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A CHARACTERIZATION OF LINE SPACES 

BY 

J. H . M. W H I T F I E L D * A N D S. Y O N G f 

ABSTRACT. The line spaces of J. Cantwell are characterized 
among the axiomatic convexity spaces defined by Kay and Womble. 
This characterization is coupled with a recent result of Doignon to 
give an intrinsic solution of the linearization problem. 

§1. Introduction. A convexity space is a pair (X, <€) where X is a non-empty 
set and ^ is a family of subsets closed under arbitrary intersection and includes 
4> and X. In [7] Kay and Womble introduce such spaces and raise the 
linearization problem: derive necessary and sufficient conditions for a convexity 
space to be a vector space over an ordered field for which the members of <# 
are the convex sets. 

The purpose of this note is to present a solution to this problem by 
characterizing those convexity spaces that are line spaces [3] and using Doig-
non's recent result [6] that a line space, generally, is a linearly open convex 
subset of an affine space. This solution differs from those given in [8] and [9] 
each of which impose conditions extrinsic to the convexity structure. Another 
intrinsic solution has been obtained recently by David Kay using an approach 
different than the one presented here. 

The results presented in this paper are a part of the second named author's 
Master's thesis. Also the authors wish to thank Professor Peter Mah and the 
referee for several helpful suggestions. 

§2. Definitions. Let (X, <#) be a convexity space. For any A ç X , the convex 
hull of A is defined as *(A) = H{C: Ce^, A^C}. The operation of forming 
the convex hull is a (non-topological) closure operator <# satisfying, for A, B ç 
X: (i) A c <£(A), (ii) <£(A) <= <£(B) when A^B, (iii) «(«(A)) = <£(A). Also one 
has that A e <g if and only if «(A) = A. 

We will denote singletons {a} by a and the convex hull of finite sets 
{a, b, c,...} by <#(a, b,c,...). For a, b G X we will denote ^(a, b) by ab and call 
it the segment with endpoints a and b. The corresponding open segment is 
(ab) = ab\{a, b}. Note that if a = b, (ab) is not necessarily empty. 
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It is easy to verify that for x e X and A ç X , U{xb : be^(A)}^ 
^ ( U j x a : ae A}) = <$(x UA). The reverse inclusion does not always hold. If it 
does, (X, <#) is said to be join-hull commutative (JHC). 

(X, <g) is said to be domain-finite (DF) if, for each A ^ X , C€(A) = 
U{<£(F) : F^A, |F|<oo}. (|F| denotes the cardinality of F.) 

2.1 REMARK. When (X,<£) is both DF and JHC, (i) if A,Be<€ and xe 
<€(A U JB), then xeab for some aeA,beB; (ii) A e <€ if and only if ab^A 
whenever a, be A. 

Let a/b = {x : x ̂  a, a e xb}. The h'ne determined by a,beX, a 7̂  b, is the set 
l(a, b) = ab U (a/b) U (b/a). If F g X and l(a, b)^F whenever a,beF, then F is 
called a flat. Let si be the family of all flats in (X, <£). Then (X, ̂ ) is a 
convexity space and si (A) is called the affine hull of A. The dimension of 
X, dimX, is defined inductively: d imX = 0, if X is a singleton; d i m X = n , if 
X = sd(a0,a1,... ,an) and d i m X ^ n - 1 ; d imX = oo, if X^si(F) for every 
finite subset F ç X . 

(X, <#) is regular (REG) if its segments are (i) non-discrete: (ab)^(t) when 
a7^ b; (ii) decomposable: if x e ab, then axflxi) = x and ax Uxb = ab; and, (iii) 
extendable: a/b is non-empty when a^b. 

Finally, we say that (X, <#) is straight (STR) if the union of two segments 
having more than one point in common is a segment. 

2.2 REMARKS, (i) If (X, <g) is REG then the following properties obtain: (1) 
^ (a) = a for all a eX; (2) if a e be and beac, a^b^c, then a = b; and, (3) for 
distinct points a,b,c, if a G be, then b£ac and c^ab. (ii) The segments in a 
regular space can be given a natural linear ordering as decomposability 
essentially yields a betweenness relation, (iii) In a straight, regular space (X, <#) 
lines are uniquely determined by two points. In particular, for a,beX, 
l(a,b) = si(a,b). Further, as for segments above, lines have a natural linear 
ordering, (iv) The paradigm of a convexity space with any or all of the above 
properties is a real vector space. However, there are many other models of a 
convexity space and, in fact, each of the properties can be shown to be 
independent as is seen in the final section. 

§3. Line spaces. In 1974 Cantwell [3] introduced line spaces (see definition 
below). Subsequently Doignon [6] has shown that line spaces of dimension 
three or greater or of dimension two and desarguesian are linearly open convex 
subsets of a real affine space. Recently Cantwell and Kay [4] have also 
obtained essentially the same result for dimension > 3 using different techni
ques. 

