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Introduction

The theory of strong interactions,
now that is quite something.

Elementary particles we know are leptons e and μ and their correspond-
ing neutrinos, νe, νμ, a photon (γ) and a graviton, and then, hundreds of
strongly interacting particles – hadrons: proton p and neutron n, pions
π± and π0, kaons K±, K0, K̄0, etc., etc.

1.1 Interaction radius and interaction strength

Electromagnetic interaction has two characteristic features. Firstly,
it is characterized by a small coupling,

e2

4π�c
� 1

137
.

Secondly, it is a long range force,

V =
e1e2

r
,

so that there is no typical distance, no characteristic interaction radius.

Gravitation behaves (at large distances!) similarly to the electromag-
netic interaction,

V = Ggr

m1m2

r
;

thus it has no radius either. To characterize the magnitude of the inter-
action one needs to construct a dimensionless parameter. Contrary to the
case of the electromagnetic charge, mass is not quantized, so that there is
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2 Introduction

no ‘unit mass’ to choose. Hence one usually takes the mass of the proton,
mp, to quantify the typical interaction strength:

Ggr

m2
p

�c
� 7 · 10−39.

An important difference with electromagnetism is that here all the
‘charges’ have the same sign (mass is positive). Therefore the gravita-
tion prevails over the electromagnetic interactions in the macro-world.
Moreover, the gravitational interaction grows with energy, making the
gravity essential at extremely small distances. This happens solely owing
to the existence of the Planck constant �, since by confining a system to
small distances, Δr, we supply it with a large energy ΔE ∼ �c(Δr)−1.

Leptons, photons, graviton do not participate in strong interactions.

r

Rutherford was the first to observe
(electromagnetic) scattering of strongly
interacting particles. By comparing
the scattering pattern of α-particles at
large angles with classical formulae he
concluded that the size of the gold nu-
cleus was about 10−13 cm. By the way, to
be able to describe the process as classical

particle scattering, all the way down to ρ ∼ 10−13 cm, one has to have

kr0 � 1.

However, the energies of α-particles in the Rutherford experiment,
E/mα = O(keV/GeV) = 10−6, correspond to momenta k such that

k · r0 =
√

2mα · E · 1
μ

� 1, with (r0)−1 ∼ μ = 140 MeV,

so that the scattering becomes quantum, rather than classical, already for
the impact parameters much larger than r0. It was fortunate for Ruther-
ford that the scattering cross section in the Coulomb field happened to
be identical to that in the classical theory!

The proton–proton cross section is very small, σpp ∼ 4 · 10−26 cm2. Why
then do we refer to the ‘strong interaction’ as strong? To really evaluate
the strength of interaction, one has to take into consideration the exis-
tence of the finite interaction radius since the interaction cross section
is composed of the actual interaction strength and of the probability to
hit the target, measured by the transverse area of the hadron ∼πr2

0. This
being said, if the interaction cross section turns out to be of the order of
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1.1 Interaction radius and interaction strength 3

the geometric cross section,

σ ∼ r2
0 ,

we call the interaction strong; otherwise, if

σ � r2
0 ,

such an interaction we consider as weak .
How can one determine experimentally the interaction radius r0?
In the classical theory it is straightforward: from the angular depen-

dence of the scattering cross section dσ(q) one can reconstruct the poten-
tial, and, subsequently, extract the characteristic radius r0.

In quantum mechanics we operate with the partial wave expansion of
the scattering amplitude,

f(k, θ) =
∞∑
�=0

(2	 + 1)f�(k)P�(cos θ).

Guided by quasi-classical considerations, we can define the interaction
radius by comparing the magnitudes of the partial wave amplitudes f�
with different orbital momenta 	:

f� ∼
{

1 for 	 <∼ kr0,
0 	 � kr0.

Assume that the interaction radius is small, kr0 � 1. Then, due to the
fact that the partial waves with large orbital momenta are suppressed,
f� ∝ (kr0)2�+1 (centrifugal barrier), the S-wave dominates,

f(k, θ) � f0(k),

and the scattering pattern is spherically symmetric. Increasing the inci-
dent momentum we reach kr0 ∼ 1 where a few partial waves will start
contributing and the corresponding Legendre polynomials with 	 �= 0 will
introduce angular dependence into the scattering distribution. Thus we
can determine r0 by studying at what energies the scattering ceases
to be spherically symmetric. Alternatively, at large k, we can extract
the interaction radius by measuring the characteristic scattering angle,
θchar ∼ (kr0)−1 � 1.

Now that we know how to measure r0 and may compare σ with r2
0,

let us ask ourselves another question: whether the situation when σ � r2
0

really means that we are dealing with a weak interaction.
The answer is, yes and no!
Consider the scattering of a point-like neutrino off a proton, for exam-

ple, the process νμ + p → μ + X. By examining the momentum depen-
dence of the cross section we will extract that very same proton radius
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4 Introduction

r0 ∼ 10−13 cm. At the same time, the inter-
action cross section is of the order of σν ∼
10−40 cm2. Then, according to our logic we must

υ

p
proclaim the neutrino a weakly interacting particle.

However, imagine that the proton has a tiny core, of the size 10−20,
which is smeared over the area of the radius r0 = 10−13. If so, the inter-
action of the neutrino with the proton actually turns out to be strong:
(10−20)2 ∼ σν . We can only state that ν interacts weakly at the distances
larger than 10−20 cm.

The most important property of the weak interaction is its univer-
sality with respect to hadrons and leptons. They get engaged in the
weak interaction in a similar manner and with the same universal Fermi
constant

GF � 10−5

m2
p

, mp
−1 ∼ 10−14 cm.

Weak interaction increases with energy. At distances 10−3/mp ∼
10−17 cm, corresponding to collision energies of the order of 103mp �
1000 GeV, the weak interactions may become strong.

The main features of strong interactions of hadrons are the following:

(1) probability to interact is O(1) at the distances r <∼ r0 = 10−13 cm;

(2) hadrons are intrinsically relativistic objects.

Indeed, to investigate the distances r0 = 1/μ, momenta k ∼ μ are neces-
sary, which correspond to the proton velocity v � μ/mp ∼ 1/6. (By the
way, it is this 1/6, treated as a small parameter, to which the nuclear
physics owes its existence.) At the same time, if we substitute for the
proton a π-meson (whose mass is mπ =μ) we get v � 1 and the very pos-
sibility of a non-relativistic approach disappears.

