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A GLOBAL THEORY OF FLEXES OF PERIODIC

FUNCTIONS

GUDLAUGUR THORBERGSSON and MASAAKI UMEHARA

Abstract. For a real valued periodic smooth function u on R, n ≥ 0, one
defines the osculating polynomial ϕs (of order 2n + 1) at a point s ∈ R to
be the unique trigonometric polynomial of degree n, whose value and first 2n

derivatives at s coincide with those of u at s. We will say that a point s is a
clean maximal flex (resp. clean minimal flex ) of the function u on S1 if and
only if ϕs ≥ u (resp. ϕs ≤ u) and the preimage (ϕ − u)−1(0) is connected.
We prove that any smooth periodic function u has at least n + 1 clean maximal

flexes of order 2n + 1 and at least n + 1 clean minimal flexes of order 2n + 1.
The assertion is clearly reminiscent of Morse theory and generalizes the classical
four vertex theorem for convex plane curves.

§1. Introduction

For a real valued C2n-function u on S1 = R/2πZ, n ≥ 0, one defines

the osculating polynomial ϕs (of order 2n + 1) at a point s ∈ S1 to be the

unique trigonometric polynomial of degree n,

ϕs(t) = a0 + a1 cos t+ b1 sin t+ · · · + an cosnt+ bn sinnt,

whose value and first 2n derivatives at s coincide with those of u at s. If u is

C2n+1 and the value and the first 2n+1 derivatives of u and ϕs coincide in

s, i.e., if ϕs hyperosculates u in s, then we call s a flex of u (of order 2n+1).

Notice that the order 2n+1 of the osculating polynomials and flexes in the

definition above has been chosen such that it coincides with the dimension

of the space A2n+1 of trigonometric polynomials of degree n. Notice also

that a flex of order one, i.e. the case n = 0, is nothing but a critical point.

The existence of 2n + 2 flexes of order 2n + 1 for any C 2n+1-function u

on S1 is an easy consequence of the well-known fact that a function has

at least 2n + 2 zeros if its Fourier coefficients ai and bi vanish for i ≤ n;
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see Appendix A for a proof. Here we will prove the much more difficult

result that there are 2n + 2 such flexes satisfying the global property that

the osculating polynomials ϕs in the flexes support u, i.e., either ϕs ≤ u

or u ≤ ϕs. More precisely, we will say that a point s is a clean maximal

flex (resp. clean minimal flex ) of a C2n-function u on S1 if and only if

ϕs ≥ u (resp. ϕs ≤ u) and the preimage (ϕ − u)−1(0) is connected. This

terminology is compatible with our definition of a flex, since it is easy to

see that a clean maximal (or minimal) flex is a flex if u is C 2n+1.

Our main result is the following theorem.

Theorem 1.1. Let u be a real valued C2n-function on S1 where n ≥ 1.
Then u has at least n+ 1 clean maximal flexes of order 2n+ 1 and at least

n+ 1 clean minimal flexes of order 2n+ 1.

The theorem is not true if n = 0. A continuous function u on S1 is

obviously supported by constant functions in points where u takes on its

maximum and minimum values, but it does not have to be true that u takes

on its maximum and minimum value in connected sets.

The above theorem is clearly reminiscent of Morse theory. We would

like to point out a further similarity. Assume that u is a C 2-function on S1

and define the function ϕ+
s for every s ∈ S1 as the largest function in A3

such that ϕ+
s ≤ u and ϕ+

s (s) = u(s). Typically, u and ϕ+
s have two common

values. A point s in S1 is therefore exceptional if u and ϕ+
s have only a

common value in s or if u and ϕ+
s have more than two common values. In

the first exceptional case we have that s is a minimal flex. We denote the

number of such flexes (or the corresponding functions ϕ+
s ) by s+. Let t+

denote the number of functions ϕ+
s counted with multiplicities having more

than two values in common with u. (If ϕ+
s and u have k values in common,

then ϕ+
s contributes k−2 to the number t+.) If s+ is finite, then t+ is finite

too and the following formula holds:

s+ − t+ = 2.

A similar formula holds for the functions ϕ−
s defined for every s ∈ S1 as the

smallest function in A3 such that ϕ−
s ≥ u and ϕ−

s (s) = u(s). The two for-

mulas taken together generalize Theorem 1.1 for n = 1. One should expect

such formulas to hold for every n, thus giving a far-reaching generalization

of Theorem 1.1, but so far there is no such result. A closed convex curve
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γ(t) is called strictly convex if det(γ ′(t)γ′′(t)) > 0 for all t. The above for-

mula implies a theorem on strictly convex curves that was first proved by

Bose [Bo] in the generic case and then generalized by Haupt [Ha] to generic

simple closed curves. It was proved for general simple closed curves by the

second author [Um] using intrinsic circle systems, a method that will be

generalized in the present paper.

If n = 1, the existence of four flexes of order three on a periodic function

does in fact imply the so-called four vertex theorem for strictly convex curves

in the Euclidean plane. A smooth regular curve γ has at any point s an

osculating circle which can be defined as the unique circle having at least

a three point contact with γ in s. The point s is called a vertex of γ if the

osculating circle at s has at least a four point contact with γ in s, or, in

other words, the osculating circle hyperosculates γ in s. The four vertex

theorem for strictly convex curves says that such curves have at least four

vertices. Theorem 1.1 now implies that there are at least two vertices at

which the osculating circles are inscribed and at least two vertices at which

they are circumscribed. This result is more generally true for any simple

closed curve in the Euclidean plane, see [Kn], and also follows from the

methods we use here, see [Um], but in this generality the curves do not

correspond to functions on S1.

We now describe the connection between strictly convex curves and

periodic functions in more detail. Fix a point o in the interior of a strictly

convex curve γ in the (x, y)-plane.

Figure 1.

For each t ∈ [0, 2π), there is a unique tangent line L(t) of the curve which

makes angle t with the x-axis. Let h(t) be the distance between o and the

line L(t). The function h is called the supporting function of the curve γ
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with respect to o. The radius of the osculating circle of γ at t is given by

h′′(t) + h(t). It can easily be checked that a point t is a vertex of the curve

if and only if h′′′(t) + h′(t) vanishes. Let ϕs be the osculating function (of

order three) of h in s. Then, by definition, h(s) = ϕs(s), h
′(s) = ϕ′

s(s) and

h′′(s) = ϕ′′
s(s). Furthermore, s is a flex if and only if h′′′(s) = ϕ′′′

s (s). Notice

that ϕs is a trigonometric polynomial of degree one, i.e.,

ϕs(t) = a0 + a1 cos t+ b1 sin t.

The function ϕ′′′
s (t) + ϕ′

s(t) clearly vanishes identically. Hence s is a flex of

h if and only if h′′′(s) + h′(s) = 0. Hence we see that there is a one-to-one

correspondence between the vertices of the curve γ and the flexes of the

function h. It is also easy to see that a clean maximal (resp. minimal) flex

of h corresponds to a vertex where the osculating circle is circumscribed

(resp. inscribed) and touches γ in a connected set.

The methods of the paper are general and can be applied in other

situations. Let γ again denote a strictly convex closed curve that we assume

to be contained in the affine plane (or in the projective plane, but this

is not more general since there is always a line which such a curve does

not meet). One defines the osculating conic Ct at a point t of γ to be

the unique conic which meets γ with multiplicity at least five in t. If Ct
and γ meet with multiplicity at least six in t, then t is called a sextactic

point. If the osculating conic at t is inscribed (resp. circumscribed) and

meets γ in a connected set, then we will call t a clean maximal (resp. clean

minimal) sextactic point. One can show that clean maximal and clean

minimal sextactic points are in fact sextactic. We will prove the following

theorem that improves a result of the authors in [TU2] as well as a result

of Mukhopadhyaya in [Mu2].

Theorem 1.2. A strictly convex curve has at least three clean maximal

sextactic points and three clean minimal sextactic points.

The singularities we have been discussing so far are flexes of periodic

functions and vertices and sextactic points of convex curves. In all three

cases the dimension of the space of approximating functions or curves is

odd. (The space of circles is three-dimensional and the space of conics

is five-dimensional.) There are also singularities of even order of which

inflection points of curves in the projective plane are the most important
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example. Here one approximates the curve with lines which form a two-

dimensional space. In the even order case one typically has to deal with

nonorientable situations like noncontractible curves in the projective plane

or antisymmetric functions. In Appendix A we also deal with even order

flexes of antisymmetric functions, but we restrict ourselves to the odd order

case in the main body of the paper since the even order case is considerably

more difficult due to problems with nonorientability.

In Section 2, we introduce our main tool, the intrinsic systems, which

are in our applications analogues of intersection divisors on algebraic curves.

This approach is a generalization of the methods in [Um], [TU1], [TU2],

and the idea behind it is inspired by the paper [Kn] of Kneser. We shall

briefly explain the idea of intrinsic systems by using the case of the four

vertex theorem and the six sextactic point theorem for strictly convex plane

curves: For the sake of simplicity, we assume here that γ is a real analytic

noncircular simple closed curve. We denote by Ωγ the domain bounded by

γ. For each point p ∈ γ, there exists a unique maximal circle C+
p inscribed

in Ωγ and touching γ in p. (See Figure 6a in Section 2.) Since γ is real

analytic, the intersection C+
p ∩ γ is finite. In this case, the intersection

divisor fp counting the multiplicities of the intersections between γ and C+
p

is given in the following form

fp =
∑

q∈γ

fp(q)q (fp(q) ∈ N0),

where N0 is the set of non-negative integers. Namely, fp(q) = 0 when

q 6∈ C+
p ∩ γ and fp(q) = m (> 0) if C+

p meets γ at q with multiplicity m.

Each coefficient fp(q) is a non-negative finite even integer and satisfies the

axioms of intrinsic systems of order 3. The function fp : S1 = γ → 2Z

satisfies the following properties.

(Supporting property) fp(p) > 0 for all p ∈ S1.

(Exchangeability) If fp(q) > 0 then fp = fq.

(Total multiplicity)
∑

q∈γ

fp(q) ≥ 4.

(This is a consequence of the maximality of C+
p .)

(Uniqueness) If fp1(p) > 0 and fq1(q) > 0 where p1 � q1 ≺ p ≺ q (≺ p)

then fp = fq.

(This is a consequence of the fact that two circles having three points in

common counted with multiplicities must coincide.)
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These properties belong to the axioms of intrinsic systems of order 3. A

point p ∈ S1 such that fp(p) ≥ 4 is called an (abstract) flex . By definition,

a point p on a curve is a flex if and only if the osculating circle coincides

with C+
p . Kneser’s argument (cf. Lemma 3.6) to find vertices on curves

applies to intrinsic systems of order 3 directly, and can be used to show the

existence of two flexes, which are vertices of γ whose osculating circles are

inscribed in Ωγ . Using the same argument for the exterior domain of the

curve, we can associate to it another intrinsic system of order 3 and use it

to find two vertices where the osculating circles are circumscribed.

We next assume γ is strictly convex. Instead of the maximal inscribed

circle C+
p , we consider the maximal inscribed conic Γ+

p,q (which consequently

is an ellipse) passing through p, q ∈ γ in Ωγ . (See Figure 6b in Section 2.)

In this case the intersection divisor is of the form

fp,q =
∑

r∈γ

fp,q(r)r (fp,q(r) ∈ N0).

The coefficients fp,q(r) satisfy the axioms of intrinsic systems of order 5.

As a function fp,q : S1 → 2Z satisfies the following properties, which will

be included in the definition of intrinsic systems.

(Symmetry and supporting property) fp,q = fq,p and fp,q(p), fp,q(q) >

0.

(Exchangeability) If fp,q(r) > 0 (that is fp,q(r) ≥ 2), then fp,q = fp,r.

Furthermore, if fp,q(r) ≥ 4 then fp,q = fr,r.

(Total multiplicity)
∑

r∈S1

fp,q(r) ≥ 6.

(Uniqueness) If fp1,p2(p) > 0 and fq1,q2(q) > 0 such that p1 ≤ q1 ≤ p2 ≤
q2 < p < q < p1, then fp1,p2 = fq1,q2.

(This is a consequence of the fact that two conics having five points in

common counted with multiplicities must coincide.)

An (abstract) flex is a point p ∈ S1 such that fp,p(p) ≥ 6. Such a point

p is a sectactic point whose osculating conic is inscribed in Ωγ . Using a

Kneser type argument inductively, we can prove the existence of six clean

sextactic points.

Our intrinsic systems can also be defined when γ is not real analytic.

