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0. Introduction. Let R be a commutative ring (with non-zero identity) and let M be
an R-module.

Suppose that % is a chain of triangular subsets on R (see [S, p.420]). Then we can
construct a complex of modules of generalized fractions C(9, M). The chain U
determines a family #() of systems of ideals of R (see [6, 2.6]), and so the generalized
Hughes complex #(¥(U), M) for M with respect to (%) can be constructed (see [6,
Section 1]).

One of the main results of [6] is Theorem 3.5, which shows that, when R is
Noetherian, there is an isomorphism of complexes

V= ()= -2: C(U M) — H(S(U), M)

such that ¢~': M — M is the identity mapping Id,,. The proof of that theorem given in [6]
used the Noetherian property of R in an important way: at the end of [6], it was asked
whether there is any analogue of that theorem in the case when R is not necessarily
Noetherian. The purpose of this paper is to address that question.

We now describe the main results of this paper. We prove that, in general, there is a
natural homomorphism of complexes

0 = (8');=-2: H(A(U), M)~ C(U, M)

such that 87':M — M is the identity mapping Id,,. Moreover, we show that, if R is
Noetherian, then © is an isomorphism of complexes and its inverse is the isomorphism of
complexes of [6, Theorem 3.5] referred to above. In addition, we show that the class of
commutative rings R for which O is always an isomorphism of complexes includes the
N-rings studied by W. Heinzer and D. Lantz in [3]: we say that R is an N-ring if and only
if, for every ideal a of R, there exists a commutative Noetherian extension ring T of R
(having the same identity as R) such that a is contracted from T, that is, such that
a=aT NR. It should be noted that an N-ring need not itself be Noetherian (see {3,
p. 122]).

The final section of this paper provides an example which shows that © is not always
an isomorphism.

1. Preliminaries. Throughout this paper, R will denote a commutative ring (with
non-zero identity) and M will denote an R-module; €(R) will denote the category of all
R-modules and R-homomorphisms. We use N, (respectively N) to denote the set of
non-negative (respectively positive) integers. For any positive integer n, D,(R) denotes
the set of n X n lower triangular matrices over R. For H € D,(R), the determinant of H is
denoted by |H|, and we use 7 to denote matrix transpose. Given H € D,(R) with n>1,
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H* will denote the (n — 1) X (n — 1) submatrix of H obtained by deletion of the nth row
and nth column of H.

1.1 REMINDER: COMPLEXES OF MODULES OF GENERALIZED FRACTIONS. The concept of a
chain of triangular subsets on R is explained in (5, p.420] and [6, 2.3]. Such a chain
U= (U,),n determines a complex of modules of generalized fractions

0sMIBUI'MS. . S UMB U M. .

in which €%(m)=m/(1) for all m € M and

() "
e =
(Lll,...,ll,,) (Ll],...,u,,,].)

forall neN, m e M and (u;,...,u,) e U,. We shall denote this complex by C(%, M).
We shall need to use many of the properties of modules of generalized fractions reviewed
in [6, Section 2] and, in particular, the descriptions of the cokernels of the e’ (i € Np)
which result from [6, Lemma 2.7].

1.2 REMINDER ABOUT THE CONSTRUCTION OF GENERALIZED HUGHES COMPLEXES. A System
of ideals of R [1] is a non-empty set ® of ideals of R such that, whenever a, b € ®, there
exists ¢ € @ such that c < ab.

Note that (see [6,1.2]) P gives rise to an additive, left exact functor

Dy:= lln) Homg(b, -)
bed
from €(R) to itself.

For each b e ® and x € M, we define Ay, :b— M by Ay ,(r) =rx for all r € b. For
each R-module G, there is an R-homomorphism

1e6(G): G — Dg(G)

which is such that, for each g € G, 74(G)(g) is the natural image of Ay, in Dg(G) (for
any b e ®). Furthermore, as G varies through the category 4(R), the n4(G) constitute a
morphism of functors ng:Id— Dy from €(R) to itself. (Of course, Id here denotes the
identity functor from €(R) to itself.)

Let $=(d,);cn be a family of systems of ideals of R. The generahzed Hughes
complex for M with respect to ¥ has the form

0_)M_h_l)KOL)K] Kl h KI+]

and is denoted by #(¥, M). This complex is a generalization of one constructed by K. R.
Hughes in [4]. Details of the construction are given in [6,1.3], but its terms and
homomorphisms can be essentially described as follows.

