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Abstract

Prior research shows that, when making causal inferences, people can control for alternative causes. However, these
studies utilize artificial inter-trial intervals on the order of seconds; in real-life situations, people often experience
data over days and weeks (e.g., learning the effectiveness of two new medications over multiple weeks). Across
two experiments, participants learned about two possible causes from data presented either in a more naturalistic
paradigm (one trial per day for multiple weeks via smartphone) or in a traditional trial-by-trial paradigm (a rapid
series of trials). The results show that people can control for alternative causes when learning over long timeframes,
but they also exhibit non-normative discounting. The results also reveal that the extent to which people control and
learn simple relations is suboptimal across both short and long timeframes.

1. Introduction

The ability to learn the relations between causes and effects is critical for decision-making. However,
assessing the influence of any individual cause on an effect requires accounting for other confounded
causes. For example, when judging how a new medication affects sleep, one should also consider other
variables that affect the probability of sleeping well (e.g., stress, alcohol, caffeine, and exercise). The
current research is focused on how people account for confounded causes when assessing cause—effect
relations from observed events, analogously to how a statistician uses multiple regression to account
for alternative predictors.

Accounting for alternative causes, known as ‘credit assignment’, is fundamental to fields that study
intelligent and adaptive behavior and judgment. In the field of associative learning, credit assignment
drove the production of the Rescorla and Wagner (1972) model and other models of associative learning
(Luzardo et al., 2017; Pearce and Hall, 1980) based on findings of cue competition in animal learning
(e.g., Kamin, 1968). Cue competition involves paradigms in which the participant is simultaneously
learning about two or more cues that may be correlated with each other. Cue competition includes
many different paradigms, including forward blocking (Chapman and Robbins, 1990; Dickinson et al.,
1984; Wasserman, 1990), backward blocking (Kruschke and Blair, 2000; Shanks, 1985; Wasserman and
Berglan, 1998), overshadowing (De Houwer et al., 2005; Mackintosh, 1976; Price and Yates, 1993),
and un-overshadowing (Larkin et al., 1998). Subsequent reinforcement-learning models were designed
to accomplish a similar goal of credit assignment (e.g., Gallistel et al., 2019; Sutton and Barto, 2018),
which have made important contributions to neuroscience (see Stolyarova, 2018, for a review).

In the causal learning literature, there is considerable evidence that people can control for alternative
causes when judging the strength of a target cause (see Rottman, 2017, for a review). However, there
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is also evidence for a non-normative behavior called discounting; when learning about two potential
causes of an effect, if one cause has a stronger relation with the effect, then the stronger cause tends
to overshadow the weaker one and people devalue the perceived efficacy of the weaker cause in a
contrasting way (Busemeyer et al., 1993; Goedert et al., 2005; Goedert and Spellman, 2005; Laux et al.,
2010). Specifically, if there is one strongly positive cause and one weakly positive cause, people tend
to give weaker ratings for the weak cause, compared to if both causes are weak.

The major contribution of the current study is to test whether people can accurately assess cause—
effect relations and account for alternative causes in more realistic settings, particularly in learning
settings that are extended over time. Prior research has been conducted with data presented over a rapid
sequence of back-to-back trials with minimal distractions. However, most learning takes place over
longer periods of time; for example, learning about the effectiveness or side effects of a new medication
could take weeks or even months. In the current research a smartphone application was developed to
study controlling for alternative causes and discounting in a more realistic timeframe in which learning
unfolds over weeks (1 trial per day for 24 days) as opposed to observing back-to-back trials.

1.1. Psychological theories of controlling and evidence

When doing statistics, a researcher can choose to conduct an unconditional analysis that examines the
simple relation between two variables, or a conditional analysis that examines the relation between
two variables while controlling for one or more other variables. Controlling for a third variable when
assessing the influence of a target cause on an effect is normative if the learner thinks that the third
variable could also cause the effect. Unconditional versus conditional assessments of a cause—effect
relation can differ by only a little bit or can differ considerably. An extreme version is called Simpson’s
paradox, in which the unconditional relation is positive, but the conditional relation is negative, or vice
versa (see Kievit et al., 2013, for a review).

There are a number of theories of how people could control for third variables. One theory is called
‘focal sets’ (Cheng, 1997; Cheng and Novick, 1992). For example, consider the AP rule (Allan, 1980),
a model that calculates unconditional causal strength as the difference between the probability of effect
E occurring in the presence (1) and absence (0) of target cause T (Equation (1)). It is possible to
use AP and control for an alternative cause A by calculating AP within the subset in which A is
present (a = 1; Equation (2)), or absent (a = 0; Equation (3)), which have been termed ‘focal sets’
(Cheng, 1997; Cheng and Novick, 1992). One challenge is that Equations (2) and (3) could produce
different estimates, although, in this study, the learning data were chosen such that they produce the
same estimates. Another challenge with focal set theory is that it provides an unsatisfactory explanation
for learning about many causes; with 7 binary causes, there will be 2" ~ ! focal sets to choose from, and
each one may have very few observations (Derringer and Rottman, 2018).

APr=p(e=1lt=1)—-p(e=1]t=0). (1
APro—1=p(e=1t=1,a=1)-p(e=1|t=0,a=1). (2)
APrao=p(e=1t=1,a=0)-p(e=1|t=0,a=0). 3)

Multiple regression accomplishes a similar goal to conditional AP but can handle more causes
and can handle metric (as opposed to just binary) variables. Psychologists have long used multiple
regression or ANOVA as a computational-level account of human causal inference (e.g., Kelley, 1972).

A third class of theories of controlling for third variables is reinforcement-learning and associative-
learning models. Stone (1986) proved that the delta rule, which underlies many such models, is an
iterative method for computing multiple linear regression coefficients. The experiments reported here
were not designed to test for differences in these theories; all standard approaches will make similar
predictions.
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1.2. Controlling for alternative causes in prior research

A variety of studies have found that, at least in some conditions, people are able to control for alternative
causes. In Spellman (1996), three groups of participants learned about two liquids that could potentially
generate, inhibit, or have no effect on plant growth. In each trial, participants observed whether a plant
did or did not receive each liquid and whether the plant bloomed or did not bloom. In one experiment,
the unconditional strength of the target was held constant, but its conditional strength varied across
the three groups; assessments of the target varied in the same direction as conditional strength. In the
other experiment, the unconditional strength of the target varied, but its conditional strength was held
constant; there were no differences in judgments for the target across the three groups. Together, these
findings show that people can and will control for other cues by conditionalizing on the alternative.

There is additional evidence that people will selectively control for what they perceive to be causally
relevant cues (Goodie et al., 2003; Waldmann, 2000; Waldmann and Hagmayer, 2001; Waldmann and
Holyoak, 1992), which is also rational, given that one should only control for variables they think
plausible alternative causes of the effect. Spellman (1996) cited controlling for alternative causes as
evidence for people ‘acting as intuitive scientists’ because it is a central tenet of research methodology.
There is also evidence that some skills necessary for controlling develop quite early, and that 3-year-old
(Schulz and Gopnik, 2004) and sometimes 2-year-old (Gopnik et al., 2001) children can use covariation
information to make causal inferences.

Derringer and Rottman (2018) conducted a study that is particularly relevant to the current research.
In this study, participants learned about eight causes simultaneously, and after each learning trial, they
updated their causal strength beliefs about the eight causes. The trial-by-trial updates were compared
to the Rescorla—Wagner model and to running a multiple regression after each trial. We found some
similarities to both of these approaches; however, the clearest finding was that participants were most
likely to update their belief about a given cause when that cause changed from absent to present, and
the other causes remained stable, which we termed ‘informative transitions’. For example, suppose
that on Monday, you are stressed, do not exercise, and sleep poorly, and then on Tuesday, you are still
stressed, do exercise, and sleep well. Because being stressed was constant across Monday and Tuesday,
and exercise changed and sleep changed, you might view this comparison between two adjacent days
to be especially informative for assessing if exercise improves sleep. In contrast, if both exercise and
stress changed from one day to the next, it could be difficult to assess if either is responsible for the
change in sleep.