1.2 Symmetries of strong interactions

Imagine that we have an unstable particle whose decay time τ is much
larger than r0/c ∼ 10−23 s. Does it decay due to the strong or weak
interaction? The answer lies in the symmetry of the decay process:
the degeneracy is much larger in the strong interaction; degeneracy
means symmetry, and symmetries, as you know, give rise to conservation
laws.
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1.2 Symmetries of strong interactions 5

Electric charge Q. The hadrons have to know themselves about the elec-
tromagnetic interaction. Each hadron has a definite electric charge, and
the strong interactions must respect its conservation, otherwise quantum
electrodynamics would be broken.

Baryon charge B. This is another quantum number whose conservation is
verified with a fantastic accuracy (stability of the Universe). The baryon
charge equals +1 for baryons like p, n, Λ, Σ, Ξ, . . . (and −1 for their
antiparticles), and 0 for mesons (π, K, ρ, ω, ϕ, . . . ).

Isotopic spin I. Phenomenologically, hadrons split in groups of particles
with close masses, and can be classified as belonging to isotopic SU(2)
multiplets. For example, the doublet of the proton and the neutron, p, n
(I = 1

2); the triplet of pions, π± and π0 (I = 1), etc. The relative mass
difference of hadrons in one multiplet is 10−2–10−3, that is, of the order
of the electromagnetic ‘fine-structure constant’:

mn −mp

mp
∼ mπ0 −mπ+

mπ+
∼ α � 1

137
.

It looks that if we switched off the electromagnetic interaction, we would
arrive at a complete degeneracy in the mass spectrum of strongly inter-
acting particles. Independently of the hypothesis about the nature of this
tiny mass splitting, these states can be treated as degenerate in the first
approximation and therefore, there must be a symmetry and the corre-
sponding conservation law.

Are the pn and pp scattering cross sections the same, if electromagnetic
interactions are switched off? No – in the second case the particles are
identical. In order to distinguish p from n, a new quantum number is
introduced: the proton is treated as a nucleon with the isospin projection
I3 = +1

2 , and the neutron with I3 = −1
2 . Thus, the nucleon wave function

depends on coordinates, spin and isospin variables, ψ(r, σ, τ). In strong
interactions isospin is conserved.

For example, the lightest stable nuclei – the deuteron and the helium –
consist of equal number of protons and neutrons, D = (pn), He4 = (2p2n),
and both have I = 0 (isotopic singlets). Therefore, the fusion reaction

D + D �→ He4 + π0

is forbidden, since the pion has isospin I = 1.

Strangeness S. Any reaction takes place that is allowed by conserva-
tion laws. At the same time, it was observed that long-living hadrons
like K-mesons, and Λ- and Σ-baryons, cannot be produced alone in the
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6 Introduction

interactions of nucleons and pions. They always go in pairs, e.g.

π− + p → Λ + K̄0 ,

while the reactions

π− + p → n + K0, or π− + p → Λ + π0

are forbidden.
By prescribing to these hadrons a new quantum number – strange-

ness S,

S(K−,K0) = S(Λ) = −1, S(K̄0,K+) = S(Λ̄) = +1,

we get the relation between the conserved quantities:

Q = I3 +
B

2
+

S

2
.

There is one more approximate symmetry which combines strange and
non-strange hadrons into of SU(3) multiplets, like octets of pseudoscalar
mesons,

S = 1 (K̄0,K+)
I=

1
2
,

S = 0 (π−, π0, π+)I=1, ηI=0,

S = −1 (K−,K0)
I=

1
2
,

and baryons,

S = 0 (n, p)
I=

1
2
,

S = −1 (Σ−,Σ0,Σ+)I=1, ΛI=0,

S = −2 (Ξ−,Ξ0)
I=

1
2
,

baryon decuplet, etc.
The isospin symmetry is broken by electromagnetic interactions. The

weak interaction breaks everything except B, Q and, maybe, the lepton
charge L. (Apparently, the electron and the muon lepton charges conserve
separately, since μ− → e− + ν̄e + νμ , but μ− �→ e− + γ.)

The lightest strange particles are stable under strong interactions. How-
ever, K-mesons decay into pions, and the Λ-baryon into π−p, due to the
weak interaction, disrespecting the strangeness conservation. The weak
forces violate spatial parity P , charge parity C, and even the time reflec-
tion symmetry T (the later equivalent to the ‘combined parity’ CP ).
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1.3 Basic properties of the strong interaction 7

1.3 Basic properties of the strong interaction

1.3.1 Interaction radius

The question arises, what is r0: is this an interaction radius specific for
the strong interaction, or rather a real size of an object? This question
can be answered using, for example, weak interactions as a short-range
probe. It turns out that r0 is the actual size of the proton that can be
extracted, in particular, from the measurement of the spatial distribution
of the electric charge inside the proton.

The hadron radius r0 appears to be equal to the pion Compton wave-
length,

r0 � mπ
−1 ≡ μ−1 � 10−13 cm.

Is this coincidence an accident? In the past it was thought to be of fun-
damental importance; it is not so clear any more that it really is.

What is the problem with the description of the strong interactions?
As we have discussed above, a non-

relativistic description does not make
sense here. We have just one example
which may help us to construct a rel-
ativistic theory: electrodynamics. In the
quantum electrodynamics, the electron e
and the photon γ are point-like, and so
is the interaction between them.

e e

g

(1.1)

Now we want to describe hadrons: p, n, π. Are these particles point-like?
The existence of the finite radius r0 confirms, apparently, the opposite.
There is no way, however, to give a relativistic description of a particle of
finite radius. So we have to assume that the particles we consider are, in
a sense, point-like.