Write K™2=0, K™'=M, and use h~>:K~?>— K~! to denote the zero homomorphism.
Then, for all n € Ny, K":= Dy, , (Coker h"~2), while h"~':K"'— K" is the composition
of the natural epimorphism from K"™' to Cokerh" ? and the homomorphism
Ne,,,(Coker h"~2):Coker h"2— Dy, _ (Coker h" %) = K".
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1.3 ReMark. Let %= (U,),.n be a chain of triangular subsets on R. By [6, Lemma
2.5] (see also M. H. Bijan-Zadeh [2]), for each n € N, the set

<I>(U,,):={§1 Ru;:(uy,...,u,) e U,,}

is a system of ideals of R. Thus #(U) = (P(U,)),n is a family of systems of ideals of R,
and we can form the generalized Hughes complex #(¥(%), M). Our purpose in this paper
is to compare the complex #(F(U), M) with the complex of modules of generalized
fractions C(U, M) described in 1.1.

1.4 DeriNniTION. (See [3, p. 115].) The ring R is called an N-ring if, for every ideal a
of R, there is a commutative Noetherian ring extension T of R (having the same identity
as R) such that a is contracted from T, thatis, aT N R =a.

Of course, if R is Noetherian, then it is an N-ring, but an N-ring need not be
Noetherian (see [3, p. 122}).

The following theorem of Heinzer and Lantz provides a characterization of N-rings
which is very useful for our purpose.

1.5 THeorem (W. Heinzer and D. Lantz (3, Theorem 2.3}). The ring R is an N-ring
if and only if, for every ideal b of R, the set {(b:c):c is an ideal of R} (partially ordered by
inclusion) satisfies the maximal condition.

2. A morphism of complexes. The key to our construction of the morphism of
complexes mentioned in the introduction is provided by the following lemma.

2.1 LemMA. Let n € N with n>1, let U be an expanded triangular subset of R (see
[7,3.2]), and let U be the restriction of U to R" [1,3.6]. Let u = (u,,...,u,.,) e U. Let

n+1 _

fe HomR( > Ru;, (U X{l})""’lM). Then there exists w=(w,...,w,,)e U and
i=1

H e D, (R) such that

m

_—(w — 1)e(l7><{1})'"'1M:meM}

Ime{

and HuT =w".
Also there is an R-homomorphism

n+1

8. :HomR( S Ru,, (U x {1})‘"“‘M> S U™ M
i=1

which is such that, for f and w as above, so that

g

(wyy. .. yw,, 1)

fWns1) =

for some g € M, we have 8,(f)=g/(wr,. .., Wn, Wny1).
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n+1
Proof. Since 3 Ru;is a finitely generated ideal of R, and finitely many members of
i=1

a module of generalized fractions can be put on a common denominator, there exists
t=(t,...,t,) e Usuch that
Imfc {———m———e (UX{AP ™" 'M:m e M}
(t1y. .51, 1)

Since U is the restriction of U to R" and U is expanded, there exist w = (wy, ..., W,1)
in U and H, K € D,,,(R) such that (with an obvious notation) Hu” =w” = K(t,1)”, and,
since K*t7 = (wy,...,w,)", it is clear that w meets the requirements.

To define a map 6, as described in the statement of the lemma, suppose that
w'=(wi,...,whe) e Uand H € D,.(R) are such that H'u” =w'” and

m

Ime{ e (UX{)™™ 'M:me M}.

Wi ywp 1)

Suppose that

!

Do g
fwna) W w1y

where g’ € M. We must show that g'/w’' =g/w in U™""'M.