They can also be applied to different situations. For example, returning to

the case of a periodic function u(t), one can consider the maximal (resp.

minimal) trigonometric polynomial ϕ of degree 2n + 1 passing through n
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given points on the graph of u(t) and satisfying ϕ ≤ u (resp. u ≤ ϕ). These

trigonometric polynomials will then as in the case of the circles and conics

above give rise to a pair of intrinsic systems of order 2n+1, which will play

a central role in the proof of our main theorem.

The situation we deal with in Section 2 and in the rest of the paper is

somewhat more general than in the introduction since we treat osculating

functions that do not need to be trigonometric functions. In Section 3 we

start drawing consequences from the defining axioms of an intrinsic system.

In Section 4 we generalize a result of Jackson [Ja]. In Section 5 we prove

Theorem 1.1 and Theorem 1.2. Section 6 contains a remark and some

questions on the possible arrangement of the clean maximal and minimal

flexes whose existence was proved in Section 5. In Appendix A some basic

properties of trigonometric polynomials are explained in the more general

setting of Chebyshev spaces. In Appendix B we explain an elementary

analytic result that is used in the paper.

§2. Chebyshev spaces and intrinsic systems of periodic functions

A real valued continuous function u on S1 is said to be piecewise C2n if it

is of class C2n except at finitely many points s1, . . . , sm, and if, furthermore,

u|[si,si+1] can be extended to a C2n-function on an open interval containing

[si, si+1] for all i = 1, . . . ,m, where we understand m + 1 to mean 1. We

will refer to s1, . . . , sm as singular points or singularities of u.

Our goal is to study the existence of clean flexes of order 2n + 1 of a

C2n-function u on S1 that does not have any singularities. In the proofs

below, we will frequently have to modify the function u by restricting it

to an interval and then extending it to the complement of the interval by

piecewise trigonometric polynomials. So we shall frequently have to deal

with piecewise C2n-periodic functions.

We let A2n+1 denote the vector space of trigonometric polynomials of

degree at most n, i.e.,

A2n+1 =

{

ϕ(t) = a0 +

n
∑

k=1

(ak cos kt+ bk sin kt)

}

.

The space A2n+1 is an example of a Chebyshev space of order 2n + 1; see

Appendix A where this concept is introduced and discussed in detail. We

repeat here the definition of Chebyshev spaces of odd order.
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Definition 2.1. A linear subspace A of C2n(R/2π) is called a Cheby-

shev space of order 2n+1 if its dimension is at least 2n+1 and if the number
of zeros in [0, 2π), counted with multiplicities, of a nonvanishing function
in A is at most 2n.

It will be proved in Appendix A that the dimension of a Chebyshev

space is always equal to its order. Let u : S1 → R be a C2n-function. Then

for each s ∈ S1 there exists a unique function ϕs ∈ A whose value and first

2n derivatives at s coincide with those of u in s. We refer to Theorem A.2 in

Appendix A for a proof of the existence of ϕs. We call ϕs the A-osculating

function of u at s. If both u and ϕs are C2n+1-functions and the value and

the first 2n+1 derivatives of u and ϕs coincide in s, then we call s an A-flex

of u.

We will from now on work with an arbitrary Chebyshev space A of

order 2n + 1. The reader may want to think of A as simply being A2n+1.

Notice though that the more general point of view is quite useful even when

one is primarily interested in A2n+1. For an example of this, see the space

Aψ1
that is used to prove Theorem 1.1 from the introduction in Section 5.

Throughout the paper we let I either denote the whole S1 or a non-

empty proper closed interval [a, b] on S1. In both cases we will refer to I

as an interval.

Definition 2.2. Let u be a piecewise C2n-function. Let I = [a, b] be
a proper closed interval on S1 and (ιa, ιb) a pair of nonnegative integers
which are less than or equal to ∞. Then u is said to satisfy the boundary

regularity condition (ιa, ιb) on I,

(1) if u is at least C2ιa−1 in a, C2ιb−1 in b

(2) and if u is not C2ιa in a (resp. not C2ιb in b), then the 2ιa-th (resp.
2ιb-th) derivative of u from the left at a (resp. right at b) is greater
than that from the right at a (resp. left at b).

Let I be a proper closed interval. We let In(ιa,ιb) denote the subset of the

Cartesian product In consisting of those elements (p1, . . . , pn) of In with

at most ιa components equal to the endpoint a and at most ιb components

equal to the endpoint b. For example,

I2
(0,0) = (a, b) × (a, b),

I2
(1,0) = {(x, y) ∈ [a, b] × [a, b] ; (x, y) 6= (a, a), x 6= b, y 6= b},
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I2
(1,1) = {(x, y) ∈ [a, b] × [a, b] ; (x, y) 6= (a, a), (b, b)},

I2
(2,1) = {(x, y) ∈ [a, b] × [a, b] ; (x, y) 6= (b, b)},

I2
(2,2) = [a, b] × [a, b].

We next prove the following lemma.

Lemma 2.3. Let u be a piecewise C2n-function on S1 and let I be a

nonempty closed interval of S1 that is either proper or the whole circle. We

suppose that u is C2n on I and satisfies the boundary regularity condition

(ιa, ιb) if I is a proper interval. If I = S1 we assume that u is C2n on the

whole S1. For (p1, . . . , pn) ∈ In(ιa,ιb) (or (p1, . . . , pn) ∈ In if I = S1) let Λ
denote the one-dimensional affine space of functions ϕ ∈ A such that

ϕ(k)(pi) = u(k)(pi) for all k = 0, . . . , 2µi − 1 and all i = 1, . . . , n,

where µi is the number of components of (p1, . . . , pn) equal to pi. Then the

subset of functions ϕ ∈ Λ such that ϕ ≥ u is a nonempty closed interval

that we denote by Λu(p1, . . . , pn).

Proof. By definition, ϕ ∈ Λ if and only if

ϕ(k)(pi) = u(k)(pi) for all k = 0, . . . , 2µi − 1 and all i = 1, . . . , n.

It follows from Theorem A.2 in Appendix A that Λ is a one-dimensional
affine subspace of A. Let ϕ1 be an arbitrary function in Λ. Take another
function ϕ2 ∈ A satisfying

ϕ
(k)
2 (pi) = 0 for all k = 0, . . . , 2µi − 1 and all i = 1, . . . , n

which is not identically zero. Then ϕ
(2µi)
2 (pi) 6= 0 for all i = 1, . . . , n (cf.

Definition 2.1). Notice that ϕ2 cannot change sign in any of the points pi
since its first nonvanishing derivative there is of an even order. Since the
function ϕ2 has at most 2n zeros counted with multiplicities, either ϕ2 ≥ 0

or ϕ2 ≤ 0 holds. So we may assume ϕ2 ≥ 0. Then ϕ
(2µi)
2 (pi) > 0 for all

i = 1, . . . , n. For every natural number m ∈ N, we define a function vm on
S1 by setting

vm(t) = −u(t) + ϕ1(t) +mϕ2(t).

There is an m0 ∈ N such that for all m ≥ m0 we have that vm and its
first 2µi − 1 derivatives vanish in pi, but v

(2pi)
m (pi) > 0, for all i = 1, . . . , n,

https://doi.org/10.1017/S0027763000008734 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008734


94 G. THORBERGSSON AND M. UMEHARA

except when pi is either a or b where u might only be C2ιa−1 or C2ιb−1

respectively. In case pi is a (resp. b) and u is only C2µi−1, i.e., µi = ιa
(resp. µi = ιb), we choose m0 sufficiently large so that the 2µi-th derivative
from the left and from the right of vm are both positive in pi. Hence there
is a neighborhood of {p1, . . . , pn} on which vm is nonnegative. On the
complement of this neighborhood, we have that ϕ2 is bounded from below
by a positive number. Hence there is a m1 ≥ m0 such that vm ≥ 0 for
m ≥ m1. Therefore the function

ϕ(t) = ϕ1(t) +mϕ2(t)

is in Λ and satisfies ϕ ≥ u. The rest of the lemma is now clear.

Let u be a function as in Lemma 2.3. Now we can begin to associate

what we will call an intrinsic system to the function u. This is easy if

I is equal to the whole circle S1 and the definition consists only of the

three cases (i), (ii) and (iv) below. We will therefore restrict ourselves

to the more difficult case of functions that are C 2n on a proper closed

interval I satisfying a boundary regularity condition (ιa, ιb). We have seen

in Lemma 2.3 that the subset Λu(p1, . . . , pn) of A is a nonempty closed

interval for each (p1, . . . , pn) ∈ In(ιa,ιb). We define the function ϕ(p1,...,pn) ∈
Λu(p1, . . . , pn) to be the boundary point of this interval, or, what is the

same thing, as

ϕ(p1,...,pn) = inf{ψ ∈ Λu(p1, . . . , pn)}.

We call ϕ(p1,...,pn) the minimal function of u with respect to (p1, . . . , pn).

In our figures, we will indicate a periodic function f(t) by a curve

exp(u(t) − f(t))(cos t, sin t).

In particular, the function f(t) = u(t) will be drawn as the unit circle,

and f(t) = ϕu(p1, . . . , pn) will be a closed curve inscribed in the circle; see

Figure 2.

We denote by N0 the set of nonnegative integers, and denote by

Map(S1, 2N0 ∪ {∞}) the set of maps from S1 to 2N0 ∪ {∞}. We define a

map

fu : In(ιa,ιb) −→ Map(S1, 2N0 ∪ {∞}),

by setting

(i) fu(p1, . . . , pn)(q) = 0
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Figure 2. A circular graph of a minimal function.

for any q ∈ S1 such that u(q) 6= ϕ(p1 ,...,pn)(q);

(ii) fu(p1, . . . , pn)(q) = 2k

if q ∈ I◦ (where I◦ denotes the interior of I), u(q) = ϕ(p1,...,pn)(q) and

precisely 2k − 1 derivatives of u and ϕ(p1,...,pn) agree in q and k ≤ n;

(iii) fu(p1, . . . , pn)(q) =























2k if q = a and k < ιa,

2ιa if q = a and k ≥ ιa,

2k if q = b and k < ιb,

2ιb if q = b and k ≥ ιb,

if q = a (resp. b), u(q) = ϕ(p1,...,pn)(q) and the first 2k − 1 derivatives of u

and ϕ(p1,...,pn) agree in q, the 2k-th derivative of ϕ(p1,...,pn) is different from

the 2k-th derivative of u from the right in a (resp. the left in b);

(iv) fu(p1, . . . , pn)(q) = ∞

if q ∈ I◦, u(q) = ϕ(p1,...,pn)(q) and more than 2n − 1 derivatives of u and

ϕ(p1,...,pn) agree in q;

(v) fu(p1, . . . , pn)(q) = ∞

if q = a (resp. q = b) and u(t) is C2n at q, u(q) = ϕ(p1,...,pn)(q) and more

than 2n− 1 derivatives of u and ϕ(p1,...,pn) agree in q;

(vi) fu(p1, . . . , pn)(q) = 2
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if q 6∈ I and u(q) = ϕ(p1, . . . , pn)(q).

This ends the definition of the map

fu : In(ιa,ιb) −→ Map(S1, 2N0 ∪ {∞}).

It will frequently be convenient to use the following notation:

fu(p
k, pk+1, . . . , pn) = fu(p, . . . , p, pk+1, . . . , pn),

fu(p
k, ql, pk+l+1, . . . , pn) = fu(p, . . . , p, q, . . . , q, pk+l+1, . . . , pn),

and so on. We will denote the support of fu(p1, . . . , pn) by Fu(p1, . . . , pn),

i.e.,

Fu(p1, . . . , pn) = {r ∈ S1 | fu(p1, . . . , pn)(r) > 0}.

The value of fu(p1, . . . , pn) at a point r will be called the multiplicity of r

with respect to fu(p1, . . . , pn). The sum over all values of fu(p1, . . . , pn),

which can of course be infinite, will be called the total multiplicity of

fu(p1, . . . , pn).

A point s in S1 will be called a global A-flex of u if its multiplicity with

respect to fu(s
n) is ∞. Notice that a point s ∈ I is a global A-flex if and

only if ϕ(sn) is defined and equal to the A-osculating function ϕs of u at s.

In particular, a global A-flex is an A-flex when u and ϕs are both C2n+1.

However, the converse is not true. In fact, it is clear that a global A-flex

s ∈ I has the global property that the osculating function ϕs of u at s is

greater than or equal to u over the whole circle S1. A global A-flex s is

called a clean maximal flex if the preimage (ϕs − u)−1(0) is connected. If

u is C2n on S1, then we can also define the intrinsic system f(−u). A clean

maximal A-flex of −u is called a clean minimal flex . Phrased differently,

a point s is a clean maximal (resp. minimal) A-flex of u if and only if the

osculating function ϕs is greater (resp. less) than or equal to u and the

preimage (ϕs − u)−1(0) is connected.

