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1. Introduction

Let #x and Fy denote families of subsets of the nonempty sets X
and Y respectively and let { be a function mapping Y onto X with the
property that f{H] e & x for each H € . Then the family & of all func-
tions f mapping X into Y such that /[H] € #y for each H € #x is a semi-
group if the product fg of two such functions fand gis defined by fg = fo fo g
(i.e., (fg)(®) =f(f(g(@))) for each z in X). With some restrictions on the
families # x and &y and the function f, these are the semigroups mentioned
in the title and are the objects of investigation in this paper. The restrictions
on Fx, Fy and f are sufficiently mild so that the semigroups considered
here include such semigroups of functions on topological spaces as semi-
groups of closed functions, semigroups of connected functions, etc.

Before continuing, it will be convenient to define some terms.

DEerFiNITION (1.1). For a nonempty set X, we use the symbol Z(X)
to denote the family of all subsets of X. The subfamily of Z(X) which
consists of X and all singletons of X is referred to as the core of Z(X).

DEeFINITION (1.2). Let & be any subfamily of #(X). A function f
mapping X into X which has the property that f[H] € &# for each H e &
is referred to as an F-invariant function.

DEFINITION (1.3). A subfamily & of #(X) is referred to as an R-family
if it contains the core of #(X) and for each set H in &, there exists an
& -invariant function f such that f[X] = H.

DEFINITION (1.4). An R-space is a pair (X, #) where X is a nonempty
set and & is an R-family of subsets of X.

We will often take the liberty (as one does in referring to a topological
space) of referring to X itself as an R-space. It is to be understood that
some R-family of subsets is associated with X. R-families are investigated
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in Section 2. The results obtained there show that these families are rather
abundant. For example, the family of all closed subsets of a T, topological
space is an R-family and the family of all connected subsets of a connected
completely regular Hausdorff space with cardinality ¢ (the cardinality of
the continuum) is an R-family.

DerinITION (1.5). Let (X, Fx) and (Y, &) be two R-spaces. A func-
tion f from X into Y is an R-function if {{H] e Fy for each H € F .

DerFINITION (1.6). A function f from X onto Y is referred to as an R-
bijection if f is a bijection from X onto Y and both f and f* are R-functions.
Now let X and Y be R-spaces and suppose that for every pair of distinct
points p and g of X, there exists an R-function f mapping X into Y with the
property that f(p) # f(g). We note that since Fy (the R-family associated
with Y') contains all singletons of Y, all the constant functions mapping X
into Y are R-functions. Therefore, if { is any R-function which maps Y
onto X, the family of all R-functions from X into Y is an &*-semigroup [8]
if we define the product fg of two such functions by fg = fo fog. This
particular &*-semigroup will be denoted by R4 (X, Y, §) and will be referred
to as an Rp-semigroup. It follows from Theorem (2.7) of [8] that if ¢ is any
isomorphism from the R%-semigroup R%(X, Y, f) onto the RF-semigroup
(U, V, g), then there exist unique bijections §) and t from X onto U and Y
onto V respectively such that for each f in R%(X,Y,f), the following
diagram commutes.

x-T.y
o
Yool Y8

.y .U

_t.x
5
¥

Section 3 is devoted to finding additional conditions which will insure that
the bijections §) and t are R-bijections. Results obtained in Sections 2 and 3
generalize Theorem (2.10) of [7] which states that if I'(X) and I'(Y) denote
respectively the semigroups of closed functions from the T, topological
space X into itself and the T, topological space Y into itself, then a mapping
@ from I'(X) onto I'(Y) is an isomorphism if and only if there exists a
homeomorphism § from X onto Y such that ¢(f) =Y o fo})” for each f in
I'(X). Generalizations are also obtained of certain results in {[7] which
involve semigroups of connected functions.