There are P, P' € D,.(R) and z =(zy,...,Z,+1) € U such that Pw” =z7 =pP'w'T.
Let f(z,41)=8"/(zy,- - - , Zn» 1), Where g” € M. We show that g/w =g"/z in U™""'M.

n+1

Let P=(p;); then z,,; = X p,.iw:. Hence
i=1

n
2 2 2
Int1 ™ Z aw;+ priipaiWna,
i=1

n+1
where a,,...,a, € > Rw, Since
i=1

m

m € ((_7 x{IHh™" M:me M},

Imfg{

it follows from [7, 3.3] thatf(Z aiwi) =0, and 50 f(z22.1) = f(Piains1Wii1)

i=1

Hence, in (U x{1})™""'M,
2 N Zn+18" _ p,21+1n+1Wn+1g _ IP*|P3.+1n+1Wn+1g
fZna)= = =
(z]a'~~7zn,1) (w19--~awna1) (Zla'-',zrnl)

Since U x {1} < U, it follows that, in U™""'M,

Znr18" _ IP*IPZHnHWan

(219"' 9zna1) (Zla-':' azn, ]-) ’

that is,

3 4
Zn+18 _ Zaei IP*fP,Z,HnHWan
2 - 2
(Zl>'--,znazn+1) (le"'azn,zn+1)
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Therefore, by [8,2.1],

Z,+18" _ |P*|Pﬁ+1n+1wn+lg
(2155 2nr Zaw1) (21 s Zny Taw)
in U™""'M. Let L=(l;) € D,.1(R) be such that L*=P* I,,,,=a;, (1<i<n) and
bittner = Phstnsr- Then L{w,,...,w,, wio)'=(21,-.,2:2541)7  and IL| =
|P¥|p2., ..+ Hence,in U™""'M,

"

g _ Znr18" _IPH past a1 Wai8 _ 8
(Zl"" ’ZH’ZH*H) (Zl"" s Zns Zg,+1) (Zla'”’zn,z?ﬁ—l) (wlv-- s Was Wn+1)

Similarly, we can prove that g'/w'=g"/z in U™""'M. Hence g/w=g'/w' in
U™""'M. It follows that there is indeed a mapping

n+l

6u:HomR< > Ru;, (U X {1})‘"“M)-—> U 'm,

i=1

as described in the statement of the lemma; now that the above checking has been
completed, it is routine to show that §, is an R-homomorphism.

2.2 ProPOSITION. Let the situation be as in 2.1. We denote by ®(U) the system of
ideals of R determined by U (see 1.3). For each b € ®(U), let

[ J:Homg(b, (T X{1)™""" M)~ Dauy((U x 1) """ M)

be the canonical homomorphism.
There is an R-monomorphism

é :DdP(U)((U X {1})-n—1M)_) U_n—lM

which is such that, for each u = (u,,... ,u,+,) € U and each
n+1 _
fe HomR<2 Ru;, (U X {1})""1M>,
i=1

we have 8([f]) = 8,(f), where 8, is the homomorphism defined in Lemma 2.1.

n+1

n+1
Proof. Let u=(uy,...,ups1), u' =(y,...,unsy) €U with ¥ Ru;c ¥ Ru. We
i=1 i=1

show that the diagram

Homk(nil Ru;, (U X {1})‘""M)

i=1

l 6“
n+l !

HomR(Z Ru;, (Dx{l})-"—'M) —— UM,
i=1 "

in which the vertical map is the restriction homomorphism, is commutative.
n+1 _
Let fe HomR< > Ru;, (UX {1})”'"‘M>. Then there exists w = (wy,..., W) e U
i=1
and H, H' € D, ,(R) such that

Imfg{ e (UX{1)™" 'M:m eM}

_m
(W, . .., W, 1)
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and Hu" =w” =H'u'". Let f(W,.1) = g/(W,...,W,,1). Then

_ 8
flessmone) =0y
It follows from the definition that
8.(f)=glw = 8. (flzr ru)-

Hence there is an R-homomorphism & as described in the statement of the
proposition. We show that & is injective.

» n+1 _
Let u=(uy,...,u,.)elU and fe HomR( > Ru,, (UX {1})"’“M> be such that
i=1

8([f) = 8.(f)=0. There exist He D, (R) and w=(wy,...,w,.,)e U such that
Hu" =wT and

nm
Wi, .. oW, 1)

Imfs{ e(Ux{1)™""'M:m GM}.