Yukawa suggested that the point-likeness of a hadron does not contra-
dict the existence of a finite interaction radius. Let us draw a pion–nucleon

interaction
p

N                 N
taking (1.1) for a model. The existence of

this vertex means that there are processes of virtual emission and absorp-
tion of pions by the nucleon,

pN                                     N . (1.2)

Let us imagine now that this happens quite frequently. What will we see
as a result of a scattering of an external particle off such a fluctuating
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8 Introduction

nucleon? Estimating the energy uncertainty as

m + mm                              m ΔE � (m + μ) −m = μ, (1.3)

we conclude that the lifetime of the fluctuation is Δt ∼ (ΔE)−1 ∼ μ−1.
During this time interval, a pion (with a velocity v ∼ 1) will cover the
distance Δr ∼ μ−1. Thus, our object, which was point-like in the begin-
ning, is now spread over a distance μ−1, and, in the process of scattering,
it will interact with the projectile at impact parameters ρ ∼ μ−1. In other

N

N p

words, the scattering of an incident parti-
cle with our nucleon can be depicted as a
pion exchange between the two nucleons –
the process that has a characteristic radius
r0 ∼ μ−1 !

Without any theory, let us first calculate this amplitude in a naive way,
by analogy. What would be the difference between the above process and
the scattering of electrons that we have studied in the quantum electro-
dynamics,

e

e

g

q

=
e2

q2

(
ūγμu

)(
ūγμu

)
. (1.4)

We must replace the photon propagator 1/q2 in (1.4) by the Green func-
tion of the massive π meson:

Dπ(q) =
1

μ2 − q2
.

The corresponding scattering amplitude will have the form

A =
g2

μ2 − q2
, (1.5)

with g the pion–nucleon interaction constant, replacing the electric charge
e in the QED amplitude (1.4).

What does this amplitude correspond to in the case of the non-
relativistic scattering? The non-relativistic scattering amplitude reads

f = −2m
4π

∫
eik

′·rV (r)ψ(r) d3r. (1.6)

In the Born approximation, replacing the wave function ψ(r) by a plane
wave with momentum k, we obtain

fB = −2m
4π

∫
eiq·rV (r) d3r, (1.7)
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1.3 Basic properties of the strong interaction 9

where q is the momentum transfer, q = k′ − k. For non-relativistic par-
ticles, the kinetic energy, E = k2/2m, is small, and the energy transfer
component can be neglected:

|q0| ∼ q2/m � |q| , so that q2 = q2
0 − q2 � −q2.

The scattering amplitude (1.5) becomes

A � g2

μ2 + q2
.

What is the potential corresponding to this amplitude? Evaluating the
inverse Fourier transform of the Born amplitude fB in (1.7) we obtain
the Yukawa potential,

V (r) = − 4π
2m

∫
e−iqr g2

μ2 + q2

d3q

(2π)3
=

g2

2m
· e−μr

r
. (1.8)

So, indeed, the effective interaction is characterized by a finite radius
r0 = 1/μ.

We conclude that the assumption of the point-like nature of the inter-
action does not exclude the finiteness of the interaction radius. Moreover,
having adopted the point of view that the hadron has no intrinsic size
(having no other option), we see that the interaction radius is not an
independent quantity but is determined by the masses of the particles.

From the point of view of a relativistic theory the π-meson has to exist
in nature, otherwise there would be no explanation for such a ‘large’ value
of the proton radius.

1.3.2 Interaction strength

The other side of the strong interactions is their strength: once the parti-
cles approach each other to the distance r0, the interaction is inevitable.
Since a nucleon is always surrounded by a pion cloud, see (1.2), this means
that the coupling constant g2 (if it exists at all) is obliged to be large,
g2 ∼ 1, contrary to the electromagnetic interaction, characterized by
the small coupling α = 1/137 � 1. Now that is bad indeed, because un-
der these circumstances anything will go. For example, a virtual state with

two pions will be there, having
a typical lifetime Δt ∼ 1

2μ and,
correspondingly, a spatial spread
of the order of ∼ 1

2r0.
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We may even have a three-nucleon
state, N → Nπ, π → NN̄ . Since the
nucleon is much heavier than the
pion, this fluctuation is short-lived:
Δt ∼ 1/(2mN ) � r0. However, we
cannot state a priori that such a
process does not contribute to the

N

N

N
radius of the nucleon since these ‘second-order’ amplitudes may be ac-
tually larger than the one-pion emission amplitude (1.2), because the
coupling constant is not small.

It is clear that it will be certainly impossible to build a theory like
quantum electrodynamics to describe strongly interacting hadrons.

We can, however, introduce initial point-like objects, and then, in fact,
observe ‘clouds’, the radii of which are determined by the masses of the
hadrons.

This is the basic idea of the theory of the strong interaction.
We need to construct a framework which would allow us to draw pic-

tures representing a formal series for the hadron interaction amplitudes.
From these pictures we will extract information without actually calcu-
lating the amplitudes, which would be, a priori, impossible. The Feynman
diagrams can be considered as a ‘laboratory of theoretical physics’.

1.4 Free particles

We start by considering free particle states and their propagation. There
is a fantastic variety of hadrons with spins reaching up to s = 19

2 .

1.4.1 Particle states

s = 0. A free spinless (scalar) particle with a four-momentum pμ is de-
scribed by the wave function

s = 0 : ψ(x) =
1√
2p0

e−ipx. (1.9)

s = 1
2 . A spin-one-half particle has two states, λ = 1, 2,

s = 1
2 : ψλ

α(x) =
u

(λ)
α√
2p0

e−ipx; (1.10)

two states with definite parity are selected out of possible four spinors uα
by the Dirac equation, (p̂−m)uλ.
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1.4 Free particles 11

s = 1. A spin one particle is described by a wave function ψμ bearing the
Lorentz vector index:

s = 1 : ψλ
μ(x) =

e
(λ)
μ√
2p0

e−ipx. (1.11)

Here one has to single out three states, λ = 1, 2, 3, out of the four unit
vectors. In the rest frame, the vector particle has three polarizations,

eμ =

⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ ; e(1)

μ =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ , e(2)

μ =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , e(3)

μ =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ,

all having zero time component, e(λ)
0 = 0. In Lorentz invariant terms, the

superfluous state is eliminated by the condition e
(λ)
μ pμ = 0.

s = 2. A tensor particle has to have 2s + 1 = 5 physical states. Its wave
function is constructed with the help of a Lorentz tensor Tμν ,

s = 2 : ψμν =
Tμν√
2p0

e−ipx.

This tensor can be simply constructed as a product of two vector states,
eλ1
μ and eλ2

ν . Since pμeλi
μ = 0, in the rest frame we have

T00 = Ti0 = T0k = 0,

tik = eλ1
i eλ2

k + eλ2
i eλ1

k , i, k = 1, 2, 3. (1.12)

The symmetric 3 × 3 tensor (1.12) has 3 · 4/2 = 6 independent compo-
nents. Combining two spin 1 particles, we obtain not only a spin 2 state
but also one with spin zero; to exclude the latter we must make the tensor
T traceless,

Tik = tik − 1
3δik

3∑
�=1

t��.