Automorphisms of certain Rj-semigroups are studied in Section 4. The
first result of that section gives a number of conditions which are equivalent
to the condition that certain R3-semigroups have inner automorphisms.
Another result of that section determines the automorphism groups for
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a class of RF-semigroups. This latter result, in conjunction with a very
interesting result of J. de Groot enables us to answer in the affirmative a
question of the type considered by him in [3]. Generally stated, the question
is, “For a given class € of algebraic systems, is every group isomorphic
to the automorphism group of some member of ¥?”’ De Groot gives an
affirmative answer in [3] for the class of all rings. Furthermore, he points
out that Birkhoff [1] has given an affirmative answer for the class of
distributive lattices while a result of his shows that the answer is negative
for the class of complemented distributive lattices. He also points out that
the answer is negative for the class of all groups. In particular, no group has
an automorphism group which is cyclic of odd order. However, we are able
to give an affirmative answer for the class of all semigroups. The last result
of the paper states that every group is isomorphic to the automorphism
group of some semigroup.

2. Some results on R-families

The results of this section show that R-families are rather abundant
and that many familiar families of sets are fi-families.

THEOREM (2.1). Let & be any family of mutually disjoint subsets of a
nonempty set X. Then the family F* consisting of F and the sets in the core
of P(X) is an R-family.

Proor. Let H be a nonempty set belonging to #*. Choose p in H and
define a function f mapping X onto H by
f(x) =« for x in H and
f(x) =p for z in X—H.
It follows that f is an & *-invariant function and hence that &#* is an R-

family.

THEOREM (2.2). Let X be infinite and suppose F consists of the sets in
the core of P(X) and a finite number of infinite subsets of X. Then F is an
R-family.

Proor. We first prove by induction that if H is any infinite subset of
X and K,, K,, - -+, K, are n subsets of X, one of which is X itself, then
there exists a positive integer m such that 1 < m < » and

(2.2.1) card ((HnK; nK;n---nK; )—(K;  v-UK,))=card (H)

where, for any set Y, card (Y) denotes the cardinal number of the set Y.
Suppose # = 1. Then K, = X and

card (H n K,) = card (H).
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Thus, in this case, m = n = 1. Now suppose (2.2.1) holds for # = » and
let K,, K,,- -+, K,, K,,, be r+1 infinite subsets of X where K, = X for
some 7 << r+1. Let

A=HnK, n 0K, )—(K,_ u-UK,)

+1

Since (4 n K, ;) v (4—K,,,) = A, we must have either

(2.2.2) card (A n K, ;) =4 or
(2.2.3) card (A—-K,,;) = A.
Now

AnK, ,=HnK, n---nK, nK,,)—(K, | "UK,)
and

A=K, y=HnK 0K, )—(K,

tmi1

u-rUK; UK, ).

Therefore, since card (4) = card (H), it follows that (2.2.1) holds for
#n = k-+1 and hence for each positive integer #.

Now let H be any infinite set in & which is different from X and denote
the remaining infinite sets in & by K,, K,, - - -, K, . It follows from (2 2.1)
that there exists a bijection 2 from (HnK; n -+ -0 K J—(K;, v UK, )
(which we will denote by B) onto H. Choose a pomt ¢ in H and define a
mapping f from X onto H by

f(z) = h(z) for x in B and
flz) = p for z in X—B.

Note that f[V]=H for V=H, K,, -+, K, and f[V]={p} for
V=K, . K., K, It follows that f is an Z-invariant function.
To complete the proof, we must show that X and the singletons of X are
all ranges of &-invariant functions. But this is a consequence of the fact
that the identity mapping and the constant mappings are all #-invariant
functions.

The following example shows that the conclusion of Theorem (2.2)

does not hold for an infinite number of infinite subsets of X.

ExaMPLE (2.3). Let X be an infinite set and 4 a subset of X with the

properties
(2.3.1) X—A is infinite and
(2.3.2) card (X—4) < card 4.

For any ordinal number «, we let L(a) = {# : § is an ordinal number and
B < a}. Let « be the first ordinal number for which card (L («)) = card (4).
Thus, if f < «, card (L(8)) < card (4). Now there exists a bijection %
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from L(x) onto 4 and for each ordinal number § << «, we define a subset
H, by
Hy = (X—4) v h[L(B)].