A number of other studies from my lab suggest that when learning cause—effect relations, people tend
to learn from the changes in the cause and effect rather than or in addition to the presence versus absence
of the cause and effect (e.g., Rottman, 2016; Rottman and Keil, 2012; Soo and Rottman, 2018)." This
theory of informative transitions makes a prediction about learning in long-timeframe scenarios, which
will be explained below.

1.3. Discounting in prior research

Controlling for alternative causes is a rational way of addressing the problem of credit assignment;
however, there is also considerable evidence of a non-rational process called ‘discounting’. When one
cause is considerably stronger than the other, participants tend to ‘discount’ or devalue the strength

IThere are a couple of reasons that learning primarily from changes makes sense. These reasons assume that most real-world
environments in which a learner is experiencing events unfold over time tend to be stable or ‘positively autocorrelated’—most
things tend to remain the same from one moment to the next. First, in positively autocorrelated environments, focusing on changes
helps reveal the true strength of relations between variables by accounting for nonstationary temporal trends that can produce
spurious relations (Soo and Rottman, 2018, Appendix A). Second, even in ‘random’ environments, the same analysis shows
that the downsides to focusing on changes are fairly minimal. Third, in an environment in which most causes tend to remain
stable over time, one can learn more efficiently by only updating beliefs during the occasional changes. In contrast, trial-by-trial
reinforcement learning theories like Rescorla and Wagner (1972) assume that learning occurs whenever a cue is present, or at all
times both present and absent (Van Hamme and Wasserman, 1994), which is less efficient.
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of the weaker cause (Baetu and Baker, 2019; Busemeyer et al., 1993; Dickinson et al., 1984; Goedert
et al., 2005; Goedert and Spellman, 2005; Laux et al., 2010). Another way to explain this is that the
stronger cause has a contrastive effect on the assessment of the weaker cause. Goedert and Spellman
(2005) found that participants gave weaker judgments for the target when the alternative was stronger
than when the alternative was weak. The contrasting effect of the alternative on judgments for the target
is evidence of non-normative discounting.

1.4. Learning over long timeframes

The primary goal of the current research was to study participants’ ability to learn about two correlated
causes over a longer, more realistic, timeframe. The timing of the standard trial-by-trial paradigm
is artificial in that the trials are presented very rapidly. I contend that many if not most real-world
inferences are made from experiences spanning days, weeks, or even months, and therefore it is vital
to understand how well people can control for alternative causes in a more realistic setting.

My lab has recently developed a paradigm that we call ‘ecological momentary experiments’ in
which participants experience one piece of evidence about the cause—effect relation each day over many
days. (The name is meant as building upon ‘ecological momentary assessments’, in which responses
are collected from participants periodically during their daily lives, e.g., Shiffman et al., 2008.) This
paradigm is meant to mimic many real-life situations that involve learning about causes and effects in
one’s life such as learning about the efficacy of medications or lifestyle choices (see also Wimmer et al.,
2018, and Mack et al., 2017, for similar paradigms for studies on reinforcement learning and memory).
In one study, we found that participants accurately learned about single cause—effect relations when
the cause and effect were correlated, similar to in the short timeframe. Additionally, the participants
exhibited illusory correlation in the long timeframe similar to the short timeframe—they believed that
the cause and effect were related even when they were not (Willett and Rottman, 2021).

In another study, we investigated interrupted time series situations in which a cause is absent for
multiple days and then present for multiple days, and the effect can exhibit a change in level or slope
after the cause starts. Although we found that participants made poor judgments in certain situations,
their judgments were similar between the short and long timeframes with fairly subtle differences
(Zhang and Rottman, 2023).

In a third study, we tested whether people can accurately learn cause—effect relations when the
experiences are spaced out over days and when there are hours-long delays between the cause-and-
effect events (Zhang and Rottman, 2024). We found some evidence that learning was slowed with
longer delays, but by the end of 16 days, participants had learned the cause—effect relation about equally
well, with delays of 0, 3, 9, and 21 hours. In sum, although we have found some evidence of differences
in causal learning between the short and long timeframes, these differences have been subtle, and
largely we have found similar learning.

1.5. The impact of timeframe on learning about two causes

To date, all of the studies on causal learning over a long timeframe have involved only a single cause
and effect. The goal of the current study was to assess whether there are differences in people’s ability
to control for alternative causes in long compared to short timeframes, and more importantly, whether
people can accurately control for alternative causes in a long timeframe. There are at least two reasons
that causal learning over long timeframes may be harder with more complex situations such as when
there are two or more causes.

First, at a general level, there is some evidence that increased demand on working memory can
impede the ability to control for alternative causes (Goedert et al., 2005) and reduce non-normative
discounting (De Houwer et al., 2005; Goedert and Spellman, 2005). In Goedert et al. (2005),
participants completed either a verbal or spatial working memory task while simultaneously learning
about two causes and an effect; the verbal task reduced controlling, and the spatial task reduced
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discounting. Using a forward blocking paradigm, De Houwer and Beckers (2003) found reduced
blocking when participants simultaneously performed a difficult versus an easy secondary task. If the
long timeframe is more taxing on memory resources, it may produce both reduced controlling and
reduced discounting in the long timeframe. However, given that the prior research on single cause—
effect learning has not shown that learning is considerably harder in the long timeframe, this may not
occur for two causes either.

Second, the informative transitions theory (Derringer and Rottman, 2018) predicts that learning in
a long timeframe may be particularly hard. As a reminder, this theory proposes that people primarily
update their beliefs about a given cause when that cause changes and when the other cause(s) remain
stable. In the previous example about being stressed for 2 days in a row, but only exercising on the
second day and sleeping better on the second day, the informative transitions theory requires the learner
to remember all the events that happened the prior day (stress, no exercise, and poor sleep) and compare
them to what happened the current day. These changes are likely less salient, or potentially more
effortful to recall, when the events occur on successive days than when the trials are presented in short
succession.” In contrast, we have argued that in short timeframe situations when the cues are presented
adjacent to each other, the changes are perhaps even more salient than the states of the variables.

It is possible that the changes will still be fairly salient in the long-timeframe environment. However,
if the changes are less salient in the long timeframe, there are a few possibilities for what might happen.
First, if people rely on informative transitions for causal learning but cannot use them in the long
timeframe, then their learning may be quite bad in the long timeframe; they may simply feel uncertain
about the causal relations. Second, learners might instead resort to a standard reinforcement-learning
process similar to Rescorla and Wagner (1972), in which only the events during the current moment
need to be attended to, not the changes from the events the prior day. In this case, learners would still
be able to control for the alternative cause. Third, people could resort to learning the simple bivariate
(unconditional) cause—effect relations instead of controlling for the alternative cause.

Although Derringer and Rottman (2018) provided clear evidence that people primarily focus on
changes in causes, it is also possible that this finding may not generalize to the current study. Focusing
on changes is especially cognitively efficient when most causes remain fairly stable and when there are
many causes (see footnote 2). Derringer and Rottman still found that people focused on changes when
the learning data were randomly ordered, but more so when the learning data were autocorrelated.
However, in the current study, the participants only learned about two causes, and the learning data
were randomly ordered. Both of these decisions were chosen to replicate Spellman (1996). But it could
also mean that people in both the short and long timeframes learn by focusing more on presence versus
absence and not on changes, in which case there may not be many differences between the short and
long timeframes.

In sum, there are a variety of potential outcomes. The goal for this research was not to test a
particular theoretical account, as there are simply too many possibilities, and there is such little research
on learning in long-timeframe environments that there are not yet clear theoretical accounts about the
roles of memory and salience of events. Instead, the primary goal was to assess how accurately people
control for alternative causes in the long timeframe. This question is of utmost importance as it can
provide guidance about whether or not individuals can trust their own causal conclusions formed from
everyday learning.