Finally, we have a symmetric Lorentz tensor, Tμν = Tνμ,

Tμν = eλ1
μ eλ2

ν + eλ2
μ eλ1

ν − 2
3

(
gμν −

pμpν
m2

)
(eλ1eλ2) ,

which on the mass shell, p2
μ = m2, is traceless, Tμν · gμν = 0, and ‘orthog-

onal’ to the four-momentum of the particle, pμTμν = 0.
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s = 3
2 . The wave function of a spin 3

2 state bears simultaneously a spinor
index α, and the vector index μ.

s = 3
2 : ψα,μ(x) =

uα,μ√
2p0

e−ipx.

Initially, uα,μ has 16 degrees of freedom (4 spinors × 4 vector components).
The first condition,

(p̂−m)uα,μ ≡
∑
β

(
p̂−m

)
α,β

uβ,μ = 0, (1.13a)

selects two spinors (16 → 8), and the second one,

γμuα,μ = 0, (1.13b)

(four equations) leaves us with 8 − 4 = 4 = 2 · 3
2 + 1 states. From the pair

of conditions (1.13) it conveniently follows that

pμuα,μ = 0.

Indeed, from (1.13b) we get

γμuα,μ = 0 =⇒ 0 = (p̂ + m)γμuα,μ = γμ (−p̂ + m)uα,μ︸ ︷︷ ︸
=0

+ 2pμuα,μ.

There exists a special technology how to move further to higher spins.

1.4.2 Particle propagators

Relativistic propagation of free particles is described by Green functions

G(x) =
∫

d4p

(2π)4i
e−ipxG(p).

In the momentum space, the Green functions of scalar, fermion and vector
particles are

s = 0 : G(p) =
1

m2 − p2
, (1.14a)

s = 1
2 : G(p) =

1
m− p̂

=
1

m2 − p2
· (m + p̂), (1.14b)

s = 1 : Gμν(p) =
1

m2 − p2
·
(pμpν

m2
− gμν

)
. (1.14c)

The factors in the numerator that accompany the pole 1/(m2 − p2) in
the propagators of particles with spin originate from a summation over
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physical polarization states:

2∑
λ=1

uλ(p) ūλ(p) = m + p̂,

3∑
λ=1

eλμ(p) e∗λν (p) =
pμpν
m2

− gμν .

Analogously, propagators of particles with higher spins will contain the
structures

s = 3
2 : Gμν(p) ∝ (pμ + mγμ)(m− p̂)(pν + mγν), (1.14d)

s = 2 : Gμν,μ′ν′ ∝
(
gμμ′ − pμpμ′

m2

) (
gνν′ − pνpν′

m2

)
+ perm. (1.14e)

The numerators (1.14) are polynomials in p, and for large p values the
Green functions are growing as p2(s−1). This growth is unavoidable and
leads to a large number of unpleasant problems.

One might imagine a scenario with mass degeneracy, such that a scalar
and a vector state together would be described by a propagator

G1+0(p) =
−gμν

m2 − p2
,

free of the increasing term pμpν present in (1.14c). This, however, is not
a solution, since such a scalar particle would be a ghost – a state with a
negative transition probability, −g00 = −1. This would violate the rule ac-
cording to which the amplitude near the pole has a definite sign, following
from the unitarity.

Do we really need to ascribe a bare field and its own interaction to each
of few hundred existing hadrons? Possibly, one can treat all these hadrons
by expressing them by means of a few fundamental objects.

1.5 Hadrons as composite objects

In the language of field theory, we introduce some fundamental fields and
describe them in terms of the wave function ψ. We construct the inter-
action Hamiltonian which may have bound states. The known example of
appearance of such a composite
particle in relativistic field theory is
positronium – a bound state of an
electron and a positron.

e+

e−
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The QED coupling being small, the binding energy of positronium is much
smaller than the electron mass, ε � m. Consequently, in the average e+

and e− are at a relatively large distance Δr � m−1 apart. However, even
here there is a possibility to produce additional pairs etc., so that the
field-theoretical nature of the state is rather rich and complex.

1.5.1 Scattering of composite states

How to describe the scattering of a bound system – positronium – in an
external field?

In quantum mechanics the scattering amplitude has a structure

f ∼
∫

e−ip′·rcψf (r12)[V (r1) + V (r2)] eip·rcψi(r12), (1.15)

where rc is the centre-of-mass coordinate, and ψ(r12) the relative motion
wave function.

In terms of diagrams we have

e+ e+
. (1.16)

The non-relativistic Green function of the e+e− system,

G(r′c, r
′
12, t

′; rc, r12, t) =
1

x2

x1

x2

x
,

rc = 1
2(x1 + x2), r′c = 1

2(x′
1 + x′

2), (1.17a)

r12 = x1 − x2, r′12 = x′
1 − x′

2, (1.17b)

can be expressed as a sum over eigenstates of the product of the final and
(conjugate) initial wave functions:

G(r′c, r
′
12, t

′; rc, r12, t) =
∑
n

ψn(r′c, r
′
12, t

′)ψ∗
n(rc, r12, t),

where t ≡ x10 = x20, t′ ≡ x′10 = x′20. Among these terms there is one
which corresponds to the bound state D:

G =
∑
pc

ψD(r′c, r
′
12, t

′)ψ∗
D(rc, r12, t) + [continuous e+e− spectrum].
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1.5 Hadrons as composite objects 15

In the mixed space–energy representation, the stationary state Green
function,

G(r, r′;E) =
∑
n

ψn(r′)ψ∗
n(r)

En − E
,

contains the pole in energy, corresponding to the positronium state. Let
us single out this pole from the sum:

G(r, r′;E) =⇒ GD(r, r′;E) = D
.

Then, the interaction diagram (1.16) will reduce to

De+

e−

D
,

where we have cut off the electron ends since we are interested in a bound
state at infinity, not a fermion pair. To calculate the interaction amplitude,
we have to replace the positronium lines by the initial and final state wave
functions. This way we arrive at the expression similar to (1.15) for the
non-relativistic scattering amplitude.