Conditions (2.3.1) and (2.3.2) imply that card (4) is infinite. This, together
with the fact that « is the first ordinal for which card (L(x)) = card (4),
implies that « is a limit ordinal, for suppose « has an immediate predecessor
B. Then L(«) = L(B) u {#} and it would follow that card (4) = card (L(a)) =
card (L(B)) which would contradict the choice of « as the first ordinal for
which card (4) = card (L(«)). Since « is a limit ordinal, it follows that

(2.3.3) X=u{H;:p<a}
and that for any f§ < «,
card (H,) = card (X—A)+-card (L(8)).

But since card (X—4) < card (4) and card (L(8)) < card (4), it follows
that

(2.3.4) card (H,) < card (4).

Now let # consist of the sets in the core of Z(X) along with 4 and all
the sets H,; (8 << «) and let f be any #-invariant function mapping X into
A. Let us consider the set H,. By (2.3.4), card (H,) < card (4). This,
together with the fact that the only proper subsets of 4 which belong to
& are singletons, implies that f[H,] is a singleton, i.e., f[H,] = {p} for some
p in A. Now let 8 be any other ordinal number less than «. The same
argument allows us to conclude that f[H,] is a singleton. In fact, since
Hyn Hy#9, it follows that f[H] = {$}. From (2.3.3), we see that

fIX] =V {Hg: p<a}] = U {f[Hp]: p <a}={p}.

But (2.3.1) and (2.3.2) imply 4 is infinite. Thus f/[X] #* 4 and we conclude
that A is not the range of any &-invariant function. Thus & is not an R-
family.

It follows immediately from Theorem (2.1) that if # is any subfamily
of #(X) which consists of the core along with one other subset of X, then
& is an R-family. However, the following example shows that there do
exist families, consisting of the core and two other subsets, which are not
R-families.

ExampLE (2.4). Let X be a finite set and let A and B be any two
subsets of X satisfying the following properties:

(2.4.1) Bn (X—A4) #£0,
(2.4.2) card (A n B) > 1,
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(2.4.3) card (B) < card (4),
(2.4.4) card (X—(4 u B))+1 < card (4).

Let & consist of the core of #(X) together with the sets 4 and B. Now
let f be any & -invariant mapping from X into 4. Since card (B) < card (4),
f[B] # A. Thus f[B] = {p} for some p in A. Since card (A n B) > 1, f
maps at least two points of 4 onto p. This implies f[4] 7% A and it follows
that f[A] = {p}. Therefore f[A U B] = {p}. Now

card (f[X]) = card (f[X—(4 v B)] u f[4 U B])
< card (f[X—(4 v B)])-tcard ({4 u B])
< card (X—(4 u B))+1 < card (4).
Thus f[X] %% A and we conclude that A4 is not the range of an & -invariant
function. Thus & is not an R-family. For an example of sets X, 4, and B

satisfying conditions (2.4.1)—(2.4.4), let X =1{1,2,3, 4,5}, 4 ={1,2, 3,4}
and B = {1, 2, 5}.

THEOREM (2.5). Let X be any nonempty set and let F be a family of
subsets of X satisfying the following conditons:

(2.5.1)  F contains the core of #(X),
(2.5.2)  F s closed under finite intersections,
(2.5.3) if He & and {p} is any singleton of X, then H 0 {p} € F.

Then & is an R-family.

Proor. Let H be any nonempty set in & and choose p in H. Define a
function f mapping X onto H by

flx) = p for z in X —H,
f(x) =z for x in H.
Then for any F in &,
flF1=f[(FnH) v (F n (X—H))]
=fFNHJUf[Fn(X—H)]= (FnH)vf[Fn (X—H)].
Now, F n H e # by (2.5.2) and f[F n (X—H)] is either @ or {¢}. In either
event, (F n H) u f[F n (X—H)] belongs to # and we see that H is the
range of an & -invariant function. Thus & is an R-family.

The following two corollaries are immediate consequences of Theorem
(2.5).