Example. We give here an example which shows the difference be-
tween A-flexes, global A-flexes and clean A-flexes when A = A2n+1. Con-
sider a 2π-periodic smooth function u(t) satisfying 0 ≤ u(t) ≤ 1 which is
identically 1 on the closed interval I = [2π/5, 3π/5] and identically zero on
the intervals [0, π/5] and [4π/5, 2π].

Next we set

v(t) = u(t) + λu(t+ π) for λ ≥ 0.
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Figure 3. A flex which is not clean.

When λ < 1, the points on the interval I are clean maximal A2n+1-flexes of
v(t). If λ = 1, the points on the interval I are global A2n+1-flexes but not
clean maximal A2n+1-flexes. Finally, if λ > 1, the points on the interval I
are A2n+1-flexes, but not global A2n+1-flexes.

In the next proposition we bring the most basic properties of the map

fu that we have associated to the function u. These properties will lead

us to the notion of an intrinsic system, see Definition 2.5 below. Notice

that there are two cases. The interval I is either a proper closed interval

of S1 on which u is C2n and satisfies the boundary condition (ιa, ιb) or I

is the whole circle S1 and u is C2n on S1. We will formulate the following

proposition for the first case, i.e., for fu : In(ιa,ιb) → Map(S1, 2N0 ∪ {∞}),

but notice that everything is equally true for I = S1; one simply has to

delete the index (ιa, ιb) from In(ιa,ιb) and disregard (A.8).

Proposition 2.4. The map f = fu satisfies the following properties:

(A1) (Closedness) The set F (p1, . . . , pn) is closed for all (p1, . . . , pn) ∈
In(ιa,ιb).

(A2) (Symmetry) The functions f(p1, . . . , pn) and f(pσ(1), . . . , pσ(n)) co-

incide for every permutation σ ∈ Sn and all (p1, . . . , pn) ∈ In(ιa,ιb).

(A3) (Supporting Property) The support F (p1, . . . , pn) contains {p1,
. . . , pn} for all (p1, . . . , pn) ∈ In(ιa,ιb).

(A4) (Exchangeability) If f(p1, . . . , pn)(r) ≥ 2j for a point r ∈ I that

is different from p1, . . . , pn−j where j ≤ n, then (p1, . . . , pn−j , r
j) ∈

In(ιa,ιb) and f(p1, . . . , pn−j, r
j) = f(p1, . . . , pn). In particular, if j = n,

then f(rn) = f(p1, . . . , pn).
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(A5) (Uniqueness) If p ∈ F (p1, . . . , pn) and q ∈ F (q1, . . . , qn) satisfy

(�) p1 � q1 � · · · � pi � qi ≺ p ≺ q ≺ pi+1 � qi+1 � · · ·

· · · � pn � qn (≺ p1)

where 0 ≤ i ≤ n, then f(p1, . . . , pn) = f(q1, . . . , qn) holds. (Figure 4a
and Figure 4b indicate situations for n = 1 and 2 respectively where

condition (�) holds but f(p1, . . . , pn) 6= f(q1, . . . , qn).)

Figure 4a. n = 1. Figure 4b. n = 2.

(A6) (Total Multiplicity) The total multiplicity
∑

q∈[a,b] f(p1, . . . , pn)(q)
of f(p1, . . . , pn) is greater or equal to 2n+2 for all (p1, . . . , pn) ∈ In(ιa,ιb)
satisfying f(p1, . . . , pn)(a) < 2ιa and f(p1, . . . , pn)(b) < 2ιb.

(A7) (Semicontinuity) Let (p1,k, . . . , pn,k) be a sequence in In(ιa,ιb) that

converges to the element (p1, . . . , pn) ∈ In(ιa,ιb) where p1 ∈ I◦. Assume

f(p1,k, . . . , pn,k)(p1,k) ≥ 2`

for all k. Then

f(p1, . . . , pn)(p1) ≥ 2`.

Assume n ≥ 2. If p1 = p2 and p1,k 6= p2,k for all k, then

f(p1, . . . , pn)(p1) ≥ 2`+ 2.

(A8) (Boundary Isolation) If ιa > 1 (resp. ιb > 1) and 0 < f(p1, . . . ,
pn)(a) < 2ιa (resp. 0 < f(p1, . . . , pn)(b) < 2ιb), then a (resp. b) is

isolated in F (p1, . . . , pn). (Figure 5 indicates a situation where ιa > 1
and a is isolated in F (p1, . . . , pn).)
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Figure 5.

Proof. Axioms (A1), (A2) and (A3) are trivially true for f .
We now prove that f satisfies the Exchangeability Axiom (A4). So we

assume for r ∈ I that
f(p1, . . . , pn)(r) ≥ 2j

and r 6= p1, . . . , pn−j. It follows from the definition of fu that (p1, . . . , pn−j ,
rj) ∈ In(ιa,ιb). We need to prove that ϕ(p1,...,pn−j ,rj) = ϕ(p1,...,pn). It is clear

that ϕ(p1, . . . , pn) lies in Λu(p1, . . . , pn−j, r
j). Hence

ϕ(p1,...,pn) ≥ ϕ(p1,...,pn−j ,rj) ≥ u.

Since we can squeeze ϕ(p1,...,pn−j ,rj) between ϕ(p1,...,pn) and u, we have that
ϕ(p1,...,pn−j ,rj) lies Λu(p1, . . . , pn). Hence

ϕ(p1,...,pn−j ,rj) ≥ ϕ(p1,...,pn) ≥ u.

It follows that ϕ(p1,...,pn−j ,rj) = ϕ(p1,...,pn) and hence

f(p1, . . . , pn−j, r
j) = f(p1, . . . , pn),

and Axiom (A4) follows.
To prove that the Uniqueness Axiom (A5) is satisfied, assume that

p ∈ F (p1, . . . , pn) and q ∈ F (q1, . . . , qn) satisfy

p1 � q1 � · · · � pi � qi ≺ p ≺ q ≺ pi+1 � qi+1 � · · · � pn � qn (≺ p1)

where 0 ≤ i ≤ n. Then the function

ϕ(p1,...,pn) − ϕ(q1,...,qn)
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has more than 2n + 1 zeros counted with multiplicities, implying that it
vanishes identically. Hence we have f(p1, . . . , pn) = f(q1, . . . , qn), proving
the axiom.

To prove Axiom (A6), first notice that the total multiplicity of f is by
definition greater or equal equal to 2n. Assume that the total multiplicity
of f is equal to 2n. Since f(p1, . . . , pn)(a) < 2ιa and f(p1, . . . , pn)(b) < 2ιb,
a (resp. b) occurs less than ιa times (resp. ιb times) as a component of
(p1, . . . , pn). The function ϕ(p1,...,pn) − u ≥ 0 and has precisely 2n zeros
counted with multiplicities. More precisely, the set of zeros of ϕ(p1,...,pn) −
u ≥ 0 is {p1, . . . , pn}, the first 2µi − 1 derivatives vanish in pi for all i =
1, . . . , n, and the 2µi-th derivative is positive in pi. Let ϕ2 be as in the
proof of Lemma 2.3. The 2µi-th derivative of ϕ2 is positive in pi for all
i = 1, . . . , n. It follows that there is a sufficiently large m such that

ϕ(p1,...,pn) − u ≥
1

m
ϕ2 ≥ 0.

Hence

ϕ(p1,...,pn) −
1

m
ϕ2 ∈ Λu(p1, . . . , pn),

contradicting the definition of ϕ(p1,...,pn).
We now prove the Semicontinuity Axiom (A7). Let (p1,k, . . . , pn,k) be a

sequence in In(ιa,ιb) that converges to the element (p1, . . . , pn) ∈ In(ιa,ιb) where
p1 ∈ I◦. Assume that

f(p1,k, . . . , pn,k)(p1,k) ≥ 2`

for all k. Then clearly

f(p1, . . . , pn)(p1) ≥ 2`,

since ϕ(p1,k ,...,pn,k) converges to ϕ(p1,...,pn) together with all its derivatives.
Now assume that n ≥ 2, p1 = p2 and p1,k 6= p2,k for all k. We need to prove
that

f(p1, . . . , pn)(p1) ≥ 2`+ 2.

We consider the sequence (vk) where vk = ϕ(p1,k ,...,pn,k) −u. Notice that the
first derivative of vk vanishes in p1,k and p2,k for all k. Hence there is for
every k a point q2,k between p1,k and p2,k such that the second derivative
of vk vanishes in q2,k. If ` ≥ 2, then the second derivative of vk vanishes in
p1,k and q2,k and there must be a point q3,k between p1,k and q2,k in which
the third derivative of vk vanishes. We continue this argument inductively
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and show that there is for every k a point q2`,k between p1,k and q2`,k such
that the 2`-th derivative of vk vanishes. The sequence (vk) converges with
all its derivatives to v = ϕ(p1,...,pn) − u and the sequence (q2`,k) converges
to p. It follows that at least the 2` first derivatives of ϕ(p1, . . . , pn) and u
coincide in p1. Since u ≤ ϕ(p1,...,pn) also the 2`+1-st derivatives coincide in
p. Hence f(p1, . . . , pn)(p1) ≥ 2`+2 which finishes the proof of Axiom (A7).

Finally we prove (A8). Suppose ιa > 1 and 0 < f(p1, . . . , pn)(a) < 2ιa.
Suppose also that a is not isolated in F (a1, . . . , an). There is a sequence
(qn) in F (a1, . . . , an) such that limn→∞ qn = a. Then we have

ϕ(p1,...,pn)(qn) = u(qn)

for all n. Since u(t) is C2ιa−1 at a this implies that

ϕ(p1,...,pn)(a) = u(a)

and
ϕ

(j)
(p1,...,pn)(a) = u(j)(a)

for j = 1, 2, . . . , 2ιa − 1. It follows that f(p1, . . . , pn)(a) = 2ιa, a contradic-
tion. Hence a is isolated in F (a1, . . . , an).

We now give the following definition.

Definition 2.5. Let I either be the whole circle S1 or a proper closed
interval on S1. In the second case we assume we have a pair of (ιa, ιb) of
nonnegative integers which are less than or equal to ∞. A map

f : In(ιa,ιb) −→ Map(S1, 2N0 ∪ {∞})

is called an intrinsic system of order 2n + 1 on I (satisfying the boundary

regularity condition (ιa, ιb)) if it satisfies the axioms (A1) to (A8) in Propo-
sition 2.4. (If I is the whole circle one should of course delete everything
referring to the boundary conditions in the axioms.) A point s ∈ S1 is
called an f -flex if f(sn)(s) ≥ 2n+ 2. Moreover, if F (sn) is connected, it is
called a clean f -flex.

The map fu as in Proposition 2.4 is of course an example of an intrinsic

system of order 2n+ 1, and an fu-flex is nothing but a global A-flex.

Notice that the values of f(p1, . . . , pn) can be finite numbers greater

than 2n although this does not happen for fu by definition. This will for
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example happen in the course of the reduction procedure introduced in

Lemma 3.7 that we will frequently apply in the paper.

We next give two more examples of intrinsic systems that come from

curve theory.

Example 2.6. (i) Let γ : S1 → R2 be a simple closed regular C2-
curve which we do not assume to be convex. For an arbitrary circle C, we
associate a function µC(r) on S1 that maps a point r on γ to the multiplicity
with which C and γ meet in r. The function µC(r) takes values in {0, 1, 2, 3}
since we are only assuming the curve to be C2-regular. The value of µC(r) is
of course zero in points in which C and γ do not meet. We let C+

p (p ∈ S1)
(resp. C−

p ) denote the uniquely defined maximal inscribed (resp. minimal
circumscribed) circle that is tangent to γ in p. (See Figure 6a.) We set

f+
1 (p)(r) =

{

µ
C+

p
(r) if µ

C+
p
(r) ≤ 2,

∞ if µC+
p
(r) ≥ 3.

We define the map f−1 similarly. One can easily verify that f+
1 and f−1

are both intrinsic systems of order 3. (Notice that the dimension of the
space of circles in the Euclidean plane is three.) A point p is called a clean

maximal (resp. minimal) vertex if the osculating circle Cp is inscribed (resp.
circumscribed) and meets the curve in a connected set. When γ is C 3, the
critical points of the curvature function of the curve are called vertices. For
a C3-regular curve, clean vertices are vertices of the curve. However the
vertices of a curve have a priori no such global properties. The concept of
an intrinsic system is designed to find vertices with such global properties.
It is well known and can be proved with the methods of this paper that
there are at least four clean vertices on a curve γ as above. The notion
of an ‘intrinsic circle system’ as a family of closed subset (Fp)p∈S1 in S1

satisfying certain axioms, see Section 6 below, was introduced in [Um].
Several applications were given in [Um] and [TU1]. The family of supports
(F+

1 (p))p∈S1 and (F−
1 (p))p∈S1 of the intrinsic systems f+

1 and f−1 introduced
above satisfy the axioms of an intrinsic circle system. As a consequence,
when the curve has finitely many maximal and minimal vertices, one can
prove that it satisfies a Bose type formula as mentioned in the introduction;
see [Um].