In this section we will characterize those convexity spaces that are line 
spaces. Then Doignon's result will yield the desired linearization theorem. 

A pair (X, J£), X a. non-empty set whose members are called points and 5£ a 
family of subsets of X whose members are called lines, is called a line space 
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(Cantwell [3]) if the following conditions are satisfied: (i) every line is uniquely 
determined by two points; (ii) every line lej£ is a linearly ordered set with 
ordering <t and is order isomorphic to the reals; and, (iii) (Pasch's axiom) for 
any a,b,ceX, xe [a, b], and y e [c, x], then there is z e [a, c] so that y e [b, z] 
where [a, b] = {xel = l(a, b) : a<tx^b} and l(a, b) is the line uniquely deter
mined by a and b. (If a = b, l(a, b) = a.) 

If (X, ££) is a line space and C ^ X , we say C is a convex set, if [a, b ] ç C 
whenever a,beC. Letting <&# denote the family of all convex sets in (X, X), it 
can be shown that (X, <$#) is a convexity space that is DF, JHC, REG, STR 
and complete (see definition below). The main result of this section will be to 
show the converse of this statement. 

3.1 LEMMA. Let (X, <£) be DF, JHC, REG, and STR and let a, b,ceX. (i) 

(Pasch's axiom). If yeac and zeby then there is xeab such that zecx. (ii) 
(Peano's axiom). If xeab and y e ac, then by Dcx^cf). Further, if a, b, c are 
non-collinear then by Hex is a singleton. 

Proof, (i) Pasch's axiom is an immediate consequence of JHC. (ii) Since the 
result is straightforward, if a, b, c are collinear, it suffices to consider the case 
where a, b, c are non-collinear and x e (ab), y e (ac). 

By REG, there exists deX such that ae(xd). By Pasch's axiom, there is 
e e ex such that ye de and c^e, otherwise y = c = e which contradicts y G (ac). 
Now xeab and aebd so eecx^ ^(b, c, d). By JHC, there is fe be such that 
e e df. Again by Pasch's axiom there is z e by such that e e cz. z e by ç ^(a, b, c) 
so, by JHC, there is weab such that z e cw. Since eecz^cw and e e ex, by 
STR, c, w, and x are collinear. Thus w = x and z e ex. 

Finally if zl9 z2 e by n ex, then by U ex is a segment. Thus b, x, c, y, and hence 
a, b, c, are collinear. 

Before proceeding to show that lines in such convexity spaces are order 
isomorphic to the reals, we need the following definition. 

A convexity space (X, ^) is said to be complete (CMP) provided, for each 
Ce^, if aeC and beX\C, then there is deab such that (ad)^C and 
( < f t ) c X \ C 

3.2 REMARKS. Let (X, <g) be DF, JHC, REG, STR, and CMP. (i) Each open 
segment in (X, % is conditionally complete, that is, every non-empty bounded 
subset has a greatest lower bound and a least upper bound, (ii) If (X, <#) is also 
of dimension at least two, that is, there are three non-collinear points in X, 
then using the Pasch and Peano axioms one can show that any two open 
segments in (X, % are order isomorphic. Further, by using Theorem 12.61 in 
Coxeter's book [5], one can show that each open segment in X is order 
isomorphic to a line, and conversely. 

3.3 PROPOSITION. If (X, <g) is DF, JHC, REG, STR, and CMP with dimen
sion at least 2, then each line is order isomorphic to the real numbers U. 
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Proof. By 3.2(ii), it is sufficient to show that an open segment is order 
isomorphic to U. Further, it follows from Theorem 24, Chapter VIII of [1] that 
to show an open segment is order isomorphic to M it suffices to show that it 
contains a countable dense subset, is conditionally complete and has no 
endpoints. By 3.2(i), it is sufficient to produce a countable dense subset. This is 
done using the following nice construction due to Doignon [6], 

Let a, b, c G X be distinct non-collinear points. Define a sequence by setting 
xx = a and choosing xm + 1 G (xrnb). By CMP, there is d G ab such that {x m }^ ad, 
for each ye (ad) there is some xme(yd) and d ^ x m for any m. 

Consider the open segment (da) c /(a, b) and order the line so that d<a. 
Choose ee(dc). For u, ve(da), construct u + ve(da) as follows: let y = 
(ea) n (cu), z = y/d C\ (ca), w = (ya) D (zv) and set u + v = w/c H (da). By defini
tion u + v > u and u + v > v ; moreover + is strictly increasing in each of its 
arguments. In particular, if f, u, v e (da) and u < t>, then u + t < v +1 and t + u < 
t + v. Also, it is easily shown that, if u < w, then there is a unique v e (da) such 
that u + v = w. 

For w G (da) and n a positive integer, define n • u and (n + l)u = n • u + u. If 
w <t), there is some n such that nu>v; for, if not, then nu < v for all n. Let 
û = sup{n - w : n e N}. Now û > w, so there is w G (da) such that u + w = U. Since 
w < û , there is neN such that n - u>w and (n + l ) u > w + u = û which is a 
contradiction. 