COROLLARY (2.6). The family of all closed subsets of a T, topological
space is an R-family.
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COROLLARY (2.7). Let X be a Hausdorff space and let F denote the family
of all compact subsets of X together with X itself. Then F 1s an R-family.

The following result is a reformulation of Theorem (3.2) of [7]. The
proof carries over intact.

THEOREM (2.8). The family of all connected subsets of a connected com-
pletely regular Hausdorff space with cardinality c (the cardinality of the
continuum) is an R-family.

Proor. Let K be any connected subset of X and choose two distinct
points p and ¢ of X. Since X is completely regular and Hausdorff, there
exists a continuous function f from X into the closed unit interval I with
the properties f(p) = 0 and f(g) = 1. Since f[X] is connected and contains
both 0 and 1, it follows that f[X] = 1.

Now for any point « in I which is different from zero, let

WY N AR SRR (@a; =0 or 1)
denote the nonterminating binary expansion of z. Define a function g from
I into I by

g(x) = lim sup (a,+a,+- - -+a,)/n

g(0) =0.
The function g is discussed in [5] on page 82. It has the interesting property
that the image of any nondegenerate subinterval (open, closed or half-
open) of I is I itself. Since the cardinality of K does not exceed that of I,
there exists a function 2 mapping I onto K. It follows that (ko g o f)[X] = K.
Moreover, if H is any connected subset of X, then f[H] is either a point
of I or a nondegenerate subinterval of I. In the former case, (Ao go f)[H]
is a point of X and in the latter, (% o g o f)[H] = K. This completes the proof.

3. Isomorphisms of R7-semigroups

DEeFINITION (3.1). Let (X, #x) and (Y, Fy) be two R-spaces and f
an R-function from Y onto X. The triple (X, Y, §) is said to be R-admissible
if the following conditions are satisfied:

(3.1.1) There exists an R-function from X onto Y.

(3.1.2) If p and q are distinct points of X, then f(p) # f(¢g) for some R-
function f mapping X into Y.

(8.1.3) {"[H]eFy foreach He Fy.

Before proving the main result of this section, we recall two definitions
and a result from [8] which are needed here. Let & be a family of functions
with domains contained in a set X and ranges contained in a set Y and
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let { be a function with domain equal to Y and range contained in X with
the property that fo fo g € & for each pair of elements f and g in &.

DEFINITION (3.2). & is referred to as an &-semigroup and is denoted
by &(X, Y, {) if the following two conditions are satisfied.

(3.2.1) For each pair #, and z, of distinct points of X, there exists
a function f in & whose domain contains both x; and z, with the property

that f(2,) # f(%a)-

(3.2.2) Foreachzin X andyinY, thereis a subset 4 of X containing
z such that A, e & (A4, is the function whose domain is 4 and which is
defined by A,(p) = y for all p in A4).

DEeFINITION (3.3). An &-semigroup &(X, Y, f) is referred to as an
&*-semigroup and is denoted by S*(X, Y, {) if { is a surjection onto X.

THEOREM (3.4). A bijection ¢ from an S*-semigroup S*(X, Y, {) onto
an &*-semigroup &*(U, V, q) is an isomorphism if and only if there exist
bijections §) and t from X onto U and Y onto V respectively such that for each
fin &*(X,Y,§), h) maps the domain, D(f), of | bijectively onto the domain,
D(p(f)), of p(f) and the following diagram commutes.

o) —1>v s x

N A

() 25 v -S> U

Moreover, the functions §) and t are unigue in the sense that if h* and t* are
two mappings from X into U and Y into V respectively with the property that
the resulting diagram commutes when Yy is replaced by h* and t by t*, then
h=Dh*and t = t*.

Now we are in a position to prove the main result of this section.

THEOREM (3.5). Let (X, Y, §) and (U, V, q) be R-admissible triples. Then
a bijection @ from RE(X,Y, ) onto RE(U, V,g) is an isomorphism if and
only if there exist R-bijections ) and t from X onto U and Y onto V respectively
such that the following diagram commutes.

xt,.y_1.x

| ot

U o(f) v U

Moreover, the functions Yy and t are unique in the sense that if H* and t* are two
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mappings from X into U and Y into V respectively with the property that the
resulting diagram commutes when ) is replaced by HhY* and t by t*, then §) = h*
and t = t*.