Let f(w,,,)=g/(wy,...,w,,1). Then g/w=0 in U™ 'M. Therefore there exist Q €
D, (R)and z =(zy,...,2,+1) € Usuch that Qw” =z" and |Q| g i zM. Let Q = (g,).
i=1

n n+1
Then z2,,=3 bw,; +q2.1,41W>+1, Where by,...,b, € X Rw,. It follows from [7,3.3],
i=1 =1

!

and the fact that

Ime{ e(Ux{1H)" M:m EM},

Wy owy, 1)
that f(z) =0 (1<i<n)and f(z2.1) = %1 ns1f(Wi4,). Since

O*(wy,. . ow) =(z1,- -, 20)T
and |Q| = |Q* ¢n+1n+1, it follows from [7,3.3] that

Gn+1n+18 _Gnein1|Q*g_ 10lg
(wl,"'3wnal) (Zla-~"zn71) (le"'azna]-)

in (Ux{1})™""'M. Hence

qﬁ+ln+1wn+1g -
W1y .. s Wy, 1)
in (UX{1}))™""'M. Hence q2.1,+1f(W2.1)=0, that is, f(z2.,)=0. Since f(z})=0
n+

1
(1<i<n)and f(z},,) =0, the restriction of fto 3 Rz} is zero, and so [f] = 0. Therefore
8 is injective, =l

2.3 THEOREM. Let the situation be as in 2.2. If R is an N-ring (see 1.4) (and so, in
particular, if R is Noetherian), then the R-monomorphism & of 2.2 is an isomorphism.
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Proof. Tt is enough to show that & is surjective. Let m/(uy,...,u,41) e UM,
where me M, (uy,...,u,+;) € U. It follows from 1.5 that there exists t € N such that

n n
<'21 Ru;:ul, +1) = <}21 Ru,-:uf,“i,‘,). Therefore there exists an R-homomorphism
= =

2 Ru;+ Rult, — (U x{1)™""'M

i=1

for which
n 14
A, U, M
f(Z au; + an+1u::+-ll) =
i=1 (ul"'-,uru 1)
forall ay,...,a,+, € R. (To see this, reason as in the proof of [6, Lemma 3.1].) By 2.1, we
have
t
U, 1M m
5(u I A )(f) = - = .
Pttt (ul,"' ’un9u::-+-11) (ul”-- ’unaun-f-l)

Therefore m/(uy,...,U,+,) € Imé.

A similar result is available for triangular subsets of R. Its proof is similar to, but
simpler than, the above proofs of 2.2 and 2.3, and so we merely state the result here and
leave the proof to the reader.

2.4 ProrostTion. Let U be an expanded triangular subset of R. We denote by ®(U)
the system of ideals of R determined by U. For each b e ®(U), let [ ]:Homg(b, M) —
Dg(y(M) be the canonical homomorphism.

There is a monomorphism §: Dg,(M)— U™'M which is such that 8([f]) = f(u,)/(u1)
for each f € Homg(Ru,, M) where (u,) e U. Moreover, if R is an N-ring (and, in
particular, if R is Noetherian), 8 is an isomorphism.

2.5 Tueorem. Let U = (U,), .~ be a chain of triangular sets on R. Denote the complex
C(U, M) of modules of generalized fractions by

0->MLL P L Sl

(so that F*=U;"7'M and f"~' =e¢" for all n € Ny), and set F~' = M.
Let #(U) = (P(U,))nen be the family of systems of ideals of R determined by .
Denote the generalized Hughes complex #(¥(U), M) for M with respect to $(U) by

A Ko A
0->M1S5K' T L K . SKT S K S

and set K™'=M.
Then there is a homomorphism of complexes
0 = (6")iz-2: H(F(W), M)~ C(U, M)

such that 7':F~'— K~ is the identity mapping on M. Moreover, © is an isomorphism if
R is an N-ring (and, in particular, when R is Noetherian).
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Proof. The homomorphism © = ('), _, is constructed by a straightforward inductive
process, and most of the details are left to the reader.

Use 2.4 to define 6% Suppose, inductively, that n =1 and we have constructed
R-homomorphisms 872, 87},..., 677" so that the diagram

0 o M s ey gro2 K gen
l ! 19’!—3 lo’l—l
0 M —_— - - F"‘Z 2 Fn—l

commutes, and suppose we have shown that 87!, 8°,..., 6" are all isomorphisms when
R is an N-ring. The above diagram induces a homomorphism 6"~ ':Coker h" ™2 —
Coker f"7%, and the latter cokernel is isomorphic to (U, x{1})™""'M by [6, 2.7].
Application of the functor Dy, .,y and use of 2.2 provide us with R-homomorphisms

Dd,(UM)(O""]) . K" = Dq)(Un“)(COk@r h"—2) — Dq,(unﬂ)(Cokerf" _2),

Do,y (Coker f"~?) == Doy, ,(Us X {1}) "' M)

and
6: Do, (U, X ap""'My- U ii'M=F",

and it is routine to check that 8", the composition of these, has all the properties required
to complete the inductive step.