1.6. The current research

As just explained, the primary goal was to assess how accurately people control for alternative causes
in the long timeframe. A secondary goal was to test for differences in controlling between the long and

2T am not arguing that changes are not salient in all real-world long-timeframe environments. For example, many sorts of real-
world events involve prolonged states (e.g., pain and mood) rather than short punctate events as have been traditionally studied.
When a prolonged state changes, the change is likely to be highly salient. It is very hard to experimentally study such prolonged
states, although this is a focus of future efforts.
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short timeframes, which can provide guidance into theorizing about the learning processes that occur
in long-timeframe learning.

In addition to testing controlling, the paradigm being used, similar to Spellman’s (1996) study, also
allows for two other assessments of causal learning and judgment. First, this paradigm tests for ‘simple
learning’—learning about a cue that has a similar unconditional and conditional strength on an outcome.
For many of the same reasons mentioned above about controlling, if it is hard for people to learn the
cause—cffect relations between two causes and an effect in a long-timeframe situation, then their ability
to learn even about cues that have a simple relation with an effect may also be impaired when there
is a second cause. This paradigm also tests for non-normative discounting, whether a strong cue has a
contrasting impact on the judged strength of another cue. This is the first time that simple learning and
non-normative discounting are being tested in a long-timeframe learning situation, and the short and
long timeframes will also be compared.

Because of the possibility of order effects in Experiment 1, a second experiment was conducted that
only tested the long-timeframe condition so that there could be no order effects. This study allowed for
considerably greater power to examine learning in the long timeframe.

2. Experiment 1
2.1. Methods

2.1.1. Participants

A total of 205 participants were recruited for the study; the main requirements were owning a
smartphone and intending to complete the 25-day study. Participants were paid $30 if they completed
the entire study. Of the 200 participants who completed the study, 191 were included in the final
analyses, after excluding 1 person due to potential confusion with the task (because they were not fluent
in English) and 8 people due to an error in data collection.

The mean age was 22.10 years (SD = 7.34), and the 5th and 95th percentiles were 18 and 30 years.
With regard to sex, 72% identified as female, 27% as male, and 1% as non-binary. With regard to
ethnicity, 7% reported being Hispanic or Latino, 88% not, and 5% did not report. With regard to race,
for which participants could select more than one, 1% identified as American Indian or Alaska Native,
25% as Asian, 7% as Black or African American, 0% as Native Hawaiian or Other Pacific Islander,
66% as White, and 5% did not report. Lastly, 79% were undergraduate students, 11% were graduate
students, and 10% were not currently students.

2.1.2. Cover story

In the cover story, participants were asked to learn about two medicines, which could improve, worsen,
or have no influence on insomnia.® (Participants did not actually take medicines—the entire task is
imaginary.) The task was an observational causal learning task; participants did not choose to use the
medicines on each day or not, but instead were told which medications they used on a given day. The
task was introduced with the following text:

Please imagine that you have chronic insomnia. Due to two other health conditions you have, you
are on two medications Allapan and Worfen, to treat these conditions.

You have heard that sometimes other medications can improve or worsen insomnia as a side
effect. Some medications happen to improve insomnia as a side effect by making you feel more

3 A medical learning task was used as this is very common in the literature (e.g., Cheng, 1997; Goedert and Spellman, 2005).
One difference is that in much of the prior research on controlling, each trial was presented as a separate entity, such as a separate
patient. Furthermore, in some of this research, there was a ‘status quo’ of the effect, for example, each patient was sick, and
then it was observed whether they became cured or remained sick (maintenance of the status quo) after taking a medicine or not
(Goedert and Spellman, 2005). The current cover story involves one person over 24 days, and there is not a status quo in the
same sense.
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Table 1. Conditional and unconditional AP for the four conditions.

Condition

Cause—effect statistical relation TeenAgen TgenAprev TorevAgen TorevAprev

T Unconditional AP .00 .00 .00 .00
T Conditional AP +.33 +.33 -.33 -.33
A Unconditional AP +.50 -.50 +.50 -.50
A Conditional AP +.67 —.67 +.67 —.67

Note: A = alternative; T = target.

Table 2. Number of trials for each of eight event types across the four

conditions.

Event type No. of trials in each condition

T A E TgenAgen TganpreV TpreVAgen TprevAprev
1 1 1 3 3 6 0
1 1 0 0 6 3 3
1 0 1 3 3 0 6
1 0 0 6 0 3 3
0 1 1 6 0 3 3
0 1 0 3 3 0 6
0 0 1 0 6 3 3
0 0 0 3 3 6 0

Note: 0 = absent; 1 = present; A = alternative; E = effect; T = target.

tired before going to bed and helping you stay asleep throughout the night. Other medications
happen to worsen insomnia as a side effect by making you agitated and awake at night.

You want to figure out whether Allapan and/or Worfen each improve or worsen or have no
influence on your insomnia. . ..

Note: 1t is possible that both medicines improve your insomnia, or both medicines worsen your
insomnia, or one improves and the other worsens your insomnia, or each one might also have no
effect on your insomnia. . ..

2.1.3. Stimuli and design

Participants were randomly assigned to learn about one of four datasets (adapted from Spellman, 1996),
defined by whether the T and the A each have a generative or preventative conditional influence on the
effect. For example, in the TgenAgen dataset, T has a generative conditional influence on the effect,
and A also has a generative conditional influence on the effect. See Table | for summary statistics,
Table 2 for event frequencies, and Appendix A of the Supplementary Material for alternative ways
of calculating unconditional and conditional strengths. The terminology used to name the ‘Target’
and ‘Alternate’ causes is only used to distinguish them in this paper, as has been done previously
(Goedert and Spellman, 2005; Laux et al., 2010); the instructions in the task did not imply a difference
to participants.

2.1.3.1. Controlling
The unconditional strength of T was always equal to zero, but the conditional strength of T was either
generative (+.33) or preventative (—.33). This means that if participants do not control for A, judgments
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for T should be close to 0 in all four conditions. Alternatively, if participants do control for A, judgments
for T should be more positive in the Ty, conditions than in the Ty, conditions, controlling for A.
Unlike Spellman (1996), the TeenAprey and TyreyAprev conditions were included to obtain evidence of
controlling when A has both generative and preventative influences.

2.1.3.2. Simple learning

The absolute values of the unconditional and conditional strengths of A on the effect were qualitatively
the same across all four datasets. For example, in the TgenAgen condition, the unconditional influence
of A is +.50, and the conditional influence is +.67. This means that if participants can learn about the
alternative at all, regardless of whether they do or do not control for T, they should infer a generative
relation for the Age, datasets and a preventative relation for the Apyey datasets. Because they do not need
to control for T when assessing A, and because A is stronger than T, it should be easier to learn about A.

2.1.3.3. Non-normative discounting

This design also allowed us to test for non-normative discounting. Evidence that people discount T
in comparison to A would appear as a negative influence of A, controlling for T, when judging T.
Likewise, evidence that people discount A in comparison to T would appear as a negative influence of T,
controlling for A, when judging A. Because A is stronger than T in both conditional and unconditional
strengths, it would be more likely to find that people discount T in comparison to A rather than the
reverse.

2.1.3.4. Overall design

Participants completed the learning task in a short-term (back-to-back trials) format and a long-term
(one trial per day) format using the same dataset and were randomly assigned to complete either the
short or the long task first. Thus, the design was a 2 (timeframe: short vs. long, within-subjects) x 2
(T conditional strength: generative vs. preventative, between-subjects) X 2 (A conditional strength:
generative vs. preventative, between-subjects).