In other words, the notion of the Green function of the positronium
(or of the deuteron, for that matter) is unnecessary. It can, however,
be introduced by separating from the product of the wave functions the
dependence on the total four-momentum of the bound system,

ψD(x′)ψ∗
D(x) = e−iE(t′−t)+ipc(r′

c−rc)ψ(r′)ψ∗(r). (1.18)

Attributing the exponent to the Green function of the free positronium,
the wave function of the relative motion will have the meaning of an exact
vertex γ describing the transition between the positronium and the free
e+e− pair, which will determine the interaction of the bound state as a
whole with the external field:

e+

e− gg
.

*Γ
= 

An interesting feature of γ is that this vertex does not contain any input
bare value: it derives from the structure of the bound state.

In the non-relativistic theory, describing a bound state in terms of its
proper Green function GD and its proper interaction vertex Γ is merely a
formal unification. However, the existence of two possibilities to construct
a theory of particle interactions (with different results!) is important for
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16 Introduction

us in the context of strong interactions, where a pion, for example, can

be looked upon as consisting of a pair of nucleons,
π+

n̄

p
.

1.5.2 Quarks

Thus, we start with the hypothesis (which may turn out to be wrong)
that there exists a small number of fundamental objects. From the point
of view of hadrons, these objects can be chosen almost arbitrarily. Almost,
since one cannot build up a spin s = 1

2 particle from spinless π-mesons,
or strange hadrons like K-mesons and the Λ baryon out of non-strange
nucleons.

In the Sakata model, the three lightest baryons were chosen as building
blocks: the pair of nucleons, p, n, and the strange baryon Λ (S = −1):
This model treats mesons as bound states: π = NN̄ , K = N Λ̄, etc.,

p+
p

n̄

p+

p p

though it remains unclear what to do with a rich variety of baryons.
Gell-Mann put forward a deeper idea based on the existence of eight

very similar baryons (n, p, Λ, Σ±,0, Ξ0,−) with close mass values. The
underlying SU(3) symmetry became the origin of the idea of quarks.

Tempted to consider all the hadrons as composite objects, one intro-
duces three quarks, q1,2,3 = u, d, s, which, for some mysterious reason, are
not observable as free particles but are confined∗ inside the mesons (qq̄)
and the baryons (qqq). Fractional electric charges of the quarks may not
look too attractive. Still, it would be nice if they existed in nature, and
this possibility should not be disregarded a priori.

Thus, we assume that there are some fundamental particles that we
introduce as bare fields into the theory. These particles may or may not
show up in the physical spectrum of the theory (it would be beautiful if
not). If so, all the observable hadrons are composite objects, and all reac-
tions between them can be represented as the strong interaction between
the underlying quarks.

∗ This could be possible, for example, if the quark binding energy were so strong as to provide
masses of the bound states much smaller than the large masses of the quarks.
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1.6 Interacting particles 17

1.6 Interacting particles

How to construct the interaction between our fundamental objects? Let
us see what options quantum field theory (QFT) can offer us.

1.6.1 λϕ3

Let us look at the simplest QFT that describes a scalar field ϕ with three-
particle interaction. Given the interaction constant λ, and depicting by a
straight line the free particle propagator,

G(p) =
1

m2 − p2
= ,

we can draw Feynman diagrams for the exact particle Green function and
for interaction amplitudes,

G = + . . .+ +

Γ = + . . .+

Evaluating the self-energy diagram, in the region of large virtual momenta
we will have a logarithmically divergent integral,

Σ(p) = = λ2

∫
d4k

(2π)4i
1

m2 − k2

1
m2 − (p− k)2

∼
∫
m

d4k

k4
.

This turns out to be the only divergence in the theory! The integrals with
more than two propagators in the loop, converge:

∼ λ3

∫
d4k

k6
∼ λ3

p2
,

with p2 the characteristic virtuality of the external lines. This shows that
(apart from the mass renormalization) the self-interaction effects vanish
in the large momentum region.

The absence of divergences is clear from dimensional considerations.
Let us look, e.g. at the particle number density operator, which has the
dimension [

ϕ
∂ϕ

∂t

]
=

[
δ(3)(r)

]
=

[
m3

]
.
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18 Introduction

Therefore, the field ϕ(x) itself has the dimension of mass,
[
ϕ
]

=
[
m

]
.

Since the action is dimensionless (� = 1),

L =
∫

λ · ϕ3(x) d4x,
[
L

]
= [m0],

we get
[
λ
]

= [m]. The coupling constant having the dimension of mass,
at large momenta p (where the finite mass is unimportant) this gives
us the real dimensionless expansion parameter ∼λ2/p2, vanishing in the
ultraviolet region. Such theories are referred to as ‘superconvergent’.

From the Born diagrams for the two particle scattering amplitude,

3

1

2

1

2

3

4

3

4

1

2
+ +

4
=

λ2

m2 − s
+

λ2

m2 − t
+

λ2

m2 − u
,

we see that the interaction disappears when the energy and momentum
transfer invariants (s, t, u) become large.

The widespread opinion according to which the λϕ3 QFT is a bad one
is owing to the non-positive definiteness of the energy density, dE/dV ∝
λϕ3, because of which this theory has no vacuum state.

Unfortunately, all this has nothing to do with Nature. It is, however, a
useful QFT model for those cases when the spin is of no importance.

1.6.2 λϕ4

Let us consider the next, more complicated example: the quartic interac-
tion between spinless fields.

Pions are pseudoscalar particles, and therefore the transition π → ππ
is forbidden by parity conservation. This makes the λϕ4 QTF closer to
reality; it can be used to model interaction between pions. Now the cou-

l
pling constant λ is dimensionless, so that we
should expect logarithmic ultraviolet diver-
gences, as in the case of QED.

The simplest correction to the Green function G now diverges quadrati-
cally :

∼ (d4k)2 · 1
[k2]3

.