2.6 REMARk. It is easy to check that, when R is Noetherian, the isomorphism of
complexes of 2.5 is the inverse of the isomorphism provided by [6, Theorem 3.5].

3. A counterexample. A multiplicatively closed subset of R is a triangular subset of
R. We give an example of a commutative ring R and a multiplicatively closed subset S of
R for which the natural map

8: lim Homg(sR, R) = Dos)(R)— S7'R
sR e ©(S)
of 2.4 is not surjective. Since S can be incorporated into the chain of triangular subsets
U= (U,)neny on R, where U;=S§ and U, =8 X{1} X...x{1} = R" for all n e N with
n > 1, this example is enough to show that the morphism of complexes of 2.5 is not always
an isomorphism.

Consider R =k[X,X,,...,X,,...]/c where k is a field and
.= (X]Xz,X%X3,. .. ,X’]'_]Xn,. . )

Let x; denote the natural image of X; in R. We show that (0:rx771) = (0:5x}), for each
neN,

Since x7x,.; = 0, we have x,.; € (0:gx7). It is enough to show that x,, ¢ (0:gx]™?).
Suppose that x,.,, € (0:zx7™"), so that X?7'X,,, ec. Hence there are reN and
X1 X))y fi( Xy, ..., X)) € k[X,,. .., X,] such that t >n + 1 and

t
XX =2 XX fi(Xy, ..., X))
i=1
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in k[X,...,X,]. Evaluate at X,=...=X,=X,.2=...=X,4,; =01in k[X,,..., X,11]
We obtain that

XIII-IXn-Fl =X'11Xn+1f;1(X],O, e 305 Xn+1’ Oa s aO)y

and this contradiction shows that x,,.; ¢ (0:xx77").
We note in passing that the strictly ascending chain

0:px) = (O:pxd) <. .. < (Orpx]) = (02X ) = ..

shows that R is not an N-ring.

Take S ={x{:i e No}. We show that 1/x; ¢ Im 8. Suppose that 1/x, e Im 8. Then
there are /e N and f € Homg(x\R,R) such that 1/x;=f(x})/x} in ST'R. Note that
(0:rx}) € (0:rf(x})).

We can assume that

fxh= > a;, Xt x
(i1, W) A

for some u e N with u =2, finite subset A of N&, and a;,_;, € k((i,...,i,) € A). If, for any
i=(,...,i) €A, one of the components of i other than the first, say i; where 2<j <u,
is positive, then x}7'a; , x¥...x%=01in R, and hence

in S™'R. Hence, in S7'R,
i i
1 fla a;0..0%!
—me—
(i1,0,...0) e A Xy

For each (i;,0,...,0) e A, write b, for a;, . o Then there exists x e S such that

xi™'=" 3 b, x{™%" in R. It follows from the definition of ¢ that
(i1,0,....00e A

X(]]+l = Z bilei]+q+]
(11.0,....0)eA
in k[X,]. Hence we can assume that the only member of A of the form (i;,0,...,0) is
({-1,0,...,0), and that b,_; = 1. Thus

f(xll) =x’1_1 + 2 ail,...,i,,xlil e xf}',

(i) €A’

where A’ is a finite subset of N§ and A’ N (Ng X {0} X ... X {0}) =0. Now

-1 i ey —
x4 ( > ai,,__,,iuxal...x;‘)—o.
(i

oiy)eA’
Hence x{7'f(x})=x{*""? and x,.;x{7'f(x1) =x,.x1"'72#0, since x,.; ¢ (0:rx1"'7).
However x,,.,x4 " '(x}) = x,.,x4"'~! = 0. We have thus shown that
X 0x8 7 € (0:rxN0:Rf (X)),

and this contradiction show that 1/x; ¢ Im &.
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