2.1.4. Overall Procedure

Participants completed the study using their personal smartphones to access the website, which was run
using the PsychCloud.org framework (Rottman, 2025). The study lasted 25 days, and the first and last
days were completed in the lab.

On Day 1, participants completed an eight-trial practice task in which they learned about two
causes simultaneously, one cause that was deterministic (AP = 1) and another cause that was non-
contingent (AP = 0). The purpose of the practice task was to acclimate participants to the trial-by-trial
procedure before completing the short and long tasks. After the practice task, participants assigned to
the short-task-first condition completed the short task, whereas participants assigned to the long-task-
first condition proceeded directly to the long task. To complete Day 1, each participant completed Trial
1 of the long task. On Days 1-24, participants logged in to complete the daily trial for the long task and
received text message reminders at 10 am, 3 pm, and 8 pm if they had not yet completed the trial each
day. On Day 25, participants returned to the lab to complete the dependent measures for the long task.
Participants in the long-task-first condition then completed the short task. After completing the tasks,
participants were paid and debriefed.

All three tasks involved learning about two medicines. The names, shapes, and colors of the
medicines were all different. For the practice task, the effect was arthritis pain. For the short and long-
timeframe tasks, the effects—dizziness and insomnia—were randomized. The instructions stated that
the medicines could improve, worsen, or have no influence on the effect and that the goal was to infer
the influence of each medicine on the effect.

Participants were told that if they missed more than 3 days of the study, the study would be
terminated. If participants missed 1 day (7%), 2 days (3%), or 3 days (1%) of the study, the subsequent
trials were pushed back so that they experienced each trial on a different day. Most participants returned
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A) Verifying the causes B) Predicting the Effect C) Verifying the Effect
Day 1 of 24 Day 1 of 24 Day 1 of 24
e
b
f N 2N i
No Allapan  No Worfen No Allapan  No Worfen No Allapan  No Worfen Insomnia

Today you did not take Allapan.

Allapan No Allapan

Today you did not take Worfen.
Worfen No Worfen

Today you did not take Allapan.

Allapan No Allapan

Today you did not take Worfen.
Worfen No Worfen

Predict how you slept:

Today you did not take Allapan.

Allapan No Allapan

Today you did not take Worfen.
Worfen No Worfen

Correct! You had Insomnia.

9

Insomnia No Insomnia Insomnia No Insomnia

Figure 1. Screenshots of a single trial. (a) Participants were shown whether each of the two causes
was present or absent and verified that they saw this information with radial buttons. (b) Participants
predicted whether the effect would be present or absent. (c) Participants were shown if the effect was
present or absent and verified this information with radial buttons.

to the lab 1 day after completing Trial 24 (90%), but some returned on the same day (9%), or 2 days
later (1%).

2.1.5. Procedure Within a trial

Across the short- and long-timeframe tasks, each trial followed the same procedure with four steps.
First, participants saw text and icons that depicted whether T and A were each present or absent on
that trial (Figure 1a). To proceed, participants pressed radio buttons to verify the state of each cause.
Second, having learned the state of both causes, participants pressed a radio button to predict whether
the effect would be present or absent and then pressed a submit button to proceed (Figure 1b). Third,
they were given feedback about their prediction (Correct/Incorrect) and saw text and an icon that
depicted the true state of the effect. To proceed, participants pressed a radio button to verify the state of
the effect (Figure 1¢). Fourth, participants were instructed to ‘Imagine the scene until the images blink
and the submit button appears’ to give them time to encode the information. After 4 seconds, the submit
button appeared and participants pressed it to complete the trial. In the practice task and the short task,
participants immediately proceeded to the next trial. In the long-timeframe condition, participants were
logged out and unable to observe the next trial until the following day. At all points during the study,
participants were unable to go back and see what happened on a prior trial.

2.1.6. Dependent measures

Participants’ beliefs about the strength of each cause on the effect were evaluated in three ways.
First, for each cause, participants made an explicit judgment of ‘causal strength’; some version of
causal strength is the most common question asked in studies of causal learning. Causal strength was
calculated from their responses to two questions for each cause. In the first question, they made a
general judgment about whether the cause improved, worsened, or had no influence on the effect. If
they said ‘improved’ or ‘worsened’, they answered a second question about how strongly the cause
improved/worsened the effect on a scale of 1-10. If they said ‘no influence’, participants skipped the
second question and were assigned a judgment of 0. These responses were combined and mapped onto
a —1 to +1 scale, where a judgment of —1 meant that the medicine always prevented the effect (i.e.,
improved symptoms), and a judgment of +1 meant that the medicine always caused the effect (i.e.,
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worsened symptoms). Participants made causal strength ratings after Trials 8, 16, and 24. In the long-
timeframe conditions, the causal strength ratings were made on Days 9, 17, and 25, prior to the learning
experiences on Days 9 and 17.

Second, a measure of ‘tallies’ was derived from participants’ memories for the number of times they
experienced each of the eight event types (T = present/absent, A = present/absent, E = present/absent).
For example, they would recall the number of trials (out of 24) in which Medication X was absent,
Medication Y was present, and the effect was present. The reason for assessing tallies is that the most
common theories of causal inference (e.g., Cheng, 1997; Griffiths and Tenenbaum, 2005; Hattori and
Oaksford, 2007) assume that people use tallies of the event types to mentally calculate causal strength.
Thus, assessing participants’ memories of these tallies provides another way to explore this inference
process. The eight questions were presented on separate pages in a randomized order, and participants
could enter any number between 0 and 24 for each question. For each participant, a single measure
of the influence of T on E while controlling for A was calculated from the tallies using the average of
Equations (2) and (3). The analogous procedure was used to calculate the influence of A on E while con-
trolling for T from the tallies.* In 1% of cases, only one of the two equations could be used because the
denominator for the other was equal to zero. Participants only made the tally judgments after Trial 24.

Third, a measure called ‘predictions during learning’ was created from participants’ predictions
about the presence or absence of the effect. This measure provides an assessment of learning during
the learning process. Since reinforcement learning theories assume that learners spontaneously make
predictions, this measure may be more intuitive than some others. The predictions during Trials 12—
24 were used for this measure; the last 13 trials were used so that participants had enough time to
learn the relations and that each participant had seen at least one of the necessary event types for the
calculations.” This measure was computed using the average of Equations (2) and (3), where E was the
participants’ predictions of the effect rather than the actual effect. If only Equations (2) and (3) could
be calculated because the participant had not seen each event type in the last 13 trials, the one equation
that could be calculated was used; this happened for 15.4% of participants.

2.2. Analysis plan

The study design and analysis plan were registered after data collection began but before any analysis
(see https://osf.io/3dajqg/ for the analysis plan, data, and analysis code). Data were analyzed using
R. Bayes factors (BFs) were computed with the package BayesFactor. The BFs are presented in the
odds format; 10 means that the alternate hypothesis is 10 times as likely as the null, and .10 means that
the null is 10 times as likely as the alternate. The package effsize Torchiano, Marco (2020) was used to
compute 1, 2 effect sizes; effect sizes are reported in the OSF registration rather than in the manuscript
because they do not add very much in addition to the regression coefficients. The predictors were coded
as +.5 for the generative conditional influence datasets and —.5 for preventative.

2.2.1. Order effects
As preregistered, preliminary analyses were conducted to test whether there are order effects, given
that participants completed the same task in both the short and long timeframes. Appendix B of the
Supplementary Material presents these findings; there appeared to be some order effects, but there were
also many findings that did not reveal order effects. Notably, there were no order effects in the analyses
of controlling, the most important analysis of this study.

For utmost caution, the between-subject analyses of only the first task that participants completed,
either short or long, are reported in the main manuscript. In order to make as full use of the data as

“Note that for these particular learning datasets, the two ways of calculating the conditional strength of T on E, Equations (2)
and (3), both produce the exact same number. The same is true for calculating the conditional strength of A on E.

