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1. Introduction.
Whittaker1 and Ruse2 have developed forms of Gauss's theorem

in general relativity, their theorems connecting integrals of normal
force taken over a closed 2-space F2 with integrals involving the
distribution of matter taken over an open 3-space bounded by V2.
The definition of force employed by them involves the introduction
of a normal congruence (with unit tangent vector A*), the "force"
relative to the congruence being the negative of the first curvature
vector of the congruence (— SA'/Ss). This appears at first sight a
natural enough definition, because — SA'/Ss at an event P represents
the acceleration relative to the congruence of a free particle travelling
along a geodesic tangent to the congruence at P. In order to give
physical meaning to this definition of force it is necessary to specify
the congruence A* physically, and it would seem most natural to
choose the congruence of world-lines of flow of the medium. Supposing
certain conditions satisfied by this congruence (c/. Ruse, he. cii.), the
theory of Ruse is applicable, and from this follows a form of Gauss's
theorem. But when we examine the situation critically, we realise
that the " force " whose normal flux is computed is not the gravita-
tional force at all, but the force arising from stress in the medium,
with sense reversed. This is most easily seen by considering the case
of a fluid free from stress for which the energy tensor is T{j = p8t 6jt

where 8l is a unit vector, defining the world-lines of flow: for such a
medium the world-lines of flow are geodesies, and the " force " in the
sense of Ruse vanishes if the congruence of reference A* consists of
the world-lines of flow. But a gravitational field will be there3. By

1 E. T. Whittaker, Proc. Roy. Soc. (A) 149 (1935), 384-395.
2 H. S. Ruse, Proc. Edin. Math. Soc. (2) 4 (1935), 144-158.
3 A form of Gauss's theorem inapplicable to such a fundamental case is not satisfac-

tory. We cannot apply Ruse's form of the theorem to this case with A' = 6*, because t h e
special conditions which he imposes on X1 require p = 0, as we can see from inspection of
his equation (5.7) with </' = 0.
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confining his attention to the statical case, Whittaker has avoided
this criticism, because the stress just balances the gravitational force,
and in estimating the flux of one we estimate the flux of the other.
In regions where no matter is present, there are no world-lines of
flow to use as a congruence of reference. But in the statical case it
can be shown that the time-lines may be regarded as the lines of flow
of an incompressible fluid of vanishing density and pressure, and hence
the preceding considerations may be applied there also.

An attempt to obtain an intrinsic form of Gauss's theorem has
been made by Temple1, but his method is unsound, because it is
assumed that when the components of a tensor involving the gravita-
tional constant are expanded in powers of that constant, then the
coefficients are components of tensors. That is not true2.

In the present paper it is proposed to examine the concept of
gravitational force in general relativity and to develop a form of
Gauss's theorem which is intrinsic and general, and does not become
inapplicable in important special cases. This theorem is of an
infinitesimal character, as indeed we might expect, since almost all
theorems in Riemannian space are of that type.

2. The concept of force.

As a source of suggestion for the definition of gravitational force
in general relativity, let us consider first a question in Newtonian
mechanics. Let us suppose that there are particles travelling in all
directions in a field of force, the force per unit mass being a vector
function of position. We shall refer to the "force per unit mass"
simply as the "force." If only relative kinematic measurements are
permitted, how can the field of force be found? The observation of
the acceleration of a particle at Q relative to a particle at P gives us
the difference between the force afc Q and the force at P. It is
impossible by relative observations to determine absolutely the force on
any particle: but if we assign arbitrarily the force at one point, the
forces at all other points may be found by relative observations.
We shall see that in the general theory of relativity the concept of
gravitational force suffers from a similar indeterminacy, but also
from a greater indeterminacy because (as we might expect) relative

1 G. Temple, Proc. Roy. Soc. (A) 154 (1936), 354-363.

- Cf. J. L. Synge, "A criticism of the method of expansion in powers of the gravita-
tional constant in general relativity," to appear shortly in Proc. Roy. Soc. (A).
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observations only provide a differential law for the comparison of
forces at adjacent events.

The fact noticed above is perhaps worthy of emphasis, namely,
that in Newtonian mechanics it is • physically impossible to detect the
presence of a uniform field of force. It is only the variations from
uniformity that can be detected. The point is easily overlooked if
we forget that the particles of any physical frame of reference
themselves share in the uniform acceleration (relative to an ideal
Newtonian frame of reference) produced by the uniform field of force1.

