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On Zindler Curves in Normed Planes

Horst Martini and Senlin Wu

Abstract. We extend the notion of Zindler curve from the Euclidean plane to normed planes. A char-

acterization of Zindler curves for general normed planes is given, and the relation between Zindler

curves and curves of constant area-halving distances in such planes is discussed.

1 Introduction

Let C be a rectifiable simple closed curve in the Euclidean plane. A pair of points

p, q ∈ C is said to be a halving pair of C if the length of each part of C connecting

p and q is one half of the perimeter of C , and the distance between a halving pair is

called the corresponding halving distance. In particular, such a curve C is said to be

a Zindler curve (see [14]) if it is of constant halving distance. In the Euclidean case,

Zindler curves are not necessarily circles, have many interesting characterizations,

and are strongly related to other concepts, such as curves of constant area-halving

distance (defined in our final section) and curves of constant width (see Section 2 of

the survey [7]). Also, Zindler curves are related to the construction of graphs of low

geometric dilation; see [2–4] for investigations of the geometric dilation problem in

the Euclidean plane, and [11] for the extension of this problem to normed planes.

The aim of this paper is to extend the notion of Zindler curve from the Euclidean

plane to normed planes and to give a characterization of Zindler curves for general

normed planes. In this framework, we will also discuss the relation between Zindler

curves and closed curves of constant area-halving distances.

By X we denote a (normed or) Minkowski plane with origin o, norm ‖ · ‖, unit disc

BX (which is a compact, convex set with non-empty interior centered at its interior

point o) and its boundary, the unit circle SX of X. We refer to [7–9, 13] for more

information about the geometry of Minkowski planes and spaces. Any homothet of

SX is said to be a circle in X. By [p, q] we denote the segment (possibly degenerate)

between two points p, q ∈ X, for p 6= q, by [p, q〉 the ray with starting point p

passing through q, and by 〈p, q〉 the line passing through p and q. The convex hull of

a set S is denoted by conv(S). Let x, y ∈ X. We say that x is Birkhoff orthogonal to y if

‖x + t y‖ ≥ ‖x‖ holds for any real number t , and this situation is denoted by x ⊥B y
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(see [1, 6]); x is said to be (James or) isosceles orthogonal to y if ‖x + y‖ = ‖x − y‖
holds, and for this case we write x ⊥I y (see [5]).

By a curve in X we mean the range of a continuous function φ that maps a closed

bounded interval [α, β] into X. Furthermore, a curve defined by φ : [α, β] 7→ X is

called closed if [α, β] is replaced by a Euclidean circle, say, and it is simple if it has

no self-intersections. Moreover, such a curve C is said to be rectifiable if the set of all

Riemann sums

{

n
∑

i=1

‖φ(γi) − φ(γi−1)‖ : (γ0, γ1, . . . , tn) is a partition of [α, β]
}

with respect to the norm ‖ · ‖ of X is bounded from above. If C is rectifiable, then we

denote by |C| its length, i.e.,

|C| := sup
{

n
∑

i=1

‖φ(γi) − φ(γi−1)‖ : (γ0, γ1, . . . , γn) is a partition of [α, β]
}

.

A parametrization c of C is said to be regular if it has non-vanishing one-sided

derivatives everywhere, and the curve C is said to be regular if it admits a regu-

lar parametrization. We denote by C the set of simple, regular, rectifiable, closed

curves that are piecewise continuously differentiable and have one-sided derivatives.

Throughout this paper each curve C that we will consider is a curve in an arbitrary

Minkowski plane X, and it is either from the family C or a closed convex curve, i.e.,

the boundary of a compact, convex set with non-empty interior. Let C be such a

curve. Two points p, q ∈ C are said to form a (Minkowskian) halving pair of C if

they split C regarding its Minkowskian length into two equal parts, and the distance

‖p − q‖ between them is called the corresponding (Minkowskian) halving distance.

A closed curve is said to be a (Minkowskian) Zindler curve if it is of constant halv-

ing distance. A parametrization c : [0, |C|) → C of C is said to be a halving pair

parametrization if every pair of points c(γ) and c(γ + 1
2
|C|)) is a halving pair of the

curve C .