Proor. Sufficiency is an immediate consequence of Theorem (3.4).
Necessity requires some additional observations. Suppose then ¢ is an
isomorphism from R%(X,Y,f) onto RF(U,V,q). The existence of the
bijections §) and t (as well as their uniqueness) is a consequence of Theorem
(3.4). It remains for us to prove that they are, in fact, R-bijections. We do
so first for ). Let H € 5. Then by (3.1.3), {"[H] € £y and there exists
an & p-invariant function g in R3(U, V, g) such that g[Y] ={"[H]. Let &
be the R-function from X onto Y whose existence is guaranteed by (3.1.1)
and set f=goh. Note that f[X]= {"[H] and hence (jo f)[X] = H.
From this and the diagram, we get

YH] =H{(fo HIX]] = hofo H[X] = (goto f)[X]
= (goo(f) o 9)[X] = (go ¢(f)) (U]

Since both g and ¢(f) are R-functions, go ¢(f) is also and hence
(g0 @(f))[Ul e Fy. In a similar manner, one shows h* is an R-function
and it follows that § is an R-bijection.

Now suppose H € & . Then there exists an R-function g from Y onto H
and an R-function % from X onto Y. Let f = go k. Then f[X] = H and,
from the diagram, we get

tHH] = (to )[X] = (p() 0 H)[X] = ¢(HU].

But ¢(f)[U] € #. The fact that t- is an R-function follows in the same
manner and we conclude t is also an R-bijection.

This latter result, together with some results of Section 2, generalizes
several theorems in [7] on semigroups of closed functions and semigroups
of connected functions. Let X and Y be T, topological spaces and let f§
be a closed continuous mapping from Y onto X. Let p and ¢ be distinct
points of X. Since card (X) = card (Y), there exist two distinct points y
and z of Y. Define a function f from X into Y by f(p) =y and f(zx) =z
for # # p. Then f is a closed mapping. Suppose, in addition, there exists a
closed mapping from X onto Y. Then the triple (X, Y, {) is R-admissible
where the R-families are the families of all closed subsets of X and Y
respectively. We recall from Corollary (2.6) that these are indeed R-families.
In this case R7(X, Y, f) is the semigroup of all closed functions mapping
X into Y where the product of f and g is defined to be fo { o g. This particular
Rp-semigroup will be denoted by G1%(X, Y, f) and will be referred to as a
Cl}-semigroup. With this convention, the following corollary is an im-
mediate consequence of Theorem (3.5).
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COROLLARY (3.6). A bijection ¢ from GIH(X, Y, §) onto €LL(U, V, g) s
an isomorphism if and only if there exists a unique homeomorphism Yy from X
onto U and a unique homeomorphism t from Y onto V such that for each f in
CIX(X, Y, {), the following diagram commutes.

xt.yv_t.x
) l |
e b s ¥

In [7] we used the symbol I'(X) to denote the semigroup of all closed
functions mapping the T, topological space X into itself where the binary
operation is composition. By letting X =Y, U =V and f and g be the
identity functions in Corollary (3.6), we obtain

COROLLARY (3.7). Let X and U be T, spaces. A mapping ¢ from I'(X)
onto I'(U) is an isomorphism if and only if there exists a homeomorphism Y
from X omto U such that o(f) = Yo fo Y for each f in I'(X).

This latter result is Theorem (2.10) of [7].

Let us recall that Theorem (2.8) of this paper states that the family
of all connected subsets of a connected completely regular Hausdorff space
with cardinality ¢ is an R-family. The techniques used in proving Theorem
(2.8) also yield

LeMMA (3.8). Let X and Y be conmected completely regular Hausdorff
spaces with cardinality equal to c. Furthermore, let | be a connected function
(i.e., a function which takes connected sets into conmected sets) from Y onto X
with the property that preimages of conmected sets are connected. Then the
triple (X, Y, {) 1s R-admissible where the R-families are the connected subsets
of X and Y respectively.