Let us now consider the space-time of general relativity, and let
us suppose it traversed in all time-like directions by free test-particles
whose world-lines are geodesies. When matter is present this requires
the annihilation of thin tubes of matter to permit the passage of a>
free particle—a process analogous to the creation of a small cavity in
a gravitating body in the classical theory of attraction. In what way
do the world-lines of these particles give evidence of the presence of a
gravitational field ? Consider two particles whose world-lines L, M
are adjacent. If space-time were flat, the normal displacement vector
from L and M would vary linearly with proper time measured on L
(rectangular Cartesian coordinates being employed). In kinematic
language, M would have a constant velocity relative to L.

The gravitational field exhibits itself in the fact that when it is
present M no longer has a constant velocity relative to L. If rf is
the infinitesimal displacement vector drawn perpendicular to L from
a point A on L to a point B on M, then the acceleration of B relative
to A is naturally defined as the vector

(2.1) f*=8*r,i/W,

where S/Ss is the symbol of absolute differentiation and s the arc-length
or proper time measured on L. Now we know2 that

(2-2) ^ + JRi.wAVA<=0,

where Rl
 H is the curvature tensor and A* the unit tangent vector to

L. The " excess of the gravitational force at an event B over the
gravitational force at an event A " is naturally defined to be the
acceleration of B relative to A: hence we have this result:

1 Prof. C. Barnes has drawn my attention to Maxwell's remarks regarding this
point: J. C. Maxwell, Mattel- and Motion (London, 1894), 85.

2 Of. 3. L. Synge, Annals of Mathematics 35 (1934), 705-713, for a simple proof by
a method applicable also to the deviation of geodesic null-lines.
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I. / / A* is an arbitrary time-like unit vector at an event A in space-time
with coordinates xl, then the excess of the gravitational force at an
adjacent event B, with coordinates z* + rf, over the gravitational force at
A, relative to Xi, is

(2.3) f<=-&jU

It is not necessary in stating this result to specify that rf shall
he perpendicular to A\ because on account of the skew-symmetry of
Bi

jH the expression in (2.3) is not altered when we add to the com-
ponents of rf quantities proportional to A*.

In order to compare gravitational forces at points A and B which
are not adjacent, we have to introduce a path C joining A to B and a
family of unit vectors A* along C. If we denote by Xi the gravitational
force at points on C, we are not to replace /* in (2.3) by the ordinary
differential dXi, because that is not a vector, but by the absolute
differential (8Xi/8u) du, where u is a parameter along 0. Hence we
arrive at this result:

I I . Given any curve C with unit tangent vector ^ and a family of unit
vectors A* defined along C, the gravitational force relative to X{ varies along
C in accordance with the law

s being the arc-length of C.

If v1 is any unit vector, we shall refer to X1 vt as the component of
gravitational force in the direction of v%.

Multiplication of (2.4) by Â  gives

(2.5) A *?=°>
and, if Xi is propagated parallelly along C,

(2.6) i-(Z«A,) = 0.
as

Hence we have this result:

I I I . / / along any curve C a family of unit vectors X1 is defined by
parallel propagation, then the component in the direction of A* of the
gravitational force relative to X1 is constant along C.

In particular, along a geodesic, with unit tangent vector A*, the
component in the direction of A* of the gravitational force relative to
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A* is constant along the geodesic. In fact, replacing /x* by A* in (2.4),
we see that along a geodesic the gravitational force relative to that
geodesic is propagated parallelly.

Let us now multiply (2.4) by /xf. This gives1

(2.7) fr — = - e (A) e (/*) K,

where e (A), e (/x) are the indicators of A*, /x* respectively, and K is the
Riemannian curvature of the 2-element defined by A*, /x*. If C is a
geodesic, then S/x,/8s = 0, and (2.7) reads

we have the result:

IV. Along any geodesic C with unit tangent vector fil the tangential
component of gravitational force relative to Xi (an arbitrary family of
unit vectors assigned along C) varies in accordance with (2.8).

Let us now investigate the change in gravitational force due to
passage round a small circuit. Consider a 2-space xi = xi (u, v),
and let us proceed round the circuit whose corners are A0(u0, v0),
Ax (u0 + A u, vQ), A2 (U0 + A u, v0 + A v), A3 (u0, v0 + A v), A± (u0, v0),
in order. Let Yl be an arbitrary vector field, assigned over the
2-space, and let us consider the change produced in the invariant
X* Yi on passing round the circuit, X{ being calculated relative to an
arbitrary field of unit vectors A*.