What concerns the effective charge, the first correction to the two-particle
scattering amplitude λ consists of three graphs,

3

4

1

2
+ +

41

32

1

2

3

4
∼ λ2

∫
d4k

k4
∼ λ2 ln Λ2

UV.
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1.6 Interacting particles 19

The situation is similar to that in electrodynamics, and the renormaliza-
tion procedure is carried out in the same way. And, similarly, the ‘zero
charge problem’ appears: in both theories the renormalized coupling tends
to zero when the ultraviolet cutoff Λ is taken to infinity:

e2
c =

e2
0

1 + e20
3π ln Λ2

m2

, (1.19a)

λ2
c =

λ2
0

1 + λ2
0

4π ln Λ2

m2

. (1.19b)

In the QED context this was an ‘academic’ problem since the coupling
was small, e2

c � 1, and the real contradiction appeared at fantastically
large momenta and could be ignored. Not so when λ = O(1); the theory
becomes unreliable at low momentum scales p >∼ Λ ∼ m. Obviously, we
are unable to get any information from such a theory.

1.6.3 Four-fermion interaction

It would be nice to start constructing the theory from fermions, since
from fermions one can build bosons, but not vice versa. One can imagine
a quartic interaction between fermions, in analogy with the λϕ4 model
for scalars. The vertex may look as follows (Fermi interaction):

G1 2

34

F
= GF (ū2Ou1)(ū4Ou3),

where the operator O in each of the fermion brackets may contain Dirac
matrices, O ∝ 1, γμ, γ5γμ, σμν , etc. Here the coupling constant has a
negative mass dimension, [GF] = [m−2], so that the interaction grows with
energy, and the theory becomes non-renormalizable:

GF GF
∼ G2

F

∫
d4k

(k̂)2
∼ Λ2

UV.

1.6.4 A nucleon and a pion

Interaction between a fermion (nucleons) and a spinless field can be mod-
elled as ψ̄ψ ϕ:

k
p1 p2

= g
(
ū(p2)iγ5u(p1)

)
.
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20 Introduction

(Here we have introduced in the vertex the factor iγ5 to match the fact
that the pion is a pseudoscalar.) In this theory nucleons interact via pion
exchange,

p
N

N

q
A = g2(ūiγ5u)

1
m2 − q2

(ūiγ5u).

The coupling g is dimensionless, and the essential divergences are just log-
arithmic. This is quite a nice theory, it differs from electrodynamics only
in that the π-meson field that carries the interaction between fermions,
unlike the photon, has a finite mass, mπ �= 0.

1.6.5 A nucleon and a vector meson

We can also make the nucleon interact with a massive vector meson field
Vμ, in a QED-like manner: ψ̄ γμ ψ Vμ.

k
p1 p2

= g
(
ū(p2)γμu(p1)

)
· eλμ(k),

with eλμ(k) the polarization vectors of the field V (λ = 1, 2, 3). However,
the situation here is potentially dangerous. Recall that the Green func-
tion of a massive vector field contains the term with momenta in the
numerator:

V

N

N

q
G(q) =

1
m2 − q2

(
−gμν +

qμqν
m2

)
.

We must ensure that the term qμqν/m
2 drops out in the physical ampli-

tudes, otherwise renormalizability of the theory would be lost. This is the
case in QED, owing to the conservation of the electromagnetic current.

Conservation of current makes electrodynamics with a massive photon
a perfectly legitimate renormalizable QFT, which construction can be
borrowed to model strong interaction of point-like protons and neutrons
with an electrically neutral vector meson. Such a theory would not be too
bad; it would cause no objection apart from the ‘zero-charge problem’
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1.6 Interacting particles 21

that plagues it (together with the previously considered NNπ model).

l 2

Vm
0Vm

0

l
n              n

1

p  p . (1.20)

However, in reality neutral vector mesons occupy no special place in the
hadron world; charged mesons are plentiful and one sees no reason to
discriminate between them.

1.6.6 Charged vector mesons

Assume that we want to describe a charged meson. Let us consider three
vector mesons, V 0 and V ± (like a triplet of ρ-mesons), and discuss how
they might interact with p and n.

With the neutral meson V 0 everything is simple: it may be emitted
(absorbed) either by a proton or a neutron as shown in (1.20), with λ1

and λ2 the corresponding coupling constants.
How will a charged meson interact with nucleons? A negative parti-

cle can be absorbed by a proton, which will turn into a neutron when
absorbing a negative-charge meson V −, or emitting V +:

=
+

np

ll
np

Vm
. (1.21a)

Another possible process is absorption of V + (emission of V −) by a neu-
tron:

=

l l
pnn p

V +
m

. (1.21b)

Its amplitude is identical to that of (1.21a) if the theory is T -invariant.
(Thus we have in principle three different coupling constants: two for the
neutral meson in (1.20) and one for the charged, λ = λ′ in (1.21).)
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Now we have a look at the diagram for scattering of nucleons via V
exchange:

n

−
p

n p

n

q

m

V G(q) =
1

m2 − q2

(
− gμν +

qμqν
m2

)
.

Will the ‘bad term’ now disappear? Convolution of the nucleon vertex
with the meson momentum q = kn − kp produces

qμ ·
(
ūnγμup

)
= ūp(k̂n − k̂p)un = (Mn −Mp) ·

(
ūnup

)
�= 0,

where we have used the Dirac equation for the on-mass-shell nucleons,
(k̂ −M)u = 0. The result is not zero. And even if we set Mp = Mn in
zeroth approximation, this will not help in higher orders.

In the case of a neutral meson, electric charge of the fermion was pre-
served, and, as a result, the vector vertex of V 0 emission turned out to be
identical to the conserved electromagnetic current, ensuring qμAμ = 0. In
graphs with V ± emission this is no longer true.

Consider, for example, the elastic V −p scattering amplitude,

Mμν = n
V− V−

np p

q
m . (1.22)

We would like to have qμMμν = 0, with qμ the vector meson momentum.
In QED Compton scattering there were two graphs whose sum satisfied
this property:

+
m n

q
mn

q
.

In our new context, the second contribution is
absent: in a crossed diagram, an emission of V −

by a proton implies virtual exchange of a non-
existent doubly charged nucleon.

?++
p

V

+

We come to the conclusion that such a theory is always non-renormaliz-
able. There is, however, a beautiful way to correct the situation provided
by the Yang–Mills theories.
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1.7 General properties of S-matrix 23

V V+ −

V 0 An incorporation of a specially chosen three-
linear interaction between mesons allows one to
construct a renormalizable theory of massless
vector fields, mV = 0. By adding another scalar
field ϕ, vector mesons can be made massive,
mV �= 0, without losing the renormalizability.

