establish the numerical analysis of
Maxwell's equations. Because of their technical nature, we present the proofs of
these facts as four lemmas.
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We shall obtain the regularity results for e in the Laplace domain. The first
result is the standard elliptic regularity result away from interfaces.

LEMMA 2. Let qt denote the value of q on $2,. / /

q,k+ VV •Ki/,'oc(a,),

then e e H{c^
2(Qi). In particular, ifk is smooth in fi,, then so too is e.

Proof. Let fi be any open subset of fl,, and choose a smooth function <j> in
Z>(fl,) which is equal to one on Q. Then

V X ( v X(<t>e)) = 4>V x ( v X e) + V<l> x ( v X e) + e • VV<£ + (v24>)e

-V</>V -e + (v<#> • V ) e .

Although this expression contains mixed derivatives, such as (v</> • V )e over
which we have no control, if we choose \p in D(Q) then

(4>,(q + V X V X )($<?)) = -iis(yp,k).

In particular, if ^ = Vx , with x e D(S2), then

(X>V -(^e)) = -M5(x,V • * ) ,

from which it follows that

V • e = -fisq^V • k in fi.

Hence,

( -V 2 + q,)e = V X(v X e) - VV • e + ?,e

= -/tsA: -{\is/q,)w • e

= -JUJ(A: + <7,~V V • A;) in $2.

If A: + 4 f V v • k G #,^(£2,), then e e //,r
o^2(fi) by elliptic regularity (Lions

and Magenes [2, page 125]).
In order to examine regularity near the boundaries, we shall split e into its

longitudinal and transverse parts,
e = eT+ eL

where
eT = PTe and eL = PLe.

LEMMA 3. The transverse component, eT, of the solution of (3) lies in H1.
Consequently, eT is continuous.

Proof. W e know that eT e L2, that V • eT = 0, and that V X e r = V X e e

L2, so from Lemma 1 it follows that eT e H1. But we also know that V X eT e

H1, so again using Lemma 1 we find that eT e H2. It is a standard embedding

theorem that every function in H2 is also continuous.
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The longitudinal component eL certainly lies in L2, but cannot lie in Hl.
Indeed, the classical argument shows that e must be discontinuous, which implies
that eL is discontinuous because Lemma 3 shows eT to be continuous. Hence,
V • eL cannot lie in L2. Lemma 1 then shows that eL cannot lie in H1. Whether
eL lies in Hr for some r in the range 0 < r < 1 is an open question.

Following closely Duvant and Lions [1], we introduce the spaces

X </> G

with the graph norms

( | |4>| | 2+| |vx<H|2)1 / 2 and
respectively. Then C^(B) is dense in both these spaces and the maps

u —> n X u\r, u —» n • « | r

from C^(fi)toC1(9^) can be extended by continuity to mappings, again denoted
by

u -» n X u u —> n • u,

which are linear and continuous from

//(curl.fi) -> / / - 1 / 2 (T) and i/(div,fi) - ^ - ^ ( T ) ,

respectively. Furthermore, for all <J> G / / 1 / 2 ( r ) and 0 e H^fi) such that $ | r =

<<>,« X M> = ( ( $ • V X M - u • V X $ ) , u G i/(curl,B), (13)
n

<<J>,« • u) = f ( $ V • « - u • v $ ) , wG^(d iv ,n ) , (14)

where it should be remembered that <j> and $ are understood to be vector-valued
in (13), but scalar-valued in (14).

Now suppose that fi is a region which spans a section, F, of the interface
between Q+ and Q_. Let

A ± = B n B ±

and let

F = A+n A_.

Choose any <#> G / /1 / 2(F) and let $ ± denote liftings of <j> to ^ ( A ±) ,

*±lr = *-
Without loss of generality we may assume that

support $ ± c A±.
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Indeed, let \p e D(fi) with \p = 1 in a neighbourhood of F. Then $<& ± also lifts
<t> and has the assumed properties.

LEMMA 4. Suppose e e L2 and v X e = 0 /« fi. Let n X e ± denote the
tangential trace of n X e on T from fi±. Then

n X e + = n X e_

in the sense of equality of distributions in H'1//2(T).

Proof. For any <£ in H1/2(Y), it follows from (13) that

(4>,nXe±) = ± f ( $ ± - V Xe-e- V X <J>±)

so

<<>,« X e ± ) = T f e- V X 4>

Thus,

, « X e + - /i X e_> = - f e • V

where

Since support O c fl, integration by parts gives

(<>,/? x e + - « x e_) = 0 for all <>

We now turn to the normal components of ae and focus upon a region fi
where V • k = 0. It then follows from (3) that

V (oe) = 0 in J2.

LEMMA 5. Suppose f e L2 anrf V • / = 0 in fl. -L̂ f n / ± denote the normal
trace of n • f on T from fi ± . Then

n / + = n •/_

//i r/ie re/we of equality of distributions in H'1/2(T).

Proof. For any <> in H1/2(Y), it follows that
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so

<*,«•/*> = + / / ' V * ± .

Thus,

<* ,«• /+- / ! • /_> = - / " / • V«J>,

where

Since support $ c fi, integration by parts gives

We now observe that eL and ae satisfy the conditions of Lemma 4 and Lemma
5, respectively, so n X eL and n • (ae) are continuous across T in the sense of
distributions in H~l/2{Y).
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