Let c : [0, |C|) → C be a parametrization of a closed curve C . The curve Mc (which

is called the midpoint curve) and the curve C∗
c corresponding to C with respect to c

are defined by the parametrizations

mc(γ) :=
1

2

(

c(γ) + c(γ +
1

2
|C|)

)

and c∗c (γ) :=
1

2

(

c(γ) − c(γ +
1

2
|C|)

)

,

respectively. It is clear that the curve C∗
c is centrally symmetric and that if c is piece-

wise continuously differentiable, then both parametrizations are piecewise continu-

ously differentiable.

We shall frequently use the arc-length parametrization c̄ : [0, |C|) → C of a rec-

tifiable closed curve C , which is continuous, bijective, and has the property that

‖ċ(γ)‖ = 1 whenever the derivative exists. As in the Euclidean case, one can prove

that every curve C ∈ C in an arbitrary Minkowski plane admits an arc-length para-

metrization which is piecewise continuously differentiable.
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2 A Characterization of Zindler Curves

First we prove a lemma showing the relation between isosceles orthogonality and

halving pair parametrizations.

Lemma 2.1 Let c : [0, |C|) → C be a piecewise continuously differentiable parametri-

zation of a closed curve C ∈ C. The parametrization c is a halving pair parametrization

of C if and only if ċ∗c (γ) ⊥I ṁc(γ) whenever the derivatives exist.

Proof Clearly, c is a halving pair parametrization of C if and only if

f (γ) :=

∫ γ+ 1
2
|C|

γ

‖ċ(τ )‖ dτ ≡
1

2
|C|,

which is, whenever the derivatives exist, equivalent to the situation that the condition

f ′(γ) =
∥

∥

∥
ċ
(

γ +
1

2
|C|

)∥

∥

∥
− ‖ċ(γ)‖

= ‖ṁc(γ) − ċ∗c (γ)‖ − ‖ṁc(γ) + ċ∗c (γ)‖

= 0

holds. Hence c is a halving pair parametrization of C if and only if ċ∗c (γ) ⊥I ṁc(γ)

whenever the derivatives exist.

We note that Lemma 2.1 is also true when C is a closed convex curve.

Let K be a convex body (i.e., a compact, convex set with non-empty interior) in X

containing o as interior point. For x, y ∈ X, x is said to be K-normal to y (x ⊥K y)

if ‖x‖ ‖y‖ = 0 or there exists a line which is parallel to the line 〈−y, y〉 and supports

K at the point of intersection of the ray [o, x〉 and ∂K (the boundary of K). It is clear

that the implication x ⊥K y ⇒ βx ⊥K αy holds for any β ≥ 0 and α ∈ R, and that

x 6⊥K x unless x = o. Let {xn}
∞
n=1 and {yn}

∞
n=1 be two sequences in X. If xn ⊥K yn

holds for each n, then, since K is convex, limn→+∞ xn ⊥K limn→+∞ yn whenever the

limits exist. Also, it follows from the convexity of K that for every x ∈ SX with a

countable set of exceptions, there exists a unique y ∈ SX (up to the sign) such that

x ⊥K y.

A curve C ∈ C is said to be a K-curve if

• the bounded region enclosed by C contains o as interior point,
• there exists an arc-length parametrization c̄ : [0, |C|) → C of C with c̄(γ) ⊥K ˙̄c(γ)

holding for any γ ∈ [0, |C|) whenever the derivative exists.

Note that if such an arc-length parametrization exists, then the above holds for all

such parametrizations.

Theorem 2.2 For any convex body K containing o as interior point and any K-curve

C there exists a real number α > 0 such that αC = ∂K.

To prove Theorem 2.2, we need the following lemma.
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Lemma 2.3 Let K be a convex body containing o as interior point, and C be a K-curve

with an arc-length parametrization c̄ : [0, |C|) → C which is piecewise continuously

differentiable. Then the ray [o, c̄(γ)〉 intersects C only once for any γ ∈ [0, |C|).