This way the Glashow–Weinberg–Salam theory of weak interactions is
constructed, with scalar ‘Higgs’ providing masses to the intermediate vec-
tor bosons Z0 and W±.

We postpone the discussion of the dynamics of Yang–Mills fields to the
last lecture. Now let us turn to general features of relativistic particle
scattering.

1.7 General properties of S-matrix: unitarity and crossing

Can we learn anything about the strong interactions given that there is
no hope of employing perturbation theory?

Suppose we have some relativistic quantum field describing the objects
that interact strongly, with a large coupling constant g ∼ 1. In spite of
the inapplicability of the perturbative methods, there is nevertheless a
number of general statements that can be made.

1.7.1 S-matrix

First of all, in order to describe interaction processes we introduce the S-
matrix whose elements Sab quantify the transition from the initial state
a to some final state b,

S = I + i T ; Sab = δab + i Tab. (1.23)

Here I is a symbolic representation of the absence of interaction; δab means
that in the final state we find the incoming particles with unperturbed
momenta. T is called the reaction matrix and takes care of the interaction.
It contains the δ-function to ensure the energy–momentum conservation
and the product of the factors 1/

√
2p0 that originate from the relativistic

normalization of the wave functions of incoming (i) and outgoing parti-
cles (j):

Tab = (2π)4 δ4

⎛
⎝∑

i∈a
pi −

∑
j∈b

kj

⎞
⎠ ∏

i∈a

1√
2p0i

∏
j∈b

1√
2k0j

· Mab. (1.24)

So defined, the scattering amplitude Mab is Lorentz invariant. Typically,
the initial state consists of two particles with four-momenta p1 and p2.
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To obtain the probability of the reaction one squares (1.24). Dropping
the factor

(2π)4δ4(0) = V · T
which formally represents the full volume of the space–time, we get the
measurable probability density of the reaction. The wave function normal-
ization factors of the outgoing particles participate in forming the Lorentz
invariant phase space volume element of the final state,

dΓj =

(
1√
2k0j

)2
d3kj

(2π)3
=

d3kj

2(2π)3k0j
=

d4kj
(2π)4

· 2πδ+
(
k2
j −m2

j

)
,

(1.25)

where δ+ selects among the two solutions of the on-mass-shell condition
the positive energy (physical) one: k0j =

√
m2

j + k2
j . The initial state nor-

malization factors combine with the relative velocity of the incoming par-
ticles,

j ≡ |v1 − v2| =
∣∣∣∣ p1

p01
− p2

p02

∣∣∣∣ ,
to form the flux factor,

J = (
√

2p10)2(
√

2p20)2 · j = 4|p20p1z − p10p2z| , (1.26)

where we have chosen the direction z as the collision axis. The combina-
tion (1.26) is invariant under boosts along the z axis. Choosing the centre
of mass system of reference (cms) in which the incoming momenta are
equal and opposite, p1 = −p2 = (0, 0, pc),

pc = pc(s) =

√
s2 − 2s(m2

1 + m2
2) + (m2

1 −m2
2)2

2
√
s

=

√
(s− (m1 + m2)2)(s− (m1 −m2)2)

2
√
s

,

(1.27)

we get the Lorentz invariant flux

J = 4pc(s)
√
s. (1.28)

Finally, the differential cross section of the process p1, p2 → {kj} reads

dσ(a → b) ≡ 1
J
|Mab|2(2π)4δ4

(
p1 + p2 −

∑
j∈b

kj

)
· 1
[n!]

∏
j∈b

dΓ(kj).

(1.29)

Among n produced particles there may be identical ones. The symme-
try factor eliminates multiple counting of physically indistinguishable
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configurations produced by a permutation of identical particles. When
in the final state b there are ns particles of the type s,

1
[n!]

≡
∏
s

1
ns!

,
∑
s

ns = n.

1.7.2 Unitarity

The S-matrix (1.23) is unitary,

S S† = 1 =⇒ Tab − T †
ab = i

(
T T †

)
ab
,

or, deciphering a symbolic matrix multiplication,

1
i

(Tab − T ∗
ba) =

∑
c

Tac T
∗
cb . (1.30a)

If the interaction is invariant with respect to the time reversal, T , which
is the case for the strong interaction of hadrons, then the matrix S is
symmetric, Tab = Tba, and the unitarity relation (1.30a) takes the form

1
i
(Tab − T ∗

ab) = 2 ImTab =
∑
c

Tac T
∗
bc . (1.30b)

This expression implies an integration over momenta of all the particles in
the intermediate state c. Therefore, the symmetry factor is present on the
r.h.s. of (1.30), analogously to the differential cross section case (1.29).

In terms of the invariant amplitude M defined in (1.24),

Mab −M∗
ab

i
=

∑
n

1
[n!]

∫
Man({p}a; {k}n)M∗

bn({p}b; {k}n)

· (2π)4δ

(∑
pai −

n∑
�=1

k�

)
n∏

�=1

{
δ+

(
k2
� − m2

�

) d4k�
(2π)3

}
,

(1.31)

where {p} marks the set of momenta in the initial (a) and final states (b),
and {k}n – momenta of n intermediate state particles.

If we take a ≡ b, the ‘optical theorem’ emerges which relates the imag-
inary part of the forward scattering amplitude to the total cross section:

2 ImAaa = J · σa
tot. (1.32)
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1.7.3 Mandelstam plane for 2 → 2 scattering

Consider a two-particle interaction amplitude 1 + 2 → 3 + 4. How many

p1

p
2 p4

p3

Lorentz invariant variables characterize
the process? We have three momentum
four-vectors, that is 3 × 4 = 12 indepen-
dent components. Four on-mass-shell
conditions, p2

i = m2
i , one per each partici-

pating particle, leave us with 12 − 4 = 8.
Finally, we must subtract six parameters

(three rotations and three Lorentz boosts) which characterize the refer-
ence frame and do not affect the invariant amplitude, 8 − 6 = 2.

In a general case of the reaction n1 → n2, the counting goes as follows,

4(n1 + n2 − 1) − (n1 + n2) − 6 = 3(n1 + n2) − 10. (1.33)

For example, a 2 → 3 process depends on five independent Lorentz invari-
ant combinations of momenta.