SThe reason for using the last 13 trials instead of the last 12 is that if only 12 were used, there would be considerably more
participants for whom the equation could not be calculated. In the preregistration, we anticipated that we may need to expand the
window beyond the last 12.
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Table 3. Regression results for judgments in Experiment 1 analyzing only the first task.

Controlling Simple learning ADiscounting TDiscounting

Measure b )2 BF b p BF b P BF b p BF
Short

Preds. in learning .24 .001 53.51 .98 <.001 10** —-.07 328 38 .04 .504 .10

Causal 21 .009 557 .84 <.001 10 -26 .001 27.85 —.13 .090 .45

Tallies 28 <.001 10* .68 <.001 10 -06 .286 .35 .09 .096 .38
Long

Preds. in learning .13 .122 .83 .79 <.001 103 —-.17 .043 182 -.06 .480 .15

Causal 15 089 .81 .82 <.001 10" —41 <001 10° -.04 .667 .14

Tallies A3 046 1.56 .62 <.001 10" —-20 .002 18.16 -.03 .676 .14

X Timeframe

Preds. in learning .11~ .292 47 .19 .065 .57 10 342 40 10 331 .17
Causal .06 .593 26 .02 .870 12 A5 182 55 —-.09 439 .16
Tallies A5 069  1.14 .07 429 .16 14 103 .86 A2 167 31

Note: BFs greater than 10? are rounded to the nearest exponent.

possible, the within-subject analyses of both tasks are reported in Appendix B of the Supplementary
Material.

2.2.2. Statistical tests of controlling, simple learning, and discounting, within both the short and long
timeframes

Two main regressions were run within both the short and long timeframes: predicting judgments

about the target from T, whether the Target was generative or preventative, and from A, whether the

Alternative was generative or preventative (Equations (4) and (5)). These two regressions produce four

regression coefficients. The results from these regressions are reported in Table 3. The interpretation of

each coefficient is captured in the superscripts in Equations (4) and (5), and is discussed next:

Judgment of T ~ TControlling + ADiscounting' (4)
Judgment of A ~ ASimpleLearning + TDiscounting. (5)

The coefficient for T in Equation (4) assesses whether participants give more positive judgments
about T in the Ty, conditions than in the Ty, conditions. If this coefficient is positive, it is evidence
of controlling because only a conditional assessment of T predicts this difference, not an unconditional
assessment (rows 1 and 2 in Table 1). The coefficient for A in Equation (5) assesses whether participants
give more positive judgments about A in the Age, conditions than in the Ap, conditions. If this
coefficient is positive, it is evidence of simple learning because both a conditional assessment of A
and an unconditional assessment of A predict this difference (rows 3 and 4 in Table 1).

The coefficient for A when judging T in Equation (4) and the coefficient for T when judging A in
Equation (5) both assess non-normative discounting. In Table 1, notice that when assessing T in rows 1
and 2, there is no difference based on Agen versus Ayrey; there should only be a difference in judgment
based on the condition of T. Likewise, when assessing A in rows 3 and 4, there is no difference based
on Tge, versus Ty, there should only be a difference in judgments based on the condition of A. If
ADiscounting 4y q TDiscounting ar0 poggtive, it would mean that these cues are having a discounting or
contrasting impact on the strength of the other cue, even though they should have no impact. Previous
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research has found that typically the stronger cue discounts the weaker cue, but not necessarily the
reverse, so it would make sense for APiscounting jn Equation (4) to be stronger than TPiscounting jp
Equation (5).

In addition to comparing the regression coefficients to 0, the weights for controlling and simple
learning were also compared to their ideal values for the tally measure.® The ideal regression weight for
controlling is b = .67, which is the difference in conditional strength for Teen (+.33) and Ty (—.33).
The ideal regression weight for simple learning is & = 1.33, which is the difference in conditional
strength of the Age, (.67) and Aprey (—.67) conditions.

2.2.3. Statistical tests assessing the impact of timeframe

The impact of timeframe on controlling, simple learning, and the two types of discounting was also
assessed. For the analysis in which only the first learning experience was included (either short or
long, between-subjects), the interactions between Timeframe and T, and between Timeframe and A
(Equations (6) and (7)), were added to the regressions. For the analysis of both learning experiences
(both short and long, within-subjects), we ran the same regressions and added a by-subject random
intercept.” These interactions are reported in Table 3.

Judgment of T ~ TControling y Timeframe + APSCOUNE & Timeframe. (6)

Judgment of A ~ ASimplebearning o i eframe + TPScountng o Timeframe. (7

2.2.4. Intermediary judgments

The same analyses for the causal strength judgments made after Trials 8 and 16 were also conducted.
Almost all the patterns show monotonic or near-monotonic changes in the regression weights,
p-values, and BFs. Some of the findings become significant earlier on than others, but there are no
significant differences between the short and long timeframes. Because these analyses appear to just
reveal expected learning curves and do not add much else to the findings, they are not presented in this
report. These results are summarized in the OSF repository.

2.3. Results

Figure 2 shows the raw values of the judgments for all four conditions of T and A. This figure
corresponds directly to the analyses in Equations (4)—(7). It is useful to focus on the ideal values in
Figure 2; even though the ideal values are not shown for all dependent measures, the directions of the
ideal measures compared to zero are relevant for all the measures.

2.3.1. Controlling

Controlling was assessed by comparing participants’ judgments about T in the Ty, conditions, which
should be positive, with the Ty conditions, which should be negative. In Figure 2, this would appear
as a main effect of T when making judgments about T (top half of Figure 2). Controlling would appear
as a high-high—low—low pattern from left to right.

This analysis was not pre-registered. This comparison can be made for the tally measure because there is a true answer. It
cannot be made for the causal strength judgments since there is no guarantee that participants use this scale linearly. It also cannot
be made for the predictions during learning because participants may approach the predictions in a variety of different ways (e.g.,
‘maximizing’ [choosing the most likely outcome] or ‘probability matching’ [choosing a response in proportion to the perceived
likelihood of each response]).

"The preregistration also proposed having a random slope for timeframe; however, that model would not converge for most
measures. That makes sense given that there were only two measures per subject, so fitting a random intercept and slope may be
impossible. Here, we report the analysis of just including a random intercept. On OSF, parallel analyses are provided that use the
difference score between the short and long timeframes as the dependent measure, which obviates the need for random effects
because there is only one observation per subject. The coefficients and p-values were identical; there were slight differences in
BFs, but these differences do not change any of the conclusions.
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Figure 2. Raw individual judgments and means with 95% confidence intervals in Experiments 1 and 2.
Note: Vertical jitter added for Causal Strength and Continue Use judgments. For Experiment 1, only data from Task 1 are presented.

In the short-timeframe condition, there was a main effect of controlling for all three dependent
variables, ps < .01, BFs between 5.57 and 10* (left column in Table 3). This key finding replicates past
studies that have found that people are able to control for alternative causes in traditional rapid trial-by-
trial designs.

In the long timeframe, the evidence for controlling is much less clear. Only one p-value was
significant (.046), and the strongest BF was 1.56.
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With regard to the impact of timeframe, though the amount of controlling is numerically larger in the
short timeframe when comparing the regression coefficients, the strongest p-value was .069 (BF = 1.14).

The regression weights for controlling for the Tally measure were compared with the ideal regression
weight (.67). The regression weights were .28 in the short-timeframe condition and .13 in the long-
timeframe condition, which means that they were only 42% and 20% as strong as they should be,
respectively; both p’s < .001 and BFs > 108.

2.3.2. Simple learning

Simple learning was assessed by comparing participants’ judgments about A in the Ay, conditions,
which should be positive, with the A,y conditions, which should be negative. In Figure 2, this would
appear as a main effect of A when making judgments about A (bottom half of Figure 2). Simple learning
would appear as a high-low—high—low pattern from left to right.