Proor. Let p and g be distinct points of X. Since X is completely
regular and Hausdorff there exists a continuous function f mapping X into
the closed unit interval I such that f(p) = 0 and f(g) = 1. Since X is
connected, f[X] = I. Let g be the function mapping I onto I which is defined
in the proof of Theorem (2.8). Since Y has cardinality ¢, there exists a
bijection 2 mapping I onto Y. Then (ko go f)(p) # (Rogof)(g) and for
any connected subset H of X, f{H] is either a single point of I or a non-
degenerate subinterval of I. In the former case (ko go f)[H] is a single
point while in the latter case (¢ o g o f)[H] = Y. Thus £ o g o fis a connected
function mapping X onto Y. Therefore, both conditions (3.1.1) and (3.1.2)
are satisfied and the triple (X, Y, §) is R-admissible.

The R%-semigroup associated with this particular triple is simply the
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semigroup of all connected functions mapping X into Y where the product
fg of two such functions is defined by fg = f o f o g. This semigroup will be
denoted by €t5(X, Y, f) and will be referred to as a §ty-semigroup.

Pervin and Levine in [10] refer to a bijection § with the property that
both § and §* are connected mappings as a biconnected mapping. We use
this terminology in stating the following corollary which is a consequence
of Theorem (3.5) and Lemma (3.8).

COROLLARY (3.9). Let X, Y, U and V be connected completely regular
Hausdorff spaces with cardinality equal to c. Let | be a conmected function
from Y onto X with the property that preimages of connected sets are connected
and, similarly, let g be a connected function from V onto U with the property
that preimages of commected sets are comnected. Then a bijection ¢ from
Ct7(X, Y, f) onto Cta(U,V,q) is an isomorphism if and only if there exist
unigue biconnected mappings Yy and t from X onto U and Y onio V respecrively
such that for any f in Ct3(X, Y, §), the following diagram commudes.

x .y I.x

LI

AL VL BN

Theorem (3.10) of [10] states that if X and Y are locally connected
compact Hausdorff spaces, then any biconnected mapping from X onto Y
is a homeomorphism. This fact, together with Corollary (3.9) of this paper
results in

CorOLLARY (3.10). Let X, Y, U and V be compact connected locally
connected Hausdorff spaces with cardinality equal to c. Let the functions {
and g satisfy the same conditions as in the statement of the previous corollary.
Then a bijection ¢ from Gih(X, Y, §) onto Ct3(U, V, g) is an isomorphism if
and only if there exist unique homeomorphisms Yy and t from X onto U and
Y onto V respectively such that for each f in CtF.(X, Y, {), the following diagram
commutes.

X—L»Y—me

R

U o(f) g U

In [7], the semigroup of all connected functions mapping X into X
under the binary operation of composition was denoted by T(X). If we
let X =Y, U=V and both f and g be identity mappings in Corollary (3.10),
we get
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CoROLLARY (3.11). Let X and U be compact connected locally connected
Hausdorff spaces with cardinality equal to c. Then a bijection ¢ from T(X)
onto T(U) is an isomorphism if and only if there exists a homeomorphism §
from X onto U such that ¢(f) =Y o foh* for each f in T (X).

This latter result is also a consequence of Theorems (3.2) and (3.5)
of [7].

4. Automorphisms of RF-semigroups

Let & be an arbitrary semigroup. We refer to an automorphism ¢ of
& as an inner automorphism if there exist elements @ and & of % such
that ¢(x) = axb for each z in &. Our first result in this section gives several
conditions which are equivalent to the condition that there exists an inner
automorphism of R}(X,Y, f) when the triple (X,Y, f) is R-admissible.
Before stating this theorem, we introduce an additional bit of notation.
If X is any R-space and i is the identity mapping on X, then the triple
(X, X, 1) is R-admissible and the binary operation of the Rj-semigroup
R7 (X, X, i) is ordinary composition, i.e., fg = fo g for all f, g in R}(X, X, 1).
We will denote this particular semigroup by R3(X).