Let us put

(2.9) Sik = -BimXA>,

so that the law of propagation of gravitational force is

(2.io) *li=&k
d-f.

os ds
We have then

-s— = #*i — along AOAX and A2A3,ou ' ou
(2-n) az* ax*

-— = S\—- along Ax A2 and A3 At.ov ' dv

1 Cf. L. P. Eisenhart, Riemannian Geometry (Princeton, 1926), 113.
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Developing along the side A4 A3 and retaining terms up to ths
second order in A u, A v, we have

•where

') l 'k 8v l 8v

d2 8 / 8rh \ 3Tk &Y S2 Y
— (X1 Y••) = — ( Si —YA + Si —— l I X' —-J

'(2.13)

Developing the terms on the right of (2.12) along A3A2, and remem-
bering the order of approximation, we have

<2.U) _ f ^

+ »<*•>•

Similarly if we develop along A$AX and ^!^42. we obtain for
(Z* rf)^0 an expression as in (2.14), but with u and v interchanged.
Subtraction gives

In view of the order of approximation, we may replace A2 by Ao on
the right. Some terms cancel, and we obtain

(8lIi8UA Ti

Now
s:2y say.

<2.l7) I^L _ | _ i i = J2«H 7i ±- ¥,
v ' 8M 8t) SvSu du ov
and hence, since Yt is an arbitrary vector, the infinitesimal increment
A Xi in the gravitational force on passing round an infinitesimal circuit is

(2.18) A Zj = Au A u —— — z^ RHMX} — ).
l \8u 8v Sv du 3kl du 8v J
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the last part of the expression being, of course, that due to parallel
propagation.

Substituting for Sik from (2.9), and making use of Bianchi's
identity

(2-] 9) Rijkl, m + Rijlm, k + Rijmk, I = °>

we obtain the following result:

V. On passing round an infinitesimal space-like circuit of area A 8, the
covariant component of gravitational force relative to a field of unit vectors
X1 receives an increment A X{ given by

A X,/A S = - Rm X* M V + Rijklt m \i ?S A»
{ ' + * « « (A?M A ' + A|
where /*.*, vi are any two orthogonal unit vectors in A S, the sense of
description being /x* -» vi.

3. Gauss's theorem.

Let A be any point in space-time, and let a time-like unit vector
A* be arbitrarily assigned at A. Let us draw the geodesies through A
perpendicular to A% and in the 3-space so formed take a closed 2-space
F2, enclosing a portion V3 of the 3-space, including the point A. Let
us draw the congruence of geodesies normal to F3; let their unit
tangent vectors be A*, a field of unit vectors being in this way uniquely
defined in space-time adjacent to A, A* at A having been arbitrarily
assigned. Now, the gravitational force X* being arbitrarily chosen at
A, let the field of gravitational force in space-time adjacent to A be
calculated by propagation in accordance with (2.4) along the geodesies
emanating from A, using the vector-field A* defined above.

Let nl be the unit normal vector to F3 and ml the unit normal
vector to F2 lying in F3, but drawn out from the interior. By the
generalised Green-Stokes theorem1 we have then

(3.1) f (X< A* - X*. A*) mt n5 dS = - f (X* \* - X* A*),, nt da,
(2) (3)

these integrals being taken over F2 and F3 respectively, dS and da
being positive elements of 3-volume and area. Use has been made
of the fact that n1 is time-like and m1 space-like, their indicators being

1 For this form, see J. L. Synge, " Integral electromagnetic theorems in general
relativity" (Proc. Roy. Soc. A, 157 (1936), 434-443), equation (2.25).
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therefore — 1 and + 1 for the signature + + H in space-time.
But over F3 we have n1 = X\ and thus (3.1) gives

(3.2) f XimidS=[ (Xi A' - X' Xi)i 5 \da
(31

= J (X< A, Afj + Xit t A' A* + Z?,) da,
(2) (31

J
(3)

since A* A4 = — 1, A*;- Xt = 0 from the unit character of A*.
Now if p\a), q

l (a = 1, 2, 3) is an orthogonal tetrad of unit vectors,
qi being time-like, then the contravariant components of the funda-
mental tensor are1

(3.3) 9ij = Pi)PU -<?<?,

and so for any vector field Z* in space-time

(3.4) Z\, = g* Zitj = Zu p\a) p\a) - Zut ?•

Along any one of the geodesies forming V3 we have

(3.5) AVi = 0, S/it/8s = 0,

where \i} is the unit tangent vector to the geodesic. Hence

(3.6) Ai > i /*V=0,

throughout F3, and in particular at A for every fx.1 in F3. Also at A
we have
(3.7) \ J A*=0 ,

and hence, replacing Z in (3.4) by A, and taking q{ = A% we have at A

(3.8) *S = 0-

Also from (2.4) we have at A

(3.9) ZiiiA*A^ = 0.