Across both the short and long timeframes, and across all three measures, the p-values and BF's all
provided very strong support in favor of simple learning, ps < .001, BFs > 10!! (second column in
Table 3). This finding is important as it is the first time that learning about two causes over a long
timeframe has been assessed.

The tests for differences in simple learning in the short versus long timeframes produced only one
marginal effect (p = .065, BF = .57), so there is minimal evidence of a difference in simple learning
between the short and long conditions.

Despite there being clear evidence of simple learning in both timeframes, there was also evidence
that learning was suboptimal. The Tally regression weights for simple learning were .68 for short and
.62 for long. In comparison, the ideal regression weight is 1.33, which means that the regression weights
were only 51% and 47% as strong as they should be, respectively, and they were significantly below
1.33; p’s < .001, BFs > 10'°.

2.3.3. Discounting

Discounting was tested in two ways: whether A has a contrastive effect when judging T (Agiscounting)>
and whether T has a contrastive effect when judging A (Tgiscounting). Though both discounting effects
are possible, the first one is more likely to occur as typically the stronger cause (A) has a discounting
impact on the weaker (T).

Because discounting is not normative, this cannot be seen in the ideal judgments in the figures. In
Figure 2, ADiscounting shows up as a negative main effect of A on Judgments about T in the top half,
and TPiscoutning shows up as a negative main effect of T on judgments about A in the bottom half of
Figure 2. When there are strong Simple Learning and Controlling main effects, the Discounting effects
can be hard to see in Figure 2.

For APiscounting (the impact of A when judging T), there was clear evidence of discounting for the
Causal Strength measure in both the short and long timeframes, ps < .001, BFs > 27. There was
some evidence for discounting on the Tally measure in the long timeframe but not the short, and the
p-value for the Predictions during Learning was marginal in the long, but not the short. The comparisons
between the short and long timeframes did not reveal any reliable differences.

For TPiscounting (the impact of T when judging A), there were two marginal p-values, but all of the
BFs were less than 1, and most were in the range of .10—.15. In sum, there does not appear to be much
if any discounting of the alternate by the weaker target.

There was no evidence of a difference between timeframes for either type of discounting.

2.4. Discussion

Experiment 1 found three key results and left some open questions. First, participants were able to
learn simple cause—effect relations when they did not need to control, in both the short and long
timeframes. Second, there was some evidence of discounting in both timeframes, particularly in the
causal strength judgments for the target. Third, there was definitive evidence that participants controlled
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for the alternative in the short timeframe, but also that the amount of controlling was less than it should
have been.

At the same time, the most important and novel test was whether participants could control for A
when judging T in the long-timeframe condition. Unfortunately, there was no reliable evidence for
this question according to the p-values and the BFs. It was clear that the degree of controlling was
insufficient compared to the normative value, but it was not clear if controlling was significantly above
zero in the long timeframe as the p-values were marginal and the BFs were weak. (Note that the within-
subject analysis in Appendix B of the Supplementary Material found clearer evidence of controlling
in the long timeframe, and the regression coefficients are similar to those in the between-subjects
analysis, so the difference may just be due to power.) Furthermore, the comparison of the degree of
controlling between the short and long conditions did not produce reliable evidence of a difference
or a null effect. The lack of clear evidence of whether participants can control in the long timeframe
motivated Experiment 2.

3. Experiment 2
3.1. Methods

There were two main differences between Experiments 1 and 2. First, because the most important
question was whether people can control for alternative causes in more realistic long-timeframe
situations, not whether there is a difference between long and short, and because there appeared to
be some order effects when both tasks were tested, in Experiment 2, only the long-timeframe condition
was used for increased power. Second, the sample size was increased for additional power. Third, two
dependent measures were added to gain a more comprehensive understanding of how people make
causal judgments when learning over long timeframes.

3.1.1. Participants

The goal was to recruit at least 400 participants so that there were 100 participants in each condition.
This number was chosen by comparing BFs when the data from Experiment 1 were doubled, tripled, or
quadrupled; a sample size of 400 was determined to be sufficient to produce strong BFs in support of
either the null or alternative hypothesis. Participants had to be between the ages of 18 and 30 to achieve
a similar sample to Experiment 1.

Anticipating that some participants would have to be excluded, 451 participants were recruited
through advertisements on Facebook and advertisements were run in multiple east-coast cities. They
were paid $20 if they completed the entire study. Participants were terminated from the study or
excluded from analyses for the following reasons: missing 4 days (N = 11), not being in Eastern
Standard Time for the duration of the study (N = 7), failing one of the attention checks described below
(N = 30), or admitting to writing down notes about the data (N = 5). Thus, 398 were included in the
final analyses.

Their mean age was 23.9 years (SD = 3.5), and the 5th and 95th percentiles were 19 and 30 years.
With regard to sex, 78% identified as female, 16% as male, 6% as non-binary, and 6% did not report.
With regard to ethnicity, 7% reported being Hispanic or Latino, 90% not, and 3% did not report. With
regard to race, 1% identified as American Indian or Alaska Native, 26% as Asian, 7% as Black or
African American, 1% as Native Hawaiian or Other Pacific Islander, 69% as White, and 2% did not
report. Lastly, 33% were undergraduate students, 25% were graduate students, and 41% were not
currently students.

3.1.2. Design

The same stimuli and datasets from Experiment 1 were used, but only with the long-timeframe
condition. Thus, Experiment 2 was a 2 T (generative vs. preventative; between-subjects) X 2 A
(generative vs. preventative; between-subjects) design.
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3.1.3. Procedure

The procedure was very similar to Experiment 1, minus the short-timeframe condition. The entire study
lasted 25 days. On Day 1, participants met with a research assistant via Zoom, completed an eight-
trial practice task, and then did Day 1 of the long task. On Days 224, they completed the remaining
trials for the long task. If participants missed 1 day (8%), 2 days (3%), or 3 days (1%) of the study,
the subsequent trials were pushed back so that they experienced each trial on a different day. Most
participants completed the dependent measures on Day 25 (97%), but some completed them either
2 days later (2%) and one completed them 4 days later.

Because the participants were recruited and run entirely online, three attention checks were added.
During the sign-up process, participants had to pass Oppenheimer et al.’s (2009) sports measure. Two
attention checks were added during the eight-trial practice task. At the beginning of the practice task,
participants read an overview of the cover story and had to correctly recognize which medication names
were used in the cover story; one participant did not pass this attention check. At the end of the practice
task, participants recalled the number of times they observed each event type. Twenty-nine participants
were not allowed to continue because they made judgments that added up to 16 or more trials.®

3.1.4. Dependent measures

The predictions during learning measure was calculated over the last 14 trials (as opposed to the last
13 trials) so that participants saw at least one instance of each event type that was necessary for the
calculations. In most cases, the average of Equations (2) and (3) were used for the tally measure strength
and predictions during learning. For 1% of participants for the Tally measure and 13% of participants
for the Predictions during Learning, only one of the two equations could be calculated. Two participants
were dropped from analyses of Tallies for the assessment of T because neither equation was calculable.

Two other measures were included (see Zhang and Rottman, 2023, for other uses of these measures).
First, participants answered a question termed ‘continue use’: ‘Do you think you should continue
to use [Medicine]?’. They made a continue-use judgment for both T and A, using a 21-point scale
(—10 = definitely no, 0 =unsure, +10 = definitely yes), which was transformed onto a scale of —1 to +1.
The reason for including this measure it is more oriented toward making a practical decision than the
others. The causal strength and continue-use measures were asked after Trials 8, 16, and 24, similar to
in Experiment 1.

Second, a measure termed ‘final prediction’ was asked on the last day of testing. This measure
involved asking four questions and then transforming the questions into one judgment about T and one
judgment about A. Participants were asked ‘Imagine that today (Day 25), you [take/do not take T] and
[take/do not take A], what is the likelihood that you would experience [effect]?’. For each question,
they could answer any number between 0 and 100. The average of Equations (2) and (3) was used to
calculate final predictive strength. This measure was intended to be similar to the predictions during
learning but to assess what has been learned by the end of the study.