THEOREM (4.1). Let (X, Y, ) be an R-admissible triple. Then the following
statements concerning the Ry-semigroup Ry (X, Y, f) are equivalent.

RE(X, Y, f) has an identity.
RE(X, Y, §) has a left identity.

(4.1.1)

(4.1.2)

(4.1.3) §zs an R-bijection from Y onto X.

(4.1.4) RE(X,Y, ) is isomorphic to Rp(X).

(4.1.5) R}(X, Y, {) is isomorphic to R3(Y).

(4.1.6)  Every automorphism of Rp(X, Y, |) is inner.
)

(4.1.7) At least one automorphism of Rp(X, Y, §) is inner.

Proor. Itis evident that (4.1.1)= (4.1.2). We begin by proving

(4.1.2)= (4.1.3). Let [ be a left identity of R3(X,Y, f) and foryin Y,
let y denote the constant function in R7(X, Y, j) which is defined by y(z) =y
for each z in X. Then y =y (§(»)) =y (i) = Lo fox (i) = I(i@)) = Lo {@).
Thus [ o f is the identity mapping on Y which implies { is an injection and
thus a bijection onto X. Moreover, { is an R-bijection since, by assumption,
(X, Y, §) is R-admissible.

(4.1.3)=>(4.1.4). Since f is a bijection onto X, the mapping ¢ from
R (X, Y, f) onto R} (X) defined by ¢(f) = { o fis also a bijection. Moreover,

forany fandgin R7(X, Y, {), p(fg) = @(fo fog) =fofofog=9(f) o p(e).
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Thus ¢ is an isomorphism from R (X, Y, {) onto R3(X).

(4.1.4)= (4.1.5). Since R7(X) has an identity (namely, the identity map-
ping on X), R7(X,Y,{) does also. Just as in the proof that (4.1.2)= (4.1.3),
one shows that | is an R-bijection. Because of this, the mapping from
Ry(X, Y, f) onto RE(Y) defined by ¢(f) = f o f is a bijection. Furthermore,
for any /, & in RE(X, Y, 1), ¢(fg) =9(/ofog) = fofogof=plh)onle).
Thus R7(X, Y, f) and R (Y) are isomorphic.

(4.1.5)= (4.1.6). As in the previous case, since R7(Y) has an identity,
Rr(X, Y, f) does also and this implies § is an R-bijection. Now let ¢ be an
automorphism of R3(X, Y, f). By Theorem (3.5), there exist unique R-
bijections ¥ and t from X onto X and Y onto Y respectively such that for
any fin R3(X, Y, §) the following diagram commutes.

X—f—>Y-—f—>X

R

X<P(/‘)Y f X

Thus, for each fin RF(X, Y, §), ¢(f) = tofoh*. From this, and the fact
that f is an R-bijection, we get

p(f) = (tof")ofofofo (f oh) = (tof )/ 0h")

for each f in RF(X, Y, ). Since both to f~ and {~ o)~ are elements of
R(X, Y, {), it follows that ¢ is an inner automorphism.

It is evident that (4.1.6)= (4.1.7) so to complete the proof, we need
only show that (4.1.7)= (4.1.1). To do this we turn to a result of M. L.
Vitanza [11]. She has shown that if 4 and b are any pair of elements of a
semigroup & such that mapping ¢ from & into &, defined by ¢(z) = axb
for each z in %, is an automorphism, then # has an identity and, moreover,
a and b are inverses of each other relative to that identity. Hence, any
semigroup which has an inner automorphism must have an identity.

Now suppose X and Y are R-spaces and (X, Y, f) is an R-admissible
triple. Let ®; denote the family of all point inverses of {, i.e.,

D = {f{z} :z e X}.

Then D, is a subfamily of & (the R-family of subsets associated with Y)
consisting of mutually disjoint nonempty subsets of Y. We let Gg(D;)
denote the group of all R-bijections 4 from Y onto Y with the property
that A[4] € D, for each 4 € D,. Using the same technique as in the proof
of Lemma (3.5) of [9], we prove
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LEMMA (4.2). Let t be an R-bijection from Y onto Y. Then there exists an
R-bijection §) from X onto X such that ho§ = fot if and only if t € Gg(D,).