Proof First we show that for any γ ∈ [0, |C|), the ray [o, c̄(γ)〉 intersects C at most

finitely many times. Suppose the contrary, namely, that there exists a number µ0 ∈
[0, |C|) such that the ray [o, c̄(µ0)〉 intersects C infinitely many times. Then we can

obtain an infinite series {γn}
∞
n=1 ⊂ [0, |C|) such that [o, c̄(µ0)〉 = [o, c̄(γn)〉 holds for

each n and that c̄(γ ′
0) = limn→∞ c̄(γn) exists. Assume that, without loss of generality,

there exists an infinite convergent subsequence {γnk
}∞k=1 ⊂ {γn}

∞
n=1 ∩ (γ ′

0, |C|). Since

the one-sided derivatives of c̄ both exist at γ ′
0, we have

˙̄c(γ ′
0+) := lim

γ→γ ′+
0

c̄(γ) − c̄(γ ′
0)

γ − γ ′
0

= lim
k→∞

c̄(γnk
) − c̄(γ ′

0)

γnk
− γ ′

0

.

We note that ‖ ˙̄c(γ ′
0+)‖ 6= 0 since c̄ is an arc-length parametrization of C which is

piecewise continuously differentiable. Since ˙̄c(γ ′
0+) is a non-zero multiple of c̄(γ ′

0),

we have that

c̄(γ ′
0) = lim

γ→γ ′+
0

c̄(γ) 6⊥K ˙̄c(γ ′
0+) = lim

γ→γ ′+
0

˙̄c(γ),

which is a contradiction.

Now suppose the contrary, namely that there exists a number γ0 ∈ [0, |C|) such

that the ray [o, c̄(γ0)〉 intersects C more than once. Let γ1 and γ2 be two numbers

with 0 ≤ γ1 < γ2 < |C| such that

[o, c̄(γ0)〉 ∩ c̄([γ1, |C|)) = {c̄(γ1), c̄(γ2)},

where

c̄([γ1, |C|)) := {c̄(γ) : γ1 ≤ γ < |C|}.

These two numbers exist, since for any γ ∈ [0, |C|) the ray [o, c̄(γ)〉 intersects C at

most finitely many times.

Let k̄ : [0, |∂K|) → ∂K be an arc-length parametrization of ∂K such that k̄(0) is

a positive multiple of c̄(γ0). Let f : [γ1, γ2] → [0, |∂K|) be a function mapping each

γ ∈ [γ1, γ2] to the number f (γ) ∈ [0, |∂K|) such that k̄( f (γ)) is a positive multiple

of c̄(γ). Since [o, c̄(γ0)〉 ∩ c̄((γ1, γ2)) = ∅, the function f is continuous and attains

its maximum value at a number η0 ∈ [γ1, γ2]. Without loss of generality, we may

assume that f (η0) > 0, since otherwise the ray [o, c̄(γ0)〉 has to intersect c̄([γ1, γ2])

infinitely many times, which is impossible.

Also we can find a number δ0 > 0 such that [η0 − δ0, η0 + δ0] ⊂ [γ1, γ2] and

that f (γ) < f (η0) holds for any number γ ∈ [η0 − δ0, η0 + δ0]\{η0}. Otherwise,

for any number δ > 0 there exists a number γ ∈ [η0 − δ, η0 + δ]\{η0} such that

f (γ) = f (η0). Then the ray [o, c̄(η0)〉 intersects c̄([γ1, γ2]) infinitely many times,

which is a contradiction.