3.2. Results and discussion

The inferential statistics are presented in Table 4, and the findings are visualized in Figure 2.

3.2.1. Controlling
The larger sample for Experiment 2 produced definitive evidence that people can control for an
alternative cause when learning about two causes over weeks. Across all measures, participants

8Though there were only eight trials, it would be easy for participants to give a number that is different from 8 for two reasons.
First, participants were not reminded that there were only eight trials when they were making the judgments. Second, the eight
judgments, one for each tally type, were made on separate screens; there was nothing prompting participants to think about the
sum of all the tallies while making these judgments. We chose 16 as a deliberately lenient cutoff meant to catch gross errors in
responding because we felt it would be reasonable for even an attentive participant to overestimate a few tallies which could lead
to a sum larger than 8.
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Table 4. Regression results for judgments in Experiment 2.

Controlling Simple learning ADiscounting Piscounting
Measure b P BF b P BF b p BF b p BF
Preds. in learning .16 <.001 10° .88 <.001 10 —-.08 .032 138 -.03 .424 0.07
Causal 19 <001 100 79 <.001 10 -36 <.001 10 —.05 211 0.13
Tallies 20 <.001 107 .68 <.001 10 —18 <.001 10° -.01 .793 0.05
Continue use 22 <001 10> .88 <.001 10*® —48 <.001 103 —.09 .089 0.28

Final predictions .16 <.001 10* .73 <.001 10 -.11 .001 31 -.01 .802 0.05

controlled for A when judging T, all ps < .001, all BF's > 100. The regression coefficients look similar,
perhaps slightly stronger, than those in Experiment 1.

In Experiment 2, there were two measures—tallies and final predictive strength—that could be
compared to an ideal judgment. Both were considerably weaker than optimal (b = 0.67, p’s < .001,
BFs > 10*?), implying that the ability to control for A is suboptimal.

3.2.2. Simple learning

Similar to Experiment 1, there was strong evidence for simple learning. And similar to Experiment
1, the learning was suboptimal; the regression weights were significantly weaker than the true weight
(b = 1.33) for both tallies and final predictive strength, ps < .001, BFs > 10%.

3.2.3. Discounting

All of the measures of APiscounting with one exception, revealed that participants discounted when
judging T; all ps < .001, BFs > 31. The one exception was for the Predictions during Learning; p =.032,
BF =1.38. The predictions during learning was also the weakest measure in Experiment 1, and this will
be discussed in Section 4. There was no evidence that participants discounted when judging A (the
TDiscounting coefficient); all the BFs were in the direction of the null, and some were fairly strong in the
direction of the null.

4. General discussion

This is the first study to test whether people can accurately learn about two confounded causes over
many weeks. Controlling for alternative causes is closely related to the credit assignment problem
in reinforcement learning, and controlling and discounting are closely related to many different
phenomena involving cue competition in associative learning paradigms. Thus, the implications of
these findings are pertinent to many findings beyond causal learning and reasoning. The key findings
are broken down into three phenomena: controlling, simple learning, and discounting.

4.1. Controlling

The main goal of this research was to assess whether people could control for an alternative cause when
engaged in causal learning and judgment over a long timeframe. When two causes are confounded,
reaching an accurate causal conclusion requires controlling for the alternative confounded causes.
Whereas Experiment 1 was somewhat inconclusive about whether participants controlled in the long
timeframe, Experiment 2 provided very strong evidence that participants did control for the alternative
cause in the long timeframe. Furthermore, the similarity in the regression coefficients for Experiments
1 and 2 suggests that the findings were very aligned and the differences were probably just a result of
lower power in Experiment 1.
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However, there is a major caveat to this point; the results show that the amount of controlling
was quite small. Controlling was only about 20%-30% as strong as it should have been in the long
timeframe and about 42% as strong as it should have been in the short timeframe. Whereas previous
studies have primarily used causal strength judgments that cannot be compared to a normative value,
the tallies and final predictive strength measures allow for a direct comparison between participants’
judgments to a normative standard. Therefore, whereas previous studies that have tested controlling in
the short timeframe have concluded that people can control (relative to not at all), they omitted the fact
that controlling is, in fact, fairly weak.

4.2. Simple learning

Strong evidence that people could learn about the ‘alternative’ cause, a simple cause—effect relation
that does not require controlling, was found in both the short and long timeframes; this was termed
‘simple learning’. The alternative cause is fairly easy to learn about because it has roughly the same
influence on the effect whether one controls for the target or not. Our finding that people can learn about
the alternative in the long timeframe aligns with prior findings that people can learn causal relations
between a single cause and effect about as well in the long as in the short timeframe (Willett and
Rottman, 2021). The novel aspect of the current study is that people can also learn about simple causal
relations when there are two causes in the long timeframe, not just one. At the same time, simple
learning was only about 47%—55% as strong as it should have been in the long timeframe and 51% in
the short timeframe.

4.3. Discounting

This research found very strong evidence of discounting, a non-normative pattern of reasoning, in both
the short and long timeframes and across a variety of dependent measures. Most studies on controlling
were not designed to test for discounting; it is only because the current studies used the complete
2 (alternative: generative or preventative) X 2 (target: generative or preventative) design that both
controlling and discounting were able to be tested.

Prior research has suggested that discounting may have more to do with a decision process than
a learning process. The idea is that when judging the strength of one cause people compare it to the
strengths of other causes (Denniston et al., 2001; Goedert and Spellman, 2005; Laux et al., 2010; Miller
and Matzel, 1988; Stout and Miller, 2007). One hypothesis is that discounting may arise only at the time
of making a judgment, when comparing cues, not during learning. This could result in discounting for
the measures at the end of the study but not for the predictions during learning. In fact, the predictions
during learning measure tended to produce nonsignificant or marginal discounting effects, weaker than
other measures, which fits with this hypothesis. At the same time, the final predictive strength measure,
which is similar though not exactly the same as the predictions during learning in Experiment 2, did find
discounting. And the tally measure, though nonsignificant for the short timeframe in Experiment 1, was
significant for discounting for the long timeframe in Experiments 1 and 2; it is not obvious why these
memory questions would instigate a cue comparison process. Therefore, the current results provide
mixed support for this hypothesis that discounting arises through a decision process rather than a
learning process. They raise the possibility that participants’ memories may be distorted in the direction
of discounting from the learning process or that their memories and some of their predictions may be
based on their beliefs about causal strength.

4.4. Comparisons between short and long timeframes and other potential moderators of learning

The set of studies that my lab has recently been conducting on causal learning over a long timeframe has
been designed to systematically examine whether various factors in how people experience events over
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time make it harder or easier to learn causal relations (Willett and Rottman, 2021; Zhang and Rottman,
2023, 2024). Some of these studies have looked at short versus long timeframes, and others have
looked at different aspects of long-timeframe learning, such as the length of delay between a cause and
effect.

Testing for differences between the short and long timeframe helps reveal the generalizability
of existing short-timeframe findings to more real-world settings, and could provide useful data for
developing theories about causal learning within and across the two settings. With this regard, an
unfortunate outcome from Experiment 1 was that there was some uncertainty as to whether controlling
and simple learning differed for the short versus long timeframes. There were no significant differences
in controlling between the two timeframes; the Tallies measure revealed the strongest effect of
timeframe, but the p-value was .069 and the BF was 1.14. In the within-subjects analysis in Appendix B
of the Supplementary Material, this difference for Tallies was significant, p = .005, BF = 10.50,
suggesting that perhaps there is a reliable difference in timeframes for the Tally measure with more
power. In sum, although a longer timeframe may impair controlling, if there is an impairment, it is
fairly modest, and only seen for one out of three measures.