Let Q={m • xn: m,neN} which is a countable subset of (da). Let /, g G 
(da), / < g . There is h G (da) such that f+h = g and, for some n,xn<h. If 
x n > / , then / < x n < g . Otherwise, choosing the largest m such that m • xn<f, 
one obtains / < ( m + l ) x n < g . Thus Q is dense in (da) and the proposition is 
proved. 

The results of this section can be summarized in the following. 

3.4 THEOREM. Let (X, <€) be a DF, JHC, REG. STR, and CMP convexity 
space of dimension at least two and let 5£^ be the collection of lines in (X, c€). 
Then (X, S£<^) is a line space. Conversely, if (X, ££) is a line space and <€# is the 
collection of convex subsets of X, then (X, ^ ) is a DF, JHC, REG, STR, and 
CMP convexity space. 

The linearization result is a corollary of Theorem 3.4 and Doignon's result 
mentioned above or the Cantwell-Kay result, if dim X > 3. For dim X > 3, both 
[4] and [6] achieve the same result, but [4] is self-contained while [6] depends 
on a 1938 theorem of Sperner. 

3.5 COROLLARY. Let (X, ^) be a convexity space of dimension 2 and desar-
guesian or of dimension >2 , then (X, <%) is isomorphic to a linearly open convex 
subset of a real affine space if and only if (X, <€) is DF, JHC, REG, STR and 
CMP. 
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§4. Examples. The topologists 'longline' with intervals as members of Ŝ  is a 
1-dimensional convexity space satisfying DF, JHC, REG, STR, and CMP but it 
is not a line space (cf. Theorem 3.4). The Moulton plane, which is a 2-
dimensional non-desarguesian line space, cannot be embedded in an affine 
space (cf. Corollary 3.5). 

Finally, several examples, each designated by the one property which fails to 
obtain, are given to exhibit the independence of DF, JHC, REG, STR, and 
CMP. In each of the examples dim X > 2 and if dim X = 2, it is desarguesian. 

DF: Let X = U2 and <g be the compact convex sets in U2 together with U2. 
JHC: Let X = [R3 and <# be the convex sets in IR3 of dimension less than or 

equal to 2 together with U3. 
REG(i): (Segments fail to be non-discrete.) Let X = !R2\D where D is an 

open disc in U2 and let <# consist of the sets of the form CHX where C is 
convex in R2. 

REG(ii): (Segments fail to be decomposable.) Let X = P3, the classical 
projective 3-space. Points in X are lines, in IR4\{0}, which pass through the 
origin. For a,beX, ab = a when a = b and ab is the unique projective line 
determined by a and b whenever a ̂  b. Then C e <# if and only if ab^-C 
whenever a,beC. 

REG(iii): (Segments fail to be extendable.) Let X = D where D is a closed 
disc in R2 and <# consists of the sets of the form C H D for C convex in R2. 

STR: Let X = U U S where U is the open unit disc in R2 and S = 
{(*, 0) : x > l } . For a,beX define ab as follows: ab = [a, b], if a,beU or 
a,beS and ab = [a, p]U[p, b] where p = (0,1), if a e U and beS. Then Ce<të 
if and only if ab c G 

CMP: Let X = {(x, y)eU2 : x, y are rational} and <# consists of sets of the 
form CHX where C is convex in IR2. 

REFERENCES 

1. G. Birkhoff, Lattice Theory (3rd ed.) Providence, Rhode Island, Amer. Math. Soc, 1967. 
2. V. W. Bryant, Independent axioms for convexity, J. Geometry 5 (1974), 95-99. 
3. J. Cantwell, Geometric convexity. L, Bull. Inst. Math. Acad. Sinica 2 (1974), 289-307. 
4. J. Cantwell and D. C. Kay, Geometric convexity. III., Embedding., Trans. Amer. Math. Soc. 

246 (1978), 211-230. 
5. H. S. M. Coxeter, Introduction to Geometry, New York, John Wiley and Sons, 1969. 
6. J.-P. Doignon, Caractérisations d'espaces de Pasch-Peano, Bull, de l'Acad. royale de Belgi

que (Class des Sciences) 62 (1976), 679-699. 
7. D. C. Kay and E. W. Womble, Axiomatic convexity theory and relationships between the 

Caratheodory, Helly and Radon numbers, Pacific J. Math. 38 (1971), 471-485. 
8. P. Mah, S. A. Naimpally, and J. H. M. Whitfield, Linearization of a convexity space, J. 

London Math. Soc. (2), 13 (1976), 209-214. 
9. D. A. Szafran and J. H. Weston, An internal solution to the problem of linearization of a 

convexity space, Canad. Math. Bull. 19 (1976), 487-494. 

LAKEHEAD UNIVERSITY 

THUNDER BAY, ONTARIO. 

https://doi.org/10.4153/CMB-1981-043-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-043-9