Note that ˙̄c(η0) does not exist. If this were not true, then 〈−c̄(η0), c̄(η0)〉 would

be the unique line tangent to C at c̄(η0), which would imply that c̄(η0) 6⊥K ˙̄c(η0),

which is a contradiction. Furthermore, there exist two numbers 0 < δ1, δ2 ≤ δ0

https://doi.org/10.4153/CMB-2011-112-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-112-x


On Zindler Curves in Normed Planes 771

such that for each γ ∈ [η0 − δ1, η0] ⊂ [η0 − δ0, η0 + δ0], the ray [o, c̄(γ)〉 intersects

c̄([η0 − δ1, η0]) precisely once, and for each γ ′ ∈ [η0, η0 + δ2] ⊂ [η0 − δ0, η0 + δ0]

the ray [o, c̄(γ ′)〉 intersects c̄([η0, η0 + δ2]) only once. If the number δ1 does not exist,

then, for any number δ > 0 with [η0 − δ, η0] ⊂ [γ1, γ2], there exist two numbers η ′
1,

η ′ ′
1 ∈ [η0 − δ, η0] with η ′

1 > η ′ ′
1 such that f (η ′

1) = f (η ′ ′
1 ). Then, replacing γ1 and

γ2 in the previous arguments by η ′
1 and η ′ ′

1 , respectively, we can find a number η1 ∈
[η ′

1, η
′ ′
1 ] such that c̄(η1) is not a smooth point of C . In the next step we consider the

interval [η ′
1, η0] instead of [η0 − δ, η0], and we can find another number η2 such that

c̄(η2) is not a smooth point of C . As this process goes on, we can find a sequence of

non-smooth points of C tending to c̄(η0). This contradicts the fact that C is piecewise

continuously differentiable. The existence of the number δ2 can be proved in a similar

way. We may assume that, without loss of generality, f (η0 − δ1) = f (η0 + δ2).

Otherwise, suppose that, without loss of generality, f (η0 − δ1) < f (η0 + δ2). Since

the function f is continuous on [γ1, γ2] and f (η0) > f (η0 + δ2), we can choose δ1 to

be the number such that f (η0 − δ1) = f (η0 + δ2) instead.

Let C1 := c̄([η0 − δ1, η0]) and C2 := c̄([η0, η0 + δ2]). Now assume that the

underlying plane is endowed with Euclidean structure and a system of polar coor-

dinates. Let ρ = gi(θ) be the polar equation of Ci , i = 1, 2. We may also assume

that gi(0) = c̄(η0), i = 1, 2, and that there exists a positive number θ0 such that

g1(θ0) = c̄(η0 −δ1) and g2(θ0) = c̄(η0 +δ2). Then, with a countable set of exceptions,

for every θ ∈ [0, θ0] the vector ġi(θ), i = 1, 2, exists and the tangent directions of C1

and C2 corresponding to a given θ are parallel to each other. Consequently,

ġ1(θ)

g1(θ)
=

ġ2(θ)

g2(θ)

holds for all θ ∈ [0, θ0] with the same set of exceptions. This implies that

g1(θ)

g1(0)
=

g2(θ)

g2(0)

for all θ ∈ [0, θ0]. Since g1(0) = g2(0), this yields that g1(θ) = g2(θ) holds for all

θ ∈ [0, θ0], which contradicts the fact that C is a simple curve.

Proof of Theorem 2.2 By Lemma 2.3, the polar equation ρ = f1(θ) of C exists. Let

ρ = f2(θ) be the polar equation of ∂K. Then ḟi(θ), i = 1, 2, exists for every θ ∈
[0, 2π] with a countable set of exceptions, and the tangent directions of C and ∂K

corresponding to a given θ are parallel to each other. Thus we have

ḟ1(θ)

f1(θ)
=

ḟ2(θ)

f2(θ)

for all θ with the same set of exceptions. This implies that

f1(θ)

f1(0)
=

f2(θ)

f2(0)

for all θ. Then α =

f2(0)
f1(0)

is the number such that αC = ∂K.
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Theorem 2.4 Let c̄ : [0, |C|) → C be an arc-length parametrization of C that is piece-

wise continuously differentiable. Then C is a Zindler curve if and only if c∗c̄ (γ) ⊥B ċ∗c̄ (γ)

whenever the derivative exists.