Proor. We use Lemma (3.2) of [8] which we state as follows:

(4.2.1). Suppose f maps Y onto X, g maps Y onto Z and t is a bijection
from Y onto Y. Then there exists a bijection §) from X onto Z such that
hof=gotif and only if t{4] € D, for each 4 in D;.

First suppose t € Gg(®;). By (4.2.1), there exists a bijection §) from X onto
X such that Hof=fot. Now let H e Fx. Since (X, 7, f) is admissible,
f*(H] e %y and thus t[j"[H]] € % . But this implies H{H] =f[t[{[H]]] € Z%.
Hence §) is an R-function from X onto X. One shows, in a similar manner,
that §* is also an R-function and it follows that § is an R-bijection. The
necessity portion of the proof is an immediate consequence of (4.2.1).

With this latter result, we are now ready to determine the auto-
morphism groups of Ri-semigroups when the triples involved are admissible.

THEOREM (4.3). Let X and Y be R-spaces and suppose the triple (X, Y, f)
s R-admissible. Then the automorphism group of Ry(X, Y, §) is isomorphic
to Gg(D,)-

Proor. Let % denote the automorphism group of R7(X,Y,{) and
define a mapping @ from A into G4(D,) as follows: let ¢ be an element of .
Then according to Theorem (8.5), there exist unique R-bijections §) and t
from X onto X and Y onto Y respectively such that for each fin RH(X, Y, f),
the following diagram is commutative.

/ f

X—> Y —X

L

X"’U)Y f X

Define @(p) =t. Since hof = fot, it follows from Lemma (4.2) that
t e Gg(D;) and hence, @ is indeed a mapping from A into Gg(P). One
shows in a routine manner that @ is a homomorphism. Now let t be an
arbitrary element of G4(®,). Then by Lemma (4.2), there exists an R-
bijection §) mapping X onto X such that hofj=fot. It follows from
Theorem (3.5) that the mapping ¢ from R;(X, Y, f) onto itself, defined
by ¢(f) =to fo}h*, is an automorphism. Since P (p) = t, it follows that &
is an epimorphism from % onto Gg(®,). Now suppose ¢ is in the kernel
of @. Again we use Theorem (3.5) to conclude the existence of unique
bijections §) and t such that the previous diagram commutes. But since ¢
is in the kernel of @ and @(¢) =1, it follows that t is the identity mapping
on Y. Let x be any point ot X. Then there exists a point  in Y such that
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f(y) = . From the diagram, we see that §(z) =H(/(y)) = f(t(%)) = f(y) ==.
Thus, § is the identity mapping on X and it follows that ¢ is the identity
mapping on R3(X, Y, f), i.e., ¢ is the identity of . This proves @ is an
isomorphism from % onto Gg(D;).

Now let X be a T, topological space and let & 5 denote the family
of all closed subsets of X. Then &y is an R-family and the triple (X, X, i)
is R-admissible where i denotes the identity mapping on X. In this particular
case, Gg(®y) is just the group (under composition) of all homeomorphisms
on X. Recalling that I'(X) denotes the semigroup, under composition, of all
functions mapping X into X, we apply Theorem (4.3) to obtain

COROLLARY (4.4). If X is a T, topological space, then the automorphism
group of I'(X) is isomorphic to the group, under composition, of all homeo-
morphisms on X.

Using the latter corollary and a very intersting result due to J. de Groot,
we are able to prove

COROLLARY (4.5). Every group is isomorphic to the automorphism group
of some semigroup.

ProorF. Let G denote an arbitrary group. Theorem 8, page 98 of [3]
states that there exists a compact connected Hausdorff space X such that
G is isomorphic to the group of all homeomorphisms on X. But by Corollary
(4.4), this group of homeomorphisms is isomorphic to the automorphism
group of I'(X), the semigroup of all closed functions on X. Hence G is
isomorphic to the automorphism group of I'(X).
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