For simple learning, none of the three measures revealed a reliable difference when only analyzing
the first task. (As noted in Appendix B of the Supplementary Material, when both tasks were analyzed,
there were reliable differences between timeframes; however, this appears to be driven by an order
effect, and thus a cautious approach of focusing only on the first task seems most wise.)

Although it would have been nice to answer the question about differences between the short and
long timeframes more definitively, the presence of order effects makes it very challenging to do so.
It is not feasible to do a study in which participants are randomly assigned to a long-timeframe task
versus a short-timeframe task as there would be challenges with regard to differences in incentives and
dropout.

Rather than double down and rerun Experiment 1 with a much larger sample, I decided to focus
on how accurately people learned in the long timeframe to obtain strong evidence of whether people
could control at all in long-timeframe environments. The reason for this decision is that I view the
long timeframe as the best simulation of real-world learning and therefore the most important topic to
study. Experiment 2, with 398 participants, was able to obtain very strong evidence that people can
control in the long timeframe while also providing evidence that the amount of controlling is quite
modest.

Although the current findings hint at differences in learning between the short and long timeframes,
they were not strong. However, ongoing research in my lab suggests that there are important differences.
In particular, even though people are able to learn about cause—effect relations involving multiple
potential causes and multiple potential effects in the short timeframe, we have found that learning
appears to be much worse in the long timeframe (Zhang, 2025). There are a number of differences
between the current study and the ones conducted by Zhang (2025). First, in the current study,
there were only two potential causal relations; Zhang (2025) investigated situations with six and
nine potential relations. Second, in the current study, the causes and effects occurred at the same
time, whereas in Zhang (2025), there were delays between the causes and effects. Third, in the
current study, it was vital to control for the alternative cause when assessing the target, whereas in
Zhang (2025), the cause—effect relations were all quite strong and did not vary based on whether a
third variable was or was not controlled for. Although Zhang (2025) provides fairly clear evidence
for a difference, the exact reasons for the increased difficulty in the long timeframe are not yet
known.

In sum, there are many important further questions about how well people can learn causal relations
that require controlling for alternative causes in real-world situations. The main conclusion from this
research, that people can control for alternative causes when learning over a long timeframe, should
not be generalized to all situations; there are very likely other moderators. At the same time, it is also
hard to image factors in naturalistic situations that would make causal learning and judgment with two
confounded causes much easier than in the current studies.
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4.5. Comparisons to ideal judgments

Most of the measures in this research involved a participant making an inference; these were not
compared to an ideal because there is not one true answer. Many alternative versions of rational or ideal
standards have been put forth for how people make causal inferences (see Hattori and Oaksford, 2007,
for a list). For example, AP is one way to assess the strength of a causal relation and involves assessing
the difference in the probability of the effect when the causes are present versus absent. One downside
of this measure is that the calculation of the strength of one cause is affected by the base rate of the
effect. For example, suppose that the effect is present 90% of the time when the cause is absent; even if
the cause always produces the effect, the AP value would only be .10. Another metric called PowerPC
(Cheng, 1997) accounts for the base rate of the effect when the cause is absent; in the case mentioned
in the prior sentence, the PowerPC value would be 1.00. Alternatively, other models of causal inference
(e.g., Griffiths and Tenenbaum, 2005; Lu et al., 2008) are sensitive to sample size, so they assess the
confidence of the relation, similar to a p-value, rather than just the effect size of the relation. These
models also involve priors on the plausible strengths of the effect, and the choice of prior can affect the
strength of the inference as well as predictions about cue competition (Powell et al., 2016).

Because there are multiple options for normative standards, arguing that inferential judgments
deviate from one particular standard is fraught. However, the tally measure can be directly compared
to an ideal standard. The tally measure simply involved a series of questions about participants’
memories of the experienced events; it does not involve making an inference. Thus, it is hard to
explain away why the memories would be distorted from a rational perspective. Furthermore, any
potential explanation would have to account for both insufficient controlling and discounting. The final
predictions in Experiment 2 were also compared to an ideal standard. In contrast to the tallies, the final
predictions are more open to such critiques about alternative rational inferential processes. Predictions
could be made by simply recalling the proportion of experienced events that led to one outcome versus
the other. However, predictions could also be made by first making a causal inference and then making
predictions from the inference.

In sum, I argue that the tally measure is an effective way to capture weaknesses in learning that
are not sensitive to different possible normative standards or different possible priors. More broadly,
though comparing the judgments to an ideal is one important contribution of this research, most of the
analyses tested other hypotheses that are not sensitive to this critique.

4.6. Open questions

Aside from the open questions already discussed, there are three additional open questions. First, it
is possible that with more than 24 trials, learning may approach ideal levels. When learning about a
single cause, 24 trials were sufficient to produce approximately correct judgments (Willett and Rottman,
2021); however, perhaps more trials are needed with two causes. Indeed, in Spellman’s (1996) study
that served as the inspiration for this one, there were 80 trials; participants also provided judgments
after 40 trials, but those judgments were not reported. In contrast, the current study only used 24 trials
as we felt that it was not feasible to run a study for 40 days, let alone 80. So perhaps the difference
in the number of trials could account for the different emphasis in the results that people control for
alternative causes well versus not well. At the same time, insufficient learning was seen even in the
tally measure; it is not obvious why the tally judgments would be affected by sample size even if other
judgments are. Furthermore, from a practical perspective, 24 days is already a considerable length of
time; people often make causal assessments from even less than 24 trials. For example, when starting
a new medication, one may start to decide about the efficacy of the medicine considerably earlier than
24 days.

Second, as discussed in the Introduction, Derringer and Rottman (2018) found that when learning
about multiple causes, people tend to utilize ‘informative transitions’, when one cause changes and
the other remains the same, for causal inference. This theory served as one reason why learning might
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be considerably worse when spaced out over a long timeframe, as it could be hard to remember what
happened the prior day, or the prior day may not be all that salient. However, the current studies do
not permit a direct test of the Informative Transitions theory; future research should test whether this
Informative Transitions learning process is used in long timeframes.

Third, comparing short- and long-timeframe learning raises a number of other potential processes
and questions not explored here. The short-timeframe condition in Experiment 1, like many other short-
timeframe studies, used a cover story that explains to participants that they will be presented with data
that are sped up from how they would occur in real life. This raises a question of what happens when
the learner’s experience of a causal mechanism is on a different order of magnitude from how they
would ordinarily experience the mechanism and their expectations about the speed of the mechanism.
A related question has to do if there is a discrepancy between the timing of a real-world process versus
the one experienced in a psychology study, but participants know that the study is a sped-up simulation:
Does this discrepancy matter? Expectations about the speed of mechanisms have a profound impact on
causal inference (e.g., Buehner and McGregor, 2006). Some research has also investigated the impact
when learning is sped up even faster than is typical in short-timeframe learning (e.g., Allan et al., 2008;
Crump et al., 2007; Rehder et al., 2022). Considering the range of presentations from extremely fast
to very slow raises many questions about the roles of different cognitive systems, from perception and
attention which are typically studied in fast presentations, to short-term memory, to long-term memory.
On the one hand, the fact that there are similarities in learning across such radically different timescales
that rely on different cognitive systems is remarkable. On the other hand, findings of differences,
when learning occurs at different speeds (e.g., Rehder et al., 2022), show the important role of human
cognition in this learning process.

4.7. Conclusion

This study is the first to provide evidence that people engage in both normative and non-normative types
of credit assignment when learning over long timeframes. Critically, these studies revealed evidence
that people can learn simple cause—effect relations with multiple causes over a long timeframe and
that people can control for alternative causes when learning over a long timeframe. However, both of
these abilities were clearly suboptimal. Additionally, the strong non-normative discounting effect is
concerning as it can lead to incorrect causal attributions.
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