A convenient way to characterize 2 → 2 processes is provided by the
Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2, (1.34a)

t = (p1 − p3)2 = (p2 − p4)2, (1.34b)

u = (p1 − p4)2 = (p2 − p3)2. (1.34c)

The variables (1.34) are not independent but satisfy an easy-to-verify
kinematic relation:

s + t + u =
4∑

i=1

m2
i . (1.35)

This relation makes it convenient to represent the kinematics of the pro-
cess on the Mandelstam plane, exploiting the property of an equilateral
triangle as shown in Fig. 1.1. Where is the physical region of the reaction

s

t

u

u = 0s 
= 

0

t = 0

Fig. 1.1 Mandelstam plane.
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on the Mandelstam plane? The meaning of the Mandelstam invariants
(1.34) is the most transparent in the centre-of-mass reference frame (cms)
of the reaction. Here p1 + p2 = 0, so that the variable s in (1.34a),

s = (p1μ + p2μ)2 ≡ (p10 + p20)2 − (p1 + p2)2 = (E1c + E2c)2 = E2
c ,

becomes the square of the total energy of the colliding particles.
t and u are invariant momentum transfers. In particular, t defined in

(1.34b) can be represented as

t = (p3μ − p1μ)2 ≡ (E3 − E1)2 − (p3 − p1)2

= (E3 − E1)2 − (p3 − p1)2 − 2p1p3(1 − cos Θ),

where pi = |pi| and Θ is the scattering angle:

cos Θ =
p1 · p3

p1p3
.

In the centre-of-mass frame, the moduli of three-momenta of the incoming
particles, p1 = p2 = pc, and of the produced ones, p3 = p4 = p′c, are given
by (1.27) as a function of the energy and of the masses of the particles in
the initial and final state, correspondingly.

In the case of elastic scattering when m3 = m1 and m4 = m2 (as, e.g.
in the reaction πN → πN), one has p3 − p1 = E3c − E1c = 0, and

t = −2p2
c(1 − cos Θc) . (1.36a)

If all the masses are equal, m1 = m2 = m3 = m4, then the cms expression
for the variable u (1.34c) becomes simple also:

u = −2p2
c(1 + cos Θc) . (1.36b)

In this case the physical region of the reaction 1 + 2 → 3 + 4,

s ≥ 4m2, t ≤ 0, u ≤ 0, (1.37)

is shown by the shaded area in Fig. 1.2.

1.7.4 Crossing symmetry

One and the same diagram can be viewed differently. Let us ‘rotate’ our
scattering diagram by 90o:

p4

p
2

p1

p3p1

p
2 p4

p3

t

t

s

s .
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t

s u

u = 0
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Fig. 1.2 Physical region of scattering of equal-mass particles.

The ‘new’ picture can be interpreted as an interaction between two par-
ticles with momenta p1 and −p3, producing particles p4 and −p2. To
make this interpretation valid, we must take the energy components of
the momenta p3 and p2 to be negative: p30 ≤ −m3 and p20 ≤ −m2. But as
you know, in the relativistic theory the propagation of a negative energy
particle 3 with a momentum p3 corresponds to the propagation of its an-
tiparticle (3̄) with the four-momentum p̄3 = −p3. Therefore, in this region
of momenta the very same diagram describes another physical process,
namely a collision between the particle 1 and the antiparticle 3̄ (having a
four-momentum p̄3 = −p3), which results in the production of particles 4
and 2̄ in the final state. This is called a t-channel reaction, since here the
invariant

t = (p1 − p3)2 = (p1 + p̄3)2 ≥ (m1 + m3)2 (1.38a)

has the meaning of the cms energy of colliding particles 1 and 3̄.
Analogously, in the region of momenta p40 ≤ −m4, p20 ≤ −m2 we ob-

tain the amplitude of a u-channel process, 1 + 4̄ → 3 + 2̄,

u = (p1 − p4)2 = (p1 + p̄4)2 ≥ (m1 + m4)2 . (1.38b)

Imagine that we have calculated the necessary diagrams and know the
scattering amplitude as a function of the invariants in the physical region
(1.37) of the reaction 1 + 2 → 3 + 4. If the amplitude were an analytic
function of its variables s and t, we would be able to analytically continue
the result into the physical region of either of the two crossing reactions
(1.38a) or (1.38b). As we will shortly see, this is indeed the case: the
analyticity is a direct consequence of causality.
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Fig. 1.3 Physical regions of crossing reactions on the Mandelstam plane.

Therefore, one function describes three different scattering processes
that are related by crossing:

s-channel : 1 + 2 → 3 + 4, s = (p1 + p2)2 ≥ (m1 + m2)2;

t-channel : 1 + 3̄ → 2̄ + 4, t = (p1 + p̄3)2 ≥ (m1 + m3)2;

u-channel : 1 + 4̄ → 3 + 2̄, u = (p1 + p̄4)2 ≥ (m1 + m4)2.

Physical regions of the crossing reactions are displayed in Fig. 1.3 for the
simplest case of equal particle masses.

It is important to remember that the unitarity seriously restricts the
scattering amplitude. Moreover, these restrictions are different in each of
the three crossing channels. Thus, one function has to satisfy three specific
unitarity relations in complementary physical regions on the Mandelstam
plane.

In non-relativistic quantum mechanics an interaction is described by
means of a potential which can be chosen practically arbitrarily. Not so
in the relativistic theory. If we were to introduce here a notion of ‘rela-
tivistic potential’, the latter would be severely restricted by the unitarity
conditions in the cross-channels. This is a specifically relativistic feature
since the crossing itself is of relativistic nature.

In the next lecture we will demonstrate that the causality ensures that
the scattering amplitudes are analytic functions of momenta. An analytic
function is identified by its singularities. The structure of these singulari-
ties may be studied, as it turns out, with the help of a (formally senseless)
series of Feynman diagrams as if in the perturbation-theory framework.
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This statement holds even for strongly interacting objects, in which case
the very applicability of diagrammatic expansion is highly questionable.

Let us formulate straight away our main hypothesis:

Analytic properties of the exact amplitude coincide with those of the corre-
sponding perturbation-theory diagrams.

To check that, we shall show that all singularities of Feynman graphs
(their position, nature and strength) have a clear physical origin and
are closely related to unitarity. This statement does not depend on the
particular particle content of the theory or on specific properties of the
interaction. The only important thing is to have the input objects – bare
particles – to be point-like, that is to be included into some quantum field
theory (QFT) scheme.
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