Hence the first two parts of the integrand of the triple integral
in (3.2) vanish at A, and hence since the left hand side of (3.2)
obviously represents the normal flux of force outward across F2, we
may state this result:

VI. / / JV denotes the outward normal flux of gravitational force across
a closed 2-space whose interior is composed of geodesies drawn from a
point A perpendicular to a time-like unit vector A* at A, then

(3.10) lim N/o = X*t,

1 L. P. Eisenhart, Riemannian Geometry (Princeton, 1926), 96.
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the divergence of the force-field at A, a being the 3-volume contained in
the 2-space, and the force-field being defined by propagation according to
(2.4) along geodesies and calculated relative to the geodesic congruence
normal to the interior of the 2-space.

Substituting X for Z in (3.4), we have at A

(3-1!) *\i = XUMM Wa) - Xiti A* A',

where /*ja) is a triad of mutually orthogonal unit vectors in F3. Hence
by (2.4) and (3.9),

(3-12) *!i = - JWf . , AVw A',
or1

(3.13) X<i = .RyAsV,

where i?̂ - is the Ricci tensor. The divergence of gravitational force is
equal to the mean curvature of space-time for the direction A*.

So far the field equations have not been employed. These read2,
with the cosmological constant zero,

(3.14) Rtj =-K(Tij- \9iiT),
Hence

(3.15) Xi
ti=-K{TiiX\l

The following result is immediate:

VII. At a point of space-time unoccupied by matter the divergence of the
gravitational force vanishes, the force being calculated as in VI relative
to an arbitrary time-like unit vector A*; also lim N/o = 0.

When matter is present the result (3.15) suffers (as far as
intrinsic character is concerned) from the fact that the vector A4 at
A is arbitrary. We shall now make it truly intrinsic.

The equations

(3.16) TKX' + 0Ai = O,

in which 0 is a root of the determinantal equation

(3.17) 12^+08*1 = 0,

determine an orthogonal tetrad of principal directions. That which

1 Gf. L. P. Eisenhart, Biemcmnian Geometry (Princeton 1926), 113.
2 It is possible to adopt two definitions of the energy tensor, differing by a factor c2.

That here employed reduces for a stream of unstressed matter to Tlj=p6l 6j, where 6' is
a unit vector and p is energy-density, not mass-density. This form is to be preferred,
because in general relativity energy should be regarded as the more primitive concept^
from which mass is a convenient conventional derivative.
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is time-like gives the direction of the world-line of flow of matter,
whereas those which are space-like give the directions of principal
stress. If 0(a) are the roots of (3.17) corresponding to the principal
directions of stress, and 0(4) that corresponding to the world-line of
flow, then 0(a) are the principal stresses and 0(4) is the proper density
of energy1.

Let us choose A' (the unit vector with respect to which the
gravitational force is calculated) in the direction of the world-line of
flow at A. Then

(3.18)

where p is the proper density of energy and 2 is the sum of the three
principal stresses. Hence by (3.15) we have this result:

VIII. GAUSS'S THEOREM: At a point of space-time the divergence of
gravitational force, calculated with respect to a world-line of flow of matter
as in VI, is given by

(3.19) Z * 1 = - i * c ( p - S ) ,

where p is the proper density of energy and 2 the sum of the three principal
stresses, and the limit of the ratio of normal outward fiux of gravitational
force to included mass is2

Nc2 4TTG ( 2
(3.20) lim = - —2- 1 — —

o-*0 P° C \ P

For a perfect fluid 2 = — 3p, where p is the pressure.

It is interesting to note that for a region occupied by radiation
only we have 2 = — p, and hence the limit of the ratio of normal
outward flux of gravitational force to included energy is

N STTG
(3.21) h m — = 3- .

<,_><) per C*

1 Of. J. L. Synge, Trans. Roy. Soc. Canada, Sect. Ill , 28 (1934), 163, where how-
ever a factor c4 enters because there the concept of mass was taken as fundamental.

2 The factor c" is present in the denominator on the right hand side of (3.20)
because we have used proper time s instead of the usual time in our definition of
acceleration, so that our X' is the usual force (comparable to that of Newtonian
mechanics) divided by c~.
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