(ii) Let γ be a strictly convex C4-curve in the real projective plane
P 2. We identify γ with S1. Let Γ be a nondegenerate conic in P 2. Then
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Figure 6a. Maximal circle. Figure 6b. Maximal conic.

we associate to Γ a function µΓ(r) on S1 that maps a point r on γ to the
multiplicity with which Γ and γ meet in r. The function µΓ(r) takes values
in {0, 1, . . . , 5} since we are only assuming the curve to be C 4-regular. The
value of µΓ(r) is of course zero in points in which Γ and γ do not meet. Let
(p, q) ∈ S1×S1. If p 6= q, we let Γ+

p,q (resp. Γ−
p,q) denote the uniquely defined

maximal inscribed (resp. minimal circumscribed) conic that is tangent to
γ in p and q. (See Figure 6b.) If p = q, we let Γ+

p,q (resp. Γ−
p,q) denote the

uniquely defined maximal inscribed (resp. minimal circumscribed) conic
that meets γ with multiplicity at least four in p = q. We set

f+
2 (p, q)(r) =

{

µΓ+
p,q

(r) if µΓ+
p,q

(r) ≤ 4,

∞ if µΓ+
p,q

(r) ≥ 5.

We define the map f−2 similarly. One can easily verify that f+
2 and f−2

are both intrinsic systems of order 5. (Notice that the dimension of the
space of conics in P 2 is five.) If an osculating conic at a point p is inscribed
(resp. circumscribed) and meets the curve γ in a connected set, we call
p a clean maximal sextactic point (resp. clean minimal sextactic point).
When γ is C5, a point where the osculating conic meets with multiplicity
greater than 5 is called a sextactic point . By (A6), the clean maximal (resp.
minimal) sextactic points are sextactic points of γ whenever the curve is C 5.
Existence of six sextactic points where the osculating conics are inscribed
or circumscribed was proved by Mukhopadhyaya [Mu2]; see also [TU2] for
an alternative proof. These sextactic points might however not be clean.
We will refine the methods of [TU2] and prove in Theorem 5.3 below the
existence of at least six clean sextactic points on the curve γ.

In [TU2] we introduced the concept of an intrinsic conic system to prove
the above mentioned theorem of Mukhopadhyaya and more generally to find
sextactic points on simple closed curves in P 2. Intrinsic conic systems are
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very similar to intrinsic systems of order five.

We now generalize the construction of an intrinsic system of order 2n+1

on I associated to a function u by taking base points c1, . . . , cr into account

since that will be needed in Section 5. Let ν1, . . . , νr be positive integers.

We set N = n + m where m =
∑r

h=1 νh and let A denote a Chebyshev

space of order 2N + 1. Let I be a closed interval not containing the base

points c1, . . . , cr. We assume we have a function u that is piecewise C 2n. We

assume furthermore that u is C2n on I satisfying the boundary regularity

condition (ιa, ιb); see Definition 2.2. We now generalize Lemma 2.3 to this

new situation.

Lemma 2.7. Assume the function u and the base points c1, . . . , cr to be

as described before this lemma. We let µi (resp. νh) denote the multiplicity

with which pi (resp. ch) occurs as a component of the n-uple (p1, . . . , pn)
(resp. m-uple (c1, . . . , cm)). Suppose also that u(t) be at least C2νh on some

neighborhood of ch for all h = 1, . . . ,m. For (p1, . . . , pn) ∈ In(ιa,ιb) we let Λ̂
denote the one-dimensional set of functions ϕ ∈ A such that

ϕ(k)(pj) = u(k)(pj) for k = 0, . . . , 2µj − 1 and j = 1, . . . , n,

ϕ(`)(ch) = u(`)(ch) for ` = 0, . . . , 2νh − 1 and h = 1, . . . ,m.

Then the subset of functions ϕ ∈ Λ̂ such that ϕ ≥ u is a nonempty closed

interval that we denote by Λ̂u(p1, . . . , pn).

Proof. One can proceed exactly as in the proof of Lemma 2.3.

For a point (p1, . . . , pn) ∈ In(ιa,ιb) we define the function ϕ̂(p1,...,pn) ∈

Λ̂u(p1, . . . , pn) by setting

ϕ̂(p1,...,pn)(t) = inf{ϕ(t) ∈ Λ̂u(p1, . . . , pn)}.

As above we define a map

f̂u : In −→ Map(S1, 2N0 ∪ {∞}),

satisfying the same first five conditions (i) to (v) and the following three new

conditions (vi′), (vii) and (viii) (with (vi′) replacing the previous condition

(vi)):

(vi′) f̂u(p1, . . . , pn)(q) = 2
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if q 6∈ I ∪ {c1, . . . , cr} and u(q) = ϕ̂(p1,...,pn)(q);

(vii) f̂u(p1, . . . , pn)(q) = 0

if q = ch for some h = 1, . . . , r and precisely 2νh − 1 derivatives of u and

ϕ̂(p1,...,pn) agree in q; and finally

(viii) f̂u(p1, . . . , pn)(q) = 2

if q = ch for some h = 1, . . . , r and more than 2νh − 1 derivatives of u and

ϕ̂(p1,...,pn) agree in q.

Proposition 2.8. The map f̂u is an intrinsic system of order 2n+1.
We shall call it the intrinsic system of order 2n+1 with base points c1, . . . , cr
associated to u.

Proof. The proposition can be proved by modifying the proof of Propo-
sition 2.4.

§3. First consequences of the axioms of an intrinsic system

In this section, we shall derive some first consequences of the axioms of

intrinsic systems. It should be remarked that Lemmas 3.3 to 3.6 below are

rather easy to check if the intrinsic system f = fu comes from a periodic

function u. Still we shall prove them only using the axioms since they are

also important for our applications to sextactic points in Section 5.

The following trivial lemma will frequently be used, mostly without

saying so explicitly.

Lemma 3.1. Let J be a closed subinterval of the interval I. Let f be

an intrinsic system of order 2n+ 1 on I satisfying the boundary regularity

condition (ιa, ιb) if I is not the whole circle. Then the restriction of f to

Jn∩In(ιa,ιb) is an intrinsic system of order 2n+1 on J satisfying the boundary

regularity condition (n, ιb) if a is not in J and b is in J , the condition (ιa, n)
if b is not in J and a is in J , and (n, n) if neither a nor b lies in J .

We denote by I◦ the interior of the interval I. The following lemma is

an immediate consequence of Axiom (A6).

Lemma 3.2. If p ∈ I◦ and F (p, . . . , p) consists only of the point p,
then p is an f -flex.
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The Exchangeability Axiom (A4) immediately implies the following

lemma.

Lemma 3.3. If f(p1, . . . , pn)(p) ≥ 2n + 2 for a point p ∈ I, then p is

an f -flex.

The next lemma is an application of the semicontinuity Axiom (A7).

Lemma 3.4. (The Multiplicity Lemma) We have f(pj, pj+1, . . . , pn)(p)
≥ 2j for every p ∈ I◦.

Proof. Let (pl,k) for l = 1, . . . , j be j sequences in I that converge to
p and assume that pl,k 6= p for all l and all k. Axioms (A3) and (A7) imply
that

f(p2, p3,k, . . . , pj,k, pj+1, . . . , pn)(p) ≥ 4

for every k. (Here we fixed k in the third and later arguments and let k in
the first two arguments go to infinity when applying (A7).) We can now
use the Symmetry Axiom (A2) to bring p3,k into the second slot and use
(A7) again to prove

f(p3, p4,k, . . . , pj,k, pj+1, . . . , pn)(p) ≥ 6

for all k. We continue this argument inductively until we have proved the
lemma.

Lemma 3.5. If r ∈ F (p1, . . . , pn)∩ I
◦ is not isolated in F (p1, . . . , pn)∩

I◦, then r is an f -flex.

Proof. We assume that f(p1, . . . , pn)(r) is a finite number k. Set
p1,k = r. Let (p2,k) be a sequence in F (p1, . . . , pn) of pairwise different
points that are all different from r and converge to r. After possibly per-
muting and relabeling the points p1, . . . , pn, we have by the Exchangeabil-
ity Axiom (A4) that f(p1, . . . , pn)(r) = f(p1,k, p2,k, p3, . . . , pn)(p1,k) = k.
Now the Semicontinuity Axiom (A7) implies that f(p1, . . . , pn)(r) > k, a
contradiction. Hence f(p1, . . . , pn)(r) = ∞. It now follows from the Ex-
changeability Axiom (A4) that f(rn)(r) = ∞.

The next lemma is the starting point of the idea of an intrinsic system

and the main tool in the paper [Um]. Notice that the Semicontinuity Axiom

(A7) is not used in its proof. The idea behind the lemma goes back to

H. Kneser [Kn]. Therefore we would like to call it the Kneser Lemma

although it is strictly speaking not due to him.
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Lemma 3.6. (The Kneser Lemma) Let f be an intrinsic system of or-

der three on I = [a, b] satisfying the boundary regularity condition (ιa, ιb)
with ιa, ιb ≥ 1. Suppose that a, b ∈ F (a) and F (a) ∩ (a, b) is empty. Then

there exists a point c ∈ (a, b) such that F (c) is connected and contained in

(a, b). In particular, c is an f -flex.

Suppose that the simple closed arc bounded by a, b is tangent to a circle

at both boundary points. Then the original Kneser Lemma says that there

is a point c on the open arc such that the osculating circle at c is inscribed;

see Figure 7. If one considers the intrinsic system of order 3 associated to

the intersection divisors between this arc and the maximal inscribed circles

as explained in Example 2.6, flexes turn out to be vertices whose osculating

circles are inscribed. The following proof is the original argument of Kneser

in the case of vertices of plane curves.

Figure 7.

Proof. Let q be any point in the interval (a, b). Then the Uniqueness
Axiom (A5) implies that F (q) is contained in [a, b] and the Exchangeability
Axiom (A4) implies that F (q) cannot contain a and b. Hence F (q) ⊂ (a, b).
Let c1 be the midpoint of the interval [a, b]. If F (c1) is connected then the
proof is finished. If F (c1) is not connected, there are two different points
a1, b1 ∈ F (c1) such that F (c1)∩ (a1, b1) is empty. Notice that the length of
[a1, b1] is less than half the length of [a, b] and F (q) ⊂ (a1, b1) for every q ∈
(a1, b1). Let c2 be the midpoint of [a1, b1]. Then F (c2) ⊂ (a1, b1). If F (c2)
is connected we have finished the proof. If not, we continue inductively and
find a nested sequence of intervals [an, bn] with midpoints cn+1 such that
an, bn ∈ F (cn) and F (cn) ∩ (an, bn) is empty. Furthermore, the length of
[an, bn] is less than (1/2)n the length of [a, b]. We have F (q) ⊂ [an, bn] for all
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q ∈ (an, bn). We stop the induction if we arrive at a connected set F (cn+1).
Otherwise we observe that the sequence (cn) converges to a point c. Then
F (c) consists of c only since F (c) ⊂ (an, bn) for all n. It now follows from
Lemma 3.2 that c is an f -flex.

The main strategy in finding an f -flex of an intrinsic system of order

2n + 1 is to reduce the order inductively until we can apply the Kneser

Lemma. We now start explaining this procedure.

Assume n ≥ 2 and let f be an intrinsic system of order 2n + 1 on

I = [a, b] satisfying the boundary regularity condition (ιa, ιb). We choose

r = a (or r = b) and assume that ιa ≥ 2 (or ιb ≥ 2). If r = a, let

(p1, . . . , pn−1) ∈ I
n−1
(ιa−1,ιb)

and let q ∈ S1. We set

fr(p1, . . . , pn−1)(q) =

{

f(r, p1, . . . , pn−1)(q) if q 6= r,

f(r, p1, . . . , pn−1)(r) − 2 if q = r,

where we of course use the convention that ∞ − 2 = ∞. We define fr
analogously on In−1

(ιa,ιb−1) if r = b.

Lemma 3.7. Let I = [a, b] be a closed interval on S1 and f an intrinsic

system of order 2n+1 on I for some n ≥ 2 satisfying the boundary regularity

condition (ιa, ιb). Let r be an endpoint of I and assume that ιr ≥ 2. Then fr
is an intrinsic system of order 2n−1 on I satisfying the boundary regularity

condition (ιa − 1, ιb) if r = a and (ιa, ιb − 1) if r = b.

Remark. The restriction in the Semicontinuity Axiom (A7) that p1 be
in the interior I◦ of I comes from the fact that otherwise we would not be
able to prove that fr satisfies that axiom.

Proof. We assume throughout the proof that r = a. The case r = b is
completely analogous.

First notice that f(r, p1, . . . , pn−1)(r) ≥ 2 for all (p1, . . . , pn−1) ∈
In−1
(ιa−1,ιb)

by Axiom (A3). It follows that the values of fr(p1, . . . , pn−1) are
nonnegative.

To see that (A1) is satisfied for fr we remark that the sets
F (r, p1, . . . , pn−1) and Fr(p1, . . . , pn−1) are equal and hence both closed if
f(r, p1, . . . , pn−1)(r) > 2. We have that

Fr(p1, . . . , pn−1) = F (r, p1, . . . , pn−1) − {r}
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if f(r, p1, . . . , pn−1)(r) = 2. Then (A8) implies that r is isolated in
F (r, p1, . . . , pn−1) since ιr ≥ 2. Hence Fr(p1, . . . , pn−1) is also closed in
this case.

Axioms (A2) and (A3) for f clearly imply Axioms (A2) and (A3) for
fr.

To prove (A4) for fr, assume that fr(p1, . . . , pn−1)(q) ≥ 2j for q ∈ I
and q does not coincide with any of the p1, . . . , pn−j−1 where j ≤ n − 1.
First assume that q 6= r. The we have f(r, p1, . . . , pn−1)(q) ≥ 2j and Axiom
(A4) for f implies that

f(r, p1, . . . , pn−j−1, q
j) = f(r, p1, . . . , pn−1).

Hence
fr(p1, . . . , pn−j−1, q

j) = fr(p1, . . . , pn−1).

If q = r we have f(p1, . . . , pn−1, r)(q) ≥ 2j + 2. By Axiom (A4) for f this
implies that

f(p1, . . . , pn−j−1, q
j , r) = f(p1, . . . , pn−1, r).

Hence we again have that fr(p1, . . . , pn−j−1, q
j) = fr(p1, . . . , pn−1).

Axiom (A5) for fr follows immediately from Axiom (A5).
Axiom (A6) for fr follows easily from Axiom (A6) for f since the total

multiplicity of fr(p1, . . . , pn−1) is two less than the one of f(r, p1, . . . , pn−1)
if the latter number is finite. If the total multiplicity of f(r, p1, . . . , pn−1)
is infinite, then the same is true for fr(p1, . . . , pn−1).

We now prove (A7) for fr. Let (p1,k, . . . , pn−1,k) be a sequence in
In−1
(ιa−1,ιb)

that converges to the element (p1, . . . , pn−1) where p1 ∈ I◦. Notice
that p1 6= r. Assume

fr(p1,k, . . . , pn−1,k)(p1,k) ≥ 2`.

Then
f(p1,k, . . . , pn−1,k, r)(p1,k) ≥ 2`

for k large. Now (A6) for f immediately implies that

fr(p1, . . . , pn−1)(p1) ≥ 2`.

Assume n ≥ 3. If p1 = p2 6= r and p1,k 6= p2,k for all k, then Axiom (A7)
implies

fr(p1, . . . , pn−1)(p1) = f(p1, . . . , pn−1, r)(p1) ≥ 2`+ 2.

https://doi.org/10.1017/S0027763000008734 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008734


110 G. THORBERGSSON AND M. UMEHARA

This shows that fr satisfies Axiom (A7).

Axiom (A8) for fr follows easily from Axiom (A8) for f .

Lemma 3.8. Let I = [a, b] be an interval on S1, f an intrinsic system

of order 2n+1 on I satisfying the boundary regularity condition (n, ιb) with

ιb ≥ 1. Assume that f(an) = f(b, an−1) and F (an) ∩ (a, b) is empty. Then

there exists an f -flex in the open interval (a, b).

Similarly, if f satisfies the boundary regularity condition (ιa, n) with

ιa ≥ 1, f(bn) = f(a, bn−1) and F (bn) ∩ (a, b) is empty, then there exists an

f -flex in the open interval (a, b).

Proof. We proof the lemma by induction on n. The lemma is true for
n = 1 by the Kneser Lemma 3.6. Assume the lemma is true for n− 1 ≥ 1.

Assume that f(an) = f(b, an−1) and F (an) ∩ (a, b) is empty where
f is an intrinsic system of order 2n + 1. Then fa is an intrinsic system
of order 2n − 1 by Lemma 3.7. Notice that fa(a

n−1) = fa(b, a
n−1) and

Fa(a
n−1)∩(a, b) = ∅. By the induction hypothesis there is a point c ∈ (a, b)

that is an fa-flex with respect to fa. This implies that f(a, cn−1)(c) ≥ 2n.
By Axiom (A4) for f this implies f(cn) = f(a, cn−1). We can assume that
c is isolated in F (cn) since c is otherwise an f -flex by Lemma 3.5 and there
would be nothing left to prove. Let d be the point in [a, c) ∩ F (cn) closest
to c. We have f(cn) = f(d, cn−1) and F (cn)∩ (d, c) = ∅. Then we can again
use the induction hypothesis and we find an fc-flex e of fc in the interval
(d, c). Set J = [e, c].

Let C denote the set of (α, β) ∈ J × J such that α < β, f(αn) =
f(β, αn−1) and F (αn) ∩ (α, β) = ∅. By arguments as in the previous para-
graph we see that C is nonempty.

We let δα,β denote the distance between α and β. Let δ denote the
infimum over δα,β for (α, β) ∈ C.

We consider a sequence {(αk, βk)} in C such that δαk ,βk
converges to δ.

By going to subsequences if necessary, we may assume that

lim
k→∞

αk = α, lim
k→∞

βk = β.

If α = β, then it follows immediately from Axiom (A7) since α ∈ J ⊂ I ◦

that

f(αn)(α) ≥ 2(n+ 1)

and we have that α ∈ J ⊂ (a, b) is an f -flex.
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We can therefore assume that δ > 0. By (A7) we have f(β, αn−1)(α) ≥
2n and hence f(αn) = f(β, αn−1) by the Exchangeability Axiom (A4). We
can assume that α and β are isolated in F (αn) since otherwise we have
an f -flex by Lemma 3.5. Let β ′ be the point in F (αn) ∩ (α, β] closest to
α. We now argue as in the second paragraph of the proof and find points
γ, δ ∈ (α, β ′) such that (γ, δ) ∈ C. Clearly δγ,α < δ, which is a contradiction.
This finishes the proof of the claim in the first paragraph of the lemma. The
proof of the claim in the second paragraph is similar.

The following two propositions are the main technical result of this

section. Notice that very similar ideas go at least back to Mukhopadhyaya

([Mu1, Propositions I and II]) and Haupt and Künneth [HK, p. 47]. The

main difference between our approach and theirs is that ours is more global

in nature and therefore allows us to prove the existence of flexes satisfying

global properties like being clean. The name of the propositions is taken

from the book [HK].

Figure 8.

Proposition 3.9. (The Contraction Lemma I) Let I = [a, b] be an in-

terval on S1, f an intrinsic system of order 2n + 1 on I satisfying the

boundary regularity condition (ιa, ιb) with ιa + ιb > n. Let p1, . . . , pn ∈ I be

such that (p1, . . . , pn) ∈ I
n
(ιa,ιb)

and

f(p1, . . . , pn)(a) + f(p1, . . . , pn)(b) ≥ 2(n+ 1).

Then there exists an f -flex in the open interval (a, b). (See Figure 8.)

Proof. We shall prove the proposition by induction. If n = 1, it follows
from the Kneser Lemma 3.6. We now assume that n ≥ 2. Then ιa + ιb > n
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implies that ιa ≥ 2 or ιb ≥ 2. We consider the case ιa ≥ 2 (the case
ιb ≥ 2 being similar). By Lemma 3.7, fa is an intrinsic system of order
2n− 1 on I satisfying the boundary regularity condition (ιa− 1, ιb). By the
induction hypothesis, we find an fa-flex s on (a, b). Then by the definition
of fa(s

n−1), we have f(a, sn−1)(s) ≥ 2n and hence f(sn) = f(a, sn−1). If
s is not isolated in F (a, sn−1), then s is an f -flex by Lemma 3.5. We can
therefore assume that s is isolated in F (a, sn−1) and let c be the point
closest to s in [a, s) ∩ F (a, sn−1). We get

f(sn) = f(c, sn−1) and F (sn) ∩ (c, s) = ∅.

Now by Lemma 3.8, we find an f -flex on (c, s) ⊂ (a, b).

Proposition 3.10. (The Contraction Lemma II) Let f be an intrinsic

system of order 2n + 1 on I = [a, b]. Let p1, . . . , pn+1 ∈ I◦ be such that

p1 � · · · � pn+1 and
∑

t∈{p1,...,pn+1}

f(p1, . . . , pn)(t) ≥ 2(n+ 1).

(Notice that repeated points in the sequence p1, . . . , pn+1 only enter once

into the sum.) Then there is an f -flex in the open interval between p1 and

pn+1. (See Figure 9.)

Figure 9.

Remark. We do not assume any boundary condition in the proposition.
This is possible since the points p1, . . . , pn+1 are assumed to be interior
points of I.
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Proof. We may assume n ≥ 2 since the case n = 1 follows easily from
the Kneser Lemma. We may also assume that [p1, pn+1]∩F (p1, . . . , pn) con-
sists of isolated points, since otherwise there is either an f -flex in (p1, pn+1)
or we can find a smaller interval with n + 1 points from F (p1, . . . , pn+1)
whose intersection with F (p1, . . . , pn+1) consists of isolated points.

Assume that p1 occurs j times in the sequence p1, . . . , pn+1. We can as-
sume that F (p1, . . . , pn)∩(p1, pj+1) is empty. If j = n the claim follows from
Lemma 3.8. We therefore assume that j < n. Then we can consider the
intrinsic system g = fpn+1,pn,...,pj+3,pj+2

of order 2j+1 restricted to [p1, pj+1]
that we obtain by iterating the definition before Lemma 3.7. This intrinsic
system satisfies the conditions in Lemma 3.8. There is therefore a g-flex
p′1 in the open interval (p1, pj+1). This implies that f(p1, . . . , pn)(p

′
1) ≥

2(j+1). We can therefore replace p1, . . . , pj+1 by p′1 repeated j+1 times in
the sequence p1, . . . , pn+1. We can continue this argument inductively until
we are in the situation that p1 occurs n times in the sequence p1, . . . , pn+1

and we can use Lemma 3.8 to find the f -flex whose existence is claimed.

We now apply the methods of this section to prove a rather weak ex-

istence theorem for f -flexes of an intrinsic system defined on the whole

circle.

Corollary 3.11. Let f be an intrinsic system of order 2n+1 ≥ 5 on

S1. Then f has at least three f -flexes.

Remark. This assertion is optimal for n = 2 as can be seen by either
considering sextactic points, see [TU2], or periodic functions, see the exam-
ple after Theorem 5.1 in Section 5. We do not know whether it is optimal
for n > 2, but find it unlikely. In the special case of intrinsic systems of
order 2n+ 1 coming from periodic functions we will prove in Section 5 the
existence of at least n+ 1 points that are f -flexes, which is optimal.

Proof. We first prove the existence of two f -flexes. Let p be some point
on S1 that is not an f -flex. If such p does not exist there is nothing to prove.
Notice that p is isolated in F (pn). Let p1 and p2 be the next points to p in
F (pn) on each side of p. (See Figure 10a.) It could happen that p1 and p2

coincide. By Lemma 3.8 there is an f -flex in the open interval (p1, p) and
another one in the open interval (p, p2).

Now we prove the existence of a third f -flex. Denote the f -flexes we
have found by q1 and q2. We first consider the possibility that F (q1, q

n−1
2 )
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only consists of q1 and q2. (See Figure 10b.) Then it follows from the
Contraction Lemma 3.9 (or 3.10) that there is an f -flex in the open interval
between q1 and q2 and another one in the open interval between q2 and q1. If
F (q1, q

n−1
2 ) has a point q3 that is different from q1 and q2 (See Figure 10c.),

then we can after renaming q1 and q2 if necessary assume that q3 lies in the
open interval between q1 and q2.

Figure 10a. Figure 10b. Figure 10c.

The Contraction Lemma 3.10 then implies the existence of an f -flex in
the open interval between q1 and q2. This finishes the proof of the corollary.

§4. The Jackson Lemmas

We next prove two theorems – one for functions, the other for curves

– which we will call Jackson Lemmas, since a similar result for vertices

on simple closed arcs was found and applied by Jackson in [Ja], although

the existence of vertices having inscribed or circumscribed osculating circles

were not discussed in [Ja]. These two result will be used in Section 5 to

prove the two theorems stated in the introduction.

A piecewise C2n-function u will be said to have a downward (resp.

upward) singularity at a singular point s, if the interior angle in s of the

region above (resp. below) u is less than or equal to π.

Theorem 4.1. (The Jackson Lemma for Flexes of Functions) Let A
be a Chebyshev space of order 2n + 1. Let u be a piecewise C 2n-function

with at most one singularity which we then denote by a. Suppose u 6∈ A
and that a is not an upward singular point of u. Then u has at least one

clean maximal A-flex with the property that the osculating function there

does not have the same value as u in a.
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We first prove the following weaker version of the Jackson Lemma.

Lemma 4.2. Let A and u be as above. Then u has at least one global

A-flex s such that the osculating function ϕs does not have the same value

as u in a and ϕs ≥ u.

Remark. The flex whose existence is claimed in Lemma 4.2 is an fu-
flex with respect to the intrinsic system fu that can be associated to u (on
a sufficiently large closed interval I not containing a).

Proof. We may assume that a = 0. We fix n mutually distinct points
p1 ≺ · · · ≺ pn arbitrarily, but all different from a. Since u is not in A, we
can assume that none of the points p1, . . . , pn is a flex. We would like to
show that the points p1, . . . , pn can be chosen such that a 6∈ Fu(p1, . . . , pn).
Assume a ∈ Fu(p1, . . . , pn). We choose points q1, . . . , qn as follows:

q1 ∈ (0, p1), q2 ∈ (p1, p2), . . . , qn ∈ (pn−1, pn).

Since p1, . . . , pn are not flexes, it follows that Fu(p1, . . . , pn) does not con-
tain any of the intervals (0, p1), . . . , (pn−1, pn) and hence also that we can
choose q1, . . . , qn such that they are not contained in Fu(p1, . . . , pn). (See
Figure 11.)

Figure 11.

The graphs of ϕu(p1, . . . , pn) and ϕu(q1, . . . , qn) can at most meet in 2n
points counted with multiplicities since they are different. Hence they can-
not meet in a. Now let I be a closed interval not containing 0, but containing
Fu(p1, . . . , pn) in its interior. We set

r0 = inf{q ∈ I ; fu(p1, . . . , pn)(q) > 0}.

https://doi.org/10.1017/S0027763000008734 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008734


116 G. THORBERGSSON AND M. UMEHARA

Since the total multiplicity of Fu(p1, . . . , pn) is at least 2n + 2, the Con-
traction Lemma 3.10 applied to fu restricted to In implies the existence of
a global A-flex s on I ⊂ (0, 2π) such that s ≥ r0. Notice that the inter-
val [0, s] does not consist of A-flexes. (In fact, if so, Fu(p1, . . . , pn) would
contain a because of r0 ≤ s, a contradiction.) We next show that there is
such a flex with the property that the osculating function does not have the
same value as u in a.

Suppose that the osculating function ϕu(s
n) has the same value as u in

a. In this case, u(t) must be C1 at 0. Furthermore ϕu(s
n)(t0) − u(t0) > 0

holds for some t0 ∈ (0, s) since the interval [0, s] does not consist of A-flexes.

We define a function v as follows:

v(t) =

{

u(t) if t ∈ [0, s],

ϕu(s
n)(t) if t 6∈ [0, s].

Since fv is an intrinsic system of order 2n+1 on [0, s] satisfying the boundary
regularity condition (1, n), we have by Lemma 3.7 that g := (fv)sn−1 is an
intrinsic system of order 3 on [0, s] satisfying

g(0) ≥ 2, g(s) ≥ 2.

Since ϕu(s
n)(t0) − u(t0) > 0 holds for some t0 ∈ (0, s), there is a point

r ∈ (0, s) such that G(r) is connected and G(r) ⊂ (0, s) by the Kneser
Lemma 3.6. We define a new piecewise C2n-function on S1:

w(t) =

{

u(t) if t ∈ [r, s],

ϕu(r, s
n−1)(t) if t 6∈ [r, s].

Then we can define an intrinsic system fw of order 2n + 1 satisfying the
boundary regularity condition (2, n− 1) on [r, s]. Moreover we have

fw(r, sn−1)(r) ≥ 4, fw(r, sn−1)(r) ≥ 2(n− 1).

Thus by the Contraction Lemma 3.9, we find a global A-flex s′ of w on
(r, s), which is a global A-flex of u. Since G(r) ⊂ (0, s), we have w(a) =
ϕu(r, s

n−1)(a) > u(a). Thus the osculating function at s′ does not have the
same value as u in a.

Proof of Theorem 4.1. We let Φ(u) denote the set of global A-flexes of
u with the property that the osculating functions at the flexes do not have
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the same value as u in a. By Lemma 4.2, Φ(u) is nonempty. For p ∈ Φ(u)
we let I(p) denote the minimal closed interval in the complement of a that
contains Fu(p

n). We define a new piecewise C2n-function up on S1 without
upward singularities by setting (See Figure 12.)

up(t) =

{

u(t) if t ∈ I(p),

ϕu(pn)(t) otherwise.

Figure 12.

We now define a partial ordering on Φ(u) by setting p � q for p, q ∈
Φ(u) if

I(p) ⊂ I(q) and uq ≤ up.

It is easy to check that this is in fact a partial ordering.

We next show that an element p ∈ Φ(u) that is minimal with respect
to this partial ordering is a clean flex, or, in other words, Fu(p

n) = I(p).
Assume that such a minimal element p is not a clean flex of u. Then Fu(p

n)
has at least two connected components. Then there is a point q ∈ Fu(p

n)
which belongs to a connected component of Fu(p

n) not containing p. We
can assume that the open interval bounded by q and p does not contain
an fu-flex. We consider the case q ≺ p (the case p ≺ q being similar). We
consider the piecewise C2n-function w on S1 defined as

w(t) =

{

u(t) if t ∈ [q, p],

ϕp(t) if t /∈ [q, p],
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where ϕp(t) is the osculating function of u(t) at p. The function w is a C 2n-
function on the interval [q, p] satisfying the boundary regularity condition
(1, n), and we see from the Contraction Lemma 3.9 that there exists an
fw-flex s in the open interval (q, p). The osculating function ϕw,s of w at s
is equal to the osculating function ϕu,s of u at s and

ϕu,s = ϕw,s ≥ w ≥ up ≥ u.

Thus s is also an fu-flex. Notice that s ∈ Φ(u), since ϕu,s(a) ≥ up(a) > u(a).
Furthermore s � p since ϕu,s(t) ≥ ϕu,p(t) for t 6∈ I(p). Since s 6= p, this is
a contradiction and we have proved that a point p which is minimal with
respect to the partial ordering is a clean flex.

We will now prove that there is a minimal point with respect to the
partial ordering with help of Zorn’s Lemma. Let S be an arbitrary totally
ordered subset of Φ(u). We fix some point p0 ∈ S and let S0 denote the set
of elements p ∈ S such that p� p0. For t ∈ S1 \ I(p0), we set

ϕ(t) = sup{ϕu,p(t) | p ∈ S0}.

Notice that ϕu,p depends continuously on p since it is an osculating function
of u and u is C2n. Hence the family of osculating functions of u is bounded
and the function ϕ(t) is well defined. We would like to show that ϕ(t) is
the restriction to S1 \ I(p0) of a function in A. We fix 2n+1 distinct points
t1, . . . , t2n+1 on S1 and set

αj = sup{ϕu,p(tj) | p ∈ S0} for j = 1, . . . , 2n+ 1.

Then there exists a unique function ψ(t) ∈ A such that

ψ(tj) = αj .

There is a sequence (pk) in S0 such that

αj = lim
k→∞

ϕu,pk
(tj) for j = 1, . . . , 2n+ 1.

It follows that the sequence (ϕu,pk
) converges uniformly to ψ on S1. Suppose

that ψ(c) < ϕ(c) for some c ∈ S1\I(p0). Since ϕ(c) = sup{ϕu,p(c) ; p ∈ S0},
there exists q ∈ S0 such that ψ(c) < ϕu,q(c). In particular ϕu,pk

(c) < ϕ(c).
Since S0 is a totally ordered set, we have ϕu,pk

(t) ≤ ϕu,q(t) for all t ∈
S1\I(p0). There is some k0 such that q < pk0 . Hence ϕu,pk0

(t) ≥ ϕu,q(t) and
it follows that ϕu,pk

(t) = ϕu,q(t) for k ≥ k0, contradicting ψ(c) < ϕu,q(c).

https://doi.org/10.1017/S0027763000008734 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008734


A GLOBAL THEORY OF FLEXES OF PERIODIC FUNCTIONS 119

It follows that ϕ is a restriction of the function ψ in A to S1 \ I(p0) as
we wanted to show. We can assume that (pk) converges to a point p∞. It
is clear that p∞ is a flex and that ϕ(t) = ϕu(p∞). Then it follows that
q ∈ Φ(u) and p∞ � p for all p ∈ S since ϕu(p∞) is strictly larger than u
outside of the interval I defined by

I =
⋂

p∈S

I(p).

We can therefore use Zorn’s Lemma to find a minimal point with respect
to the partial ordering thereby proving the existence of the clean flex with
the desired properties.

The following theorem is the analogue of the Jackson Lemma for sextac-

tic points. It will be used in section five to prove the theorem on sextactic

points from the introduction.

Theorem 4.3. (The Jackson Lemma for Sextactic Points) Let γ :
S1 → R2 be a simple closed curve which is not a conic and is everywhere

C4-regular except maybe in a given point a where we assume that it is C 4-

regular from both left and right. We assume furthermore that γ bounds a

convex region and that it is strictly convex except maybe in the point a.
Then there is a clean sextactic point s on (a, a+ 2π) with the property that

the osculating conic at s is inscribed and does not meet γ(a). If further-

more, γ is at least C1 in a, then γ has a clean sextactic point s with the

property that the osculating conic in s is circumscribed and does not meet

γ(a).

Proof. In the proof we will assume that the curve γ lies in P2, i.e., we
compactify R2 by adding a line at infinity. It was explained in Example 2.6
(ii) how a regular strictly convex curve in the affine plane gives rise to
an intrinsic system. Here the situation is somewhat different since we are
allowing a singular point a.

Without loss of generality, we may set a = 0. Take two distinct points
p1, p2 ∈ (0, 2π) which are not sextactic points. Consider a maximal in-
scribed conic Γ+

p1,p2
(resp. a minimal circumscribed conic Γ−

p1,p2
) passing

through p1 and p2. Suppose Γ+
p1,p2

passes through a. Then γ must be C1

at a. Choose q1 ∈ (0, p1) and q2 ∈ (p1, p2) such that γ(q1) and γ(q2) do
not lie on Γ+

q1,q2
. Then as in the first paragraph of the proof of Lemma 4.2,
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one sees that the conic Γ+
q1,q2

does not pass through γ(a). Hence we may
assume that the conic Γ+

p1,p2
itself does not pass through γ(a).

Let I be a closed interval in (0, 2π) such that p1, p2 ∈ I. Then the
function f+

2 defined in Example 2.6 (ii) is an intrinsic system of order 5
on I satisfying the boundary regularity condition (5, 5). We can prove the
existence of a sextactic point on (0, 2π) with the property that the osculating
conic at s is inscribed and does not meet γ(a) with methods as in the proof
of Lemma 4.2; see also [TU2, Lemma 4.10] where this is also proved.

If furthermore γ is C1 at a, one can also assume that a minimal cir-
cumscribed conic Γ−

p1,p2
does not pass through γ(a) and show the existence

of sextactic point on (0, 2π) with the property that the osculating conic at
s is circumscribed and does not meet γ(a). Here we use the fact that the
function f−2 defined in Example 2.6 (ii) is an intrinsic system of order 5 on
[ε, 2π − ε] satisfying the boundary regularity condition (5, 5).

It is now straightforward how the arguments in the proof of the Jackson
Lemma for Flexes of Functions 4.1 carry over to the present situation.
We only sketch the main points. Let us assume that we are dealing with
circumscribed conics assuming that γ is C1 at a. (The existence of a clean
sextactic point whose osculating conic is inscribed is similar except that we
do not need to assume γ to be C1 at a since we have already proved the
existence of sextactic point on (0, 2π) with the property that the osculating
conic at s is circumscribed and does not meet γ(a).)

Let Φ(γ) be the set of sextactic points such that the osculating conics
there are circumscribed and do not meet a. We have already seen that Φ(γ)
is nonempty. For p ∈ Φ(γ) we define I(p) to be the smallest closed interval
containing F−

2 (p2) = Γ−
p2

∩ γ, but not containing a. Analogous to up one

defines γp as γ on the interval I(p) and equal to Γ−
p2

on the complement of

I(p). Notice that γp is a closed simple contractible curve in P2. The partial
ordering on Φ(γ) is now defined by setting p� q for p, q ∈ Φ(γ) if

I(p) ⊂ I(q) and D(γq) ⊂ D(γp),

where D(c) denotes the closed contractible region bounded by a simple
closed contractible curve c. The same arguments as in the proof of Theo-
rem 4.1 can now be used to show that a point p ∈ Φ(γ) that is minimal
with respect to this ordering is a clean sextactic point of the type we are
are trying to find. The final step is again to use Zorn’s Lemma to prove the
existence of a minimal point in Φ(γ). Let S be a totally ordered subset of
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Φ(γ). Set

D =
⋃

p∈S

D(γp).

The boundary of D consists of two pieces: One piece is the image of the
interval

I =
⋂

p∈S

I(p)

under γ. We would like to show that the other piece, the complement of
γ(I) which we denote by Γ, is an arc of a conic. We choose five different
points q1, . . . , q5 on Γ and five sequences (q1,k), . . . , (q5,k) of points on a
sequence of conics Γ−

p2
k

such that (qi,k) converges to qi for i = 1, . . . , 5. We

can assume that the corresponding sequence (pk) converges to a point p∞.
We can now use arguments as in the proof of Theorem 4.1 to show that arcs
of Γ−

p2
k

converge to Γ and that Γ is an arc of the osculating conic Γ−
p2
∞

. It

follows that p∞ ∈ Φ(γ) and p∞ � p for all p ∈ S and we can apply Zorn’s
Lemma.

§5. On the existence of 2n+ 2 clean flexes on periodic functions

We proved in Section 3 that a smooth periodic function u has at least

three flexes where the osculating functions are greater or equal to u and

similarly at least three flexes where the osculating functions are less than

or equal to u. In Section 4 we also started to study the existence of clean

flexes in the Jackson Lemma and this will be continued in this section.

Our main result here is the following theorem which is the same as

Theorem 1.1 in the introduction if A = A2n+1.

Theorem 5.1. Let A be a Chebyshev space of order 2n+1 where n ≥ 1.
Let u be a C2n-function on S1 which does not belong to A. Then u(t) has

at least n + 1 different (intervals of ) clean maximal A-flexes and at least

n+ 1 different (intervals of ) clean minimal A-flexes.

Remark. Notice that a clean maximal A-flex cannot be a clean minimal
A-flex if u does not belong to A. The theorem therefore gives us 2n + 2
clean flexes.

Example. Theorem 5.1 is optimal. Set A = A2n+1. The flexes of a
given function u are the zeros of L2n+1u where L2n+1 is the operator

L2n+1 = D(D2 − 1) · · · (D2 − n2),
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where D = d/dt, see Proposition A.7 in Appendix A. If we set u(t) =
sin(n + 1)t, then L2n+1u(t) is proportional to u(t). Thus u(t) has exactly
2n+ 2-flexes which are all clean.

The main new tool in the proof of Theorem 5.1 is the following proposi-

tion, which is in the same spirit as the induction argument in [Ba, pp. 201–

204]; see also Hilfssatz 2 on page 140 in [Nö]. Notice that unlike here, global

properties are not treated in [Ba] and [Nö].

Proposition 5.2. Let A be a Chebyshev space of order 2n+ 1 where

n ≥ 2. Let u be a C2n-function on S1 and fu the corresponding intrinsic

system of order 2n+ 1 on S1.

(i) Suppose that

fu(p, a
n−1)(a) ≥ 2n,

and that Fu(p, a
n−1) \ {p} is a closed interval where p and a are two

different points. Then both (p, a) and (a, p) contain a clean maximal

A-flex.

(ii) Let [a, b] be a nontrivial closed interval on S1. Suppose that

fu(p, a
n−1)(a) ≥ 2n and fu(p, b

n−1)(b) ≥ 2n

for a point p 6∈ [a, b]. If furthermore both Fu(p, a
n−1) \ {p} and

Fu(p, b
n−1) \ {p} are different closed intervals, then there is a clean

maximal A-flex in the interval (a, b).

Proof. We first proof the claim in (i). Instead of the original function
u we consider the following function (See Figure 13.)

v(t) =

{

u(t) if t ∈ [p, a],

ϕu,(p,an−1)(t) = ϕu,(an)(t) otherwise,

where ϕu,(p,an−1) is a minimal function with respect to (p, an−1).
The function v(t) is at least C1 in p and at least C2n−1 in a. Set I = [p, a].
Then v satisfies the boundary condition (1, n) on I; see Definition 2.2. We
consider the intrinsic system fv defined on In(1,n). We have that

fv(p, a
n−1)(p) + fv(p, a

n−1)(a) ≥ 2(n+ 1).

We can therefore apply the Contraction Lemma 3.9 to this situation which
now implies that there is an fv-flex s in the open interval (p, a) which is
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Figure 13.

clearly also an fu-flex. We have nothing to prove if s is a clean flex of u.
Therefore we assume that it is not. The osculating conic ϕu,(sn) can clearly
only take on the same values as u in the interval [p, a] ∪ Fu(p, a

n−1) since
v is strictly larger than u on its complement. Let q ∈ Fu(s

n) be point that
is not in the same component of Fu(s

n) as s. Let us assume that q comes
before s in the interval [p, a] ∪ Fu(p, a

n−1), the other case being similar.
Define a function w by setting

w(t) =

{

u(t) if t ∈ [q, s],

ϕu,(sn)(t) otherwise.

This function w is C2n in s since s is a flex. Hence w is C2n except possibly
in q where it is at least C1. We can now apply the Jackson Lemma 4.1 to w.
It follows that w has a clean flex s′ whose osculating function does not take
on the same value as u in q. Hence s′ must be contained in the interval (q, s).
Notice also that s′ cannot be contained in the interval Fu(p, a

n−1)\{p} since
then ϕu,(s′) = ϕu,(p,an−1) contradicting that s′ is a clean flex. It follows from
this discussion that s′ ∈ (p, a).

The proof that (a, p) contains a clean flex is very similar.
Next we prove (ii). Instead of the original function u(t), we consider

the following function (See Figure 14.)

v(t) =











ϕu,(p,an−1)(t) = ϕu,(an)(t) if t ∈ [p, a],

u(t) if t ∈ [a, b],

ϕu,(p,bn−1)(t) = ϕu,(bn)(t) if t ∈ [b, p+ 2π],

where ϕu,(p,an−1) (resp. ϕu,(p,bn−1)) are minimal function with respect to
(p, an−1) (resp. (p, bn−1)).
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Figure 14.

The function v(t) is at least C1 in p and C2n−1 in a and b. Moreover v
satisfies at least the boundary regularity condition (n, n) on [a, b]; see Defi-
nition 2.2. Let fv denote the intrinsic system of order 2n+ 1 on [a, b] satis-
fying the boundary regularity condition (n, n) whose existence was proved
in Proposition 2.4. We choose n different points p1 ≺ · · · ≺ pn in the inter-
val (a, b), but not in Fu(p, a

n−1) ∪ Fu(p, b
n−1). Arguing exactly as at the

beginning of the proof of the Jackson Lemma 4.1, we can assume that

fv(p1, . . . , pn)(p) = 0.

We choose a point q ∈ (p, pn) as follows: First we consider the case

n
∑

i=1

fv(p1, . . . , pn)(pi) = 2n.

By Axiom (A6), there exists a point q ∈ Fv(p1, . . . , pn) that is different from
p and p1, . . . , pn. Without loss of generality, we may assume that q ∈ (p, b).
After interchanging q and p1, . . . , pn if necessary, we may assume

q ≺ p1 ≺ · · · ≺ pn.

Next we consider the case that

n
∑

i=1

fv(p1, . . . , pn)(pi) ≥ 2n+ 2.

In this case we set q = p1. In both of these two cases, there is a sufficiently
small ε > 0, such that p+ε ≺ q and pn−1 ≺ pn−ε. Moreover, v is C2n−1 on
[p+ε, pn−ε] satisfying at least the boundary regular condition (n−1, n−1).
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By Proposition 2.8, we can associate to v an intrinsic system f ′
v of order

2n− 1 on the interval [p+ ε, pn − ε] with base point pn. We have that
∑

t∈[q,pn−1]

f ′v(p1, . . . , pn−1)(t) ≥ 2n.

Hence there exists a point r ∈ (q, pn−1) by the Contraction Lemma 3.10
such that

f ′v(r
n−1)(r) ≥ 2n.

If r 6∈ [a, b), then r ∈ (p, a). In this case ϕv,(pn,rn−1) is locally around r
greater or equal to ϕu,(an) and the two functions meet in r with multiplicity
at least 2n. Here ϕv,(pn,rn−1) is the minimal function of v with respect to
(pn, r

n−1). On the other hand, the value of ϕv,(pn,rn−1) in the point pn is
smaller than that of ϕu,(an) in pn. This means that ϕv,(pn ,rn−1) meets ϕu,(an)

with multiplicity at least 2n + 2 which implies that ϕv,(pn ,rn−1) = ϕu,(an).
Hence pn ∈ Fu(a

n) which is a contradiction. Thus we have r ∈ [a, b).
We have

fv(r
n−1, pn)(r) + fv(r

n−1, pn)(pn) ≥ 2(n+ 1).

Hence we can use the Contraction Lemma 3.9 (or 3.10) to prove the ex-
istence of a fv-flex s in the open interval (a, pn) ⊂ (a, b). The point s is
clearly also an fu-flex, but might not be a clean flex. We can now as in the
proof of part (i) of this proposition introduce a function w and apply the
Jackson Lemma to show the existence of a clean flex that must be contained
in the interval (a, b).

Proof of Theorem 5.1. We shall now prove the existence of n+ 1 clean
maximal A-flexes on u by induction over the order 2n+1 of the Chebyshev
space A. The result can then be applied to −u to also prove the existence
of n+ 1 clean maximal A-flexes on u.

If n = 1, it follows quite easily from the proof of the Kneser Lemma 3.6
that u has two clean maximal A-flexes. We now assume the claim of the
theorem to be true for n − 1 and show that it then follows for n. We fix
p ∈ S1 that is not a flex. By Theorem A.2 in Appendix A there exists a
function ψ0 ∈ A such that

u(p) = ψ0(p), u′(p) = ψ′
0(p).

Now we define a linear subspace V of A by setting

V =
{

ϕ ∈ A ; ϕ(p) = 0, ϕ′(p) = 0
}

.
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We set
ψ1(t) = α+ β cos t+ γ sin t.

We can adjust the three coefficients α, β, γ so that ψ1 satisfies

ψ1(p) = ψ′
1(p) = 0.

Since ψ1 belongs to A3, it has at most two zeros counted with multiplicities.
Thus ψ1 has no zeros other than p and the second derivative of ψ1 at p does
not vanish. We then set

Aψ1
=

{ ϕ

ψ1
; ϕ ∈ V

}

.

It can easily be checked that Aψ1
is a Chebyshev space of order 2n−1 since

ϕ/ψ1 is C2n−2 at p; see Appendix B. We set

v(t) =
u− ψ0

ψ1
.

Then v is a C2n−2-function on S1. So by applying the induction assumption
there exist n clean Aψ1

-flexes s1, . . . , sn. Let ϕj in Aψ1
be the osculating

function of v at sj . Since ϕj is a function in Aψ1
, there exists a function

ϕ̂j ∈ V such that ϕj = ϕ̂j/ψ1. If some sj is equal to p, then ϕ̂j meets u
only in one component, and this implies that p is a clean A-flex, which is a
contradiction.

So none of the points sj can be equal to p. Hence ψ1 does not vanish
in any of the points sj and it follows that the first 2n − 1 derivatives of
(u − ψ0) − ϕ̂j vanish in sj. Since (u − ψ0) − ϕ̂j vanishes with multiplicity
at least two in p, we have that

ψ0 + ϕ̂j = ϕ(p,sn−1
j ) = ϕ(sn

j ),

where ϕ(p,sn−1
j

) and ϕ(sn
j ) are the maximal functions of u with respect to

the n-uples (p, (sj)
n−1) and ((sj)

n) respectively. This implies that

fu(p, s
n−1
j )(sj) ≥ 2n, fu(p, s

n−1
j−1 )(sj−1) ≥ 2n for j = 0, 1, . . . , n, n+ 1,

where we have set s0 = sn+1 = p. Since each sj is a clean Aψ1
-flex,

Fu(p, s
n−1
j ) \ {p} is a closed interval for j = 1, . . . , n. By Proposition 5.2,

there is a clean maximal A-flex tj on each of the intervals (sj−1, sj) for
j = 0, . . . , n+ 1.
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We now also prove the other theorem stated in the introduction. The

proof is similar to the one of Theorem 5.1.

Theorem 5.3. Let γ : S1 → R2 be a strictly convex C4-regular curve

which is not a conic. Then γ has at least three (intervals of ) clean maximal

and at least three (intervals of ) clean minimal sextactic points.

Proof. We only prove the existence of three clean maximal sextactic
points, the proof of the existence of three clean minimal flexes being similar.
Let f+

2 be the intrinsic system of order 5 on S1 introduced in Example 2.6
(ii). The following lemma is analogous to Proposition 5.2 (i) and has a very
similar proof, which we therefore omit only remarking that it is this time
based on the Jackson Lemma for Sextactic Points 4.3.

Lemma 5.4. Suppose that

f+
2 (p, a)(a) ≥ 4,

and that F+(p, a) \ {p} is a closed interval where p and a are two different

points. Then both (p, a) and (a, p) contain a clean maximal sextactic point.

We now come back to the proof of Theorem 5.3. By Theorem 4.3
there is a clean maximal sextactic point p on the curve γ. We can also
use Theorem 4.3 to find a clean maximal sextactic point q whose osculating
conic does not meet p. We first show that f+

2 (p, q)(p) = 2 and f+
2 (p, q)(q) =

2. Since the osculating conics coincide with the maximal inscribed conic
at p and q, the inequality f+

2 (p, q)(p) ≥ 4 (or f+
2 (p, q)(q) ≥ 4) implies

f+
2 (p, q)(p) = f+

2 (p2)(p) = ∞ (or f+
2 (p, q)(q) = f+

2 (q2)(q) = ∞) and the
osculating conic at p would pass through q (or the one at q through p).
This is a contradiction. Hence f+

2 (p, q)(p) = f+
2 (p, q)(q) = 2.

By (A6), there is a point r distinct from p, q such that f+(p, q)(r) ≥ 2.
Assume that p ≺ q ≺ r. The restriction of f+

2 to [p, r] is an intrinsic
system of order 5 satisfying the boundary regularity condition (2, 2). We
can therefore define f+

2,p as before Lemma 3.7, i.e., we set for x ∈ [p, r] and

y ∈ S1

f+
2,p(x)(y) =

{

f+
2 (p, x)(y) if y 6= p,

f+
2 (p, x)(y) − 2 if y = p.

By Lemma 3.7 we know that f+
2,p restricted to [q, r] is an intrinsic system of

order 3 satisfying at least the boundary regularity condition (1, 1). There
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is now a subinterval [a, b] of [q, r] satisfying the conditions in the Kneser
Lemma 3.6 which implies that there is a point c in (a, b) such that F +

2,p(c)

is connected. This implies that f+
2 (p, c)(c) ≥ 4 and that F+

2 (p, c) \ {p} is a
closed interval. By Lemma 5.4 we then have a clean maximal point in the
interval (p, c) and another one in (c, p). (One of these sextactic points might
coincide with q.) Since p is also a clean sextactic point we have proved the
existence of thee (intervals of) clean maximal sextactic points.

§6. Arrangements of clean flexes

As was pointed out in Example 2.6 (i), there are two clean maximal

vertices and two clean minimal vertices on a given simple closed curve γ :

S1 → R2. It is a natural question to ask in which order the clean maximal

and the clean minimal vertices are arranged on S1. In [TU2], the authors

proved that there are four points t1 ≺ t2 ≺ t3 ≺ t4 on S1 such that t1, t3 are

clean maximal vertices and t2, t4 are clean minimal vertices. Now that we

have proved the existence of 2n+2 clean A-flexes on a 2π-periodic function

u, we can ask again how the maximal and minimal ones are arranged relative

to each other. We will say that the clean A-flexes on u change sign at least

m-times if there are 2m-points

p1 ≺ q1 ≺ · · · ≺ pm ≺ qm

on [0, 2π) such that pj for j = 1, . . . ,m are clean maximal A-flexes and qj
for j = 1, . . . ,m are clean minimal A-flexes.

Theorem 6.1. Let u be a 2π-periodic C2n-function which is not in A.

Then the clean A-flexes on u change sign at least four times.

We do not know whether Theorem 6.1 gives an optimal lower bound

on the number of sign changes or not.

To prove the theorem, we will use the abstract theory of pairs of intrinsic

circle systems of which we give a quick review.

Definition 6.2. A family of nonempty closed subsets F = (Fp)p∈S1

of S1 is called an intrinsic circle system on S1 if it satisfies the following
three conditions for any p ∈ S1.

(I1) If q ∈ Fp, then Fp = Fq.

(I2) If p′ ∈ Fp, q
′ ∈ Fq and q � p′ � q′ � p (� q), then Fp = Fq holds.
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(I3) Let (pn)n∈N and (qn)n∈N be two sequences in S1 such that limn→∞ pn
= p and limn→∞ qn = q respectively. Suppose that qn ∈ Fpn for all
n ∈ N. Then q ∈ Fp holds.

A pair of intrinsic circle systems (F+, F−) is said to be compatible if it

satisfies the following two conditions.

(C1) F+
p ∩ F−

p = {p} for all p ∈ S1.

(C2) Suppose that F+(p) (resp. F−(p)) is connected. Then there are no

points q in a sufficiently small neighborhood of p such that F +(q)

(resp. F−(q)) is connected.

In [TU2, Theorem 1.4], the authors proved the following

Lemma 6.3. Let (F+, F−) be a compatible pair of intrinsic circle sys-

tems. Then there are four points p1, p2, p3, p4 ∈ S1 satisfying p1 � p2 �
p3 � p4 (� p1) such that F+

p1
, F+

p3
and F−

p2
, F−

p4
are connected subsets of S1.

We now prove the theorem as a corollary of Lemma 6.3.

Proof of Theorem 6.1. Then the clean flexes on u change sign exactly
two times. There are clearly disjoint closed intervals I and J containing all
the clean maximal and all the clean minimal flexes respectively. There is a
point p ∈ S1 such that p 6∈ I ∪ J . Without loss of generality, we may set
p = 0, and

0 < inf(I) < sup(I) < inf(J) < sup(J) < 2π.

We set

F+
q =

{

Fu(q, p
n−1) \ {p} if q 6∈ F (pn)

Fu(p
n) if q ∈ F (pn),

F−
q =

{

F−u(q, p
n−1) \ {p} if q 6∈ F (pn)

F−u(p
n) if q ∈ F (pn).

It is easy to check that (F+, F−) is a compatible pair of intrinsic circle
systems. By Lemma 6.3, there are four points p1, p2, p3, p4 ∈ S1 satisfying
p1 � p2 � p3 � p4 (� p1) such that F+

p1
, F+

p3
and F−

p2
, F−

p4
are all connected.

Now we claim that p1, p3 ∈ I. Assume that p1 6∈ I holds, then we have
p1 ∈ (0, inf(I)) or p1 ∈ (sup(I), 2π). Since F+

p1
is connected, we have

fu(p1, p
n−1)(p1) ≥ 4, fu(p1, p

n−1)(p) ≥ 2n− 2.

https://doi.org/10.1017/S0027763000008734 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008734


130 G. THORBERGSSON AND M. UMEHARA

By Lemma 3.7, we can define a new intrinsic system g of order 2n − 2 on
[0, p1] (resp. on [p1, 2π]) by

g(q1, . . . , qn−1)(r) =

{

f(p1, q1, . . . , qn−1)(r) if q 6= r,

f(p1, q1, . . . , qn−1)(r) − 2 if r = q,

where (q1, . . . , qn−1) ∈ [0, p1]
n−1
(1,n) (resp. (q1, . . . , qn−1) ∈ [p1, 2π]n−1

(1,n)). Since

g satisfies the boundary regularity condition (1, n) on [0, p1] and (n, 1) on
[p1, 2π], there are clean g-flexes s1 ∈ [0, p1] and s2 ∈ [p1, 2π]. (Apply
Proposition 5.2 (i) to the Chebyshev space Aψ1

defined in the proof of
Theorem 5.3.) Thus we have

f(p1, s
n−1
j )(p1) ≥ 2, f(p1, s

n−1
j )(sj) ≥ 2n (j = 1, 2).

By Proposition 5.2 (i), we have a clean maximal A-flex s′1 ∈ (0, s1) and
s′2 ∈ (s2, 2π) respectively. If p1 ∈ (0, inf(I)) (resp. p1 ∈ (sup(I), 2π)), we
have s′1 ∈ (0, inf(I)) (resp. s′2 ∈ (sup(I), 2π)). This is a contradiction since
all of the clean maximal flexes are contained in I. So we have p1 ∈ I.
Similarly we can see that p3 ∈ I and p2, p4 ∈ J . This contradicts the
relation p1 � p2 � p3 � p4. Hence we must have at least four sign changes
of clean flexes.

Finally we formulate two open problems which are in our opinion the

most important ones on flexes of periodic functions.

Problems. (1) Give a best lower bounds for the number of sign
changes of clean A-flexes of a periodic function. The number 2n + 2 is
a tempting guess.

(2) Let u be a 2π-periodic C∞-function and S be the union over the
sets of A2n+1-flexes on u where n ranges over all natural numbers. Is the
set S a dense subset of S1?

Appendix A. Chebyshev spaces

In this appendix, we shall define Chebyshev spaces as certain linear

subspaces of smooth functions, bring their basic theory and explain the

existence of 2n+ 2 flexes on a periodic function as an application.

Chebyshev spaces are related to Fourier series and disconjugate opera-

tors. It is well known that many theorems in the spirit of the classical four

vertex theorem can be proved using either Fourier series (see Hayashi [Hy]
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and Blaschke [Bl, p. 68]) or disconjugate operators (see [Ar2], [GMO], [OT]

and [Ta]).

A Cn-function u defined on R has a zero of order m (or a zero with

multiplicity m) at s where 1 ≤ m ≤ n if the value and the first m − 1

derivatives of u at s vanish, but not the m-th. Notice that we do not define

the order of a zero s of a Cn-function u that vanishes in s together with all

its n derivatives since it will not be needed in the following.

Definition A.1. A linear subspace A of Cn−1(R) is called a Cheby-

shev space of order n if the following conditions are satisfied.

(i) n ≤ dimA.

(ii) Every nonvanishing function ϕ in A has at most n− 1 zeros counted
with multiplicity in S1 = R/2πZ.

(iii) Every function ϕ in A is 2π-periodic if n is odd.

(iv) Every function ϕ in A is 2π-antiperiodic, i.e., ϕ(t+ 2π) = −ϕ(t), if n
is even.

In the definition of a Chebyshev space we allow the possibility that

dimA = ∞. We will see in Theorem A.2 that the dimension of a Chebyshev

space is always finite and equal to its order n.

We now give a few examples of Chebyshev spaces.

The space

A2k+1 =

{

ϕ ∈ C2k(R) ; ϕ(t) = a0 +

k
∑

n=1

(an cosnt+ bn sinnt)

}

is a Chebyshev space of order 2k + 1. In fact, we have

cosnt =
zn + z−n

2
, sinnt =

zn − z−n

2i
,

where z = eit. The functions zkϕ for ϕ in A2k+1 are polynomials in z of

degree less than or equal to 2k. Consequently, the number of zeros of the

functions ϕ in A2k+1 can at most be 2k.

Similarly, the space

A2k =

{

ϕ ∈ C2k(R) ; ϕ(t) =
k

∑

n=1

[

an cos
((2n− 1)t

2

)

+bn sin
((2n− 1)t

2

)

]}
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is a Chebyshev space of order 2k.

A linear differential operator L of order n on R is called disconjugate if

its kernel KerL is a Chebyshev space of order n. Examples of disconjugate

operators are

L2k+1 = D(D2 − 1) · · · (D2 − k2),

L2k =

(

D2 −
(1

2

)2
)

· · ·

(

D2 −
(2k − 1

2

)2
)

,

where D = d/dt, since their kernels are A2k+1 and A2k respectively. We

refer to Proposition A.6 for more information on Chebyshev spaces and

disconjugate operators.

Further simple examples of Chebyshev spaces can be obtained as fol-

lows. Let A be the linear span of either one of the sets

An2k+1 = {ϕ1 · · ·ϕn ; ϕ1, . . . , ϕn ∈ A2k+1},

An2k = {ψ1 · · ·ψn ; ψ1, . . . , ψn ∈ A2k}.

Then A is a Chebyshev space of order n(2k + 1) in the first case and of

order 2nk in the second case.

The following property of Chebyshev spaces is crucial.

Theorem A.2. Let A be a Chebyshev space in Cn−1(R) of order n.
Let