Proof Let C∗ := C∗
c̄ , and c∗ be the corresponding parametrization of C∗. Then C

is a Zindler curve if and only if C∗ is a circle centered at o. If C∗ is a circle, then

the region bounded by C∗ is a disc centered at o. From the definition of Birkhoff

orthogonality it follows that c∗(γ) ⊥B ċ∗(γ) holds whenever the derivative exists.

Now suppose that c∗(γ) ⊥B ċ∗(γ) holds whenever the derivative exists. Then it

follows from Theorem 2.2 that C∗ is a circle.

Theorem 2.4 also holds when the curve C is closed and convex. The corresponding

proof can be done by applying [12, 4A] instead of Theorem 2.2.

3 Constant Area-Halving Distance

For a Minkowski plane X, there exists a unique (up to a scalar factor) Haar measure

on X; see [13, §1.4]. Thus we may assume that the underlying Minkowski plane

is endowed with Euclidean structure, and therefore we can use the corresponding

Lebesgue measure to calculate Minkowskian areas. In this section we will consider

only closed convex curves. A chord of a closed convex curve C bisecting the area

of conv(C) is called an area-halving chord, and the length of such a chord is said

to be the corresponding area-halving distance. Let C be a closed convex curve. A

parametrization c : [0, |C|) → C of C is an area-bisecting parametrization if every

chord [c(γ), c(γ+ 1
2
|C|)] is an area-halving chord. Clearly, a chord [c(γ), c(γ+ 1

2
|C|)]

bisects the Euclidean area of conv(C) if and only if it bisects the Minkowskian area of

conv(C). Thus Lemma 3.5 from [4], referring to the Euclidean case, can be carried

over to Minkowski planes, and we have the following lemma.

Lemma 3.1 (based on [4, Lemma 3.5]) Let c : [0, |C|) → C be a piecewise contin-

uously differentiable parametrization of a closed convex curve C in a Minkowski plane.

It is an area-bisecting parametrization if and only if ṁc(γ) is parallel to c∗c (γ) whenever

the derivatives ċ(γ) and ċ(γ + 1
2
|C|) exist.

The following lemma can be proved in a way analogous to that in the proof of

Theorem 2.4.

Lemma 3.2 Let c : [0, |C|) → C be a piecewise continuously differentiable area-

bisecting parametrization of a closed convex curve C. Then C is a curve of constant

area-halving distance if and only if c∗c (γ) ⊥B ċ∗c (γ) whenever the derivative exists.

Lemma 3.1 and Lemma 3.2 imply the following.

Theorem 3.3 Let c : [0, |C|) → C be a piecewise continuously differentiable area-

bisecting parametrization of a closed convex curve C. Then C is a curve of constant

area-halving distance if and only if we have ṁc(γ) ⊥B ċ∗c (γ) whenever the derivatives

ċ(γ) and ċ(γ + 1
2
|C|) exist.

Zindler [14, Section 7] (see also [2, Theorem 4]) proved that for a closed, convex

curve C in the Euclidean plane the following statements are equivalent:
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• All halving chords of C have the same length.
• All chords of C bisecting the area have the same length.
• The halving chords and the area-halving chords of C coincide.

But it is known that Birkhoff orthogonality and isosceles orthogonality are differ-

ent orthogonality types in non-Euclidean Minkowski planes. Moreover, there exist a

Minkowski plane X and two points x, y ∈ SX with x ⊥B y such that y is the unique

point (up to the sign) in SX to which x is Birkhoff orthogonal, and that x 6⊥I t y holds

for any number t 6= 0 (see [10, Remark 2.10]). Thus it follows from Lemma 2.1 and

Lemma 3.1 that a halving pair parametrization of a closed convex curve C of constant

halving distance is not necessarily an area-bisecting parametrization of C . Similarly,

an area-bisecting parametrization of a closed convex curve of constant area-halving

distance is not necessarily a halving pair parametrization of C.
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[3] A. Ebbers-Baumann, A. Grüne, and R. Klein, Geometric dilation of closed planar curves: new lower
bounds. Comput. Geom. 37(2007), no. 3, 188–208. http://dx.doi.org/10.1016/j.comgeo.2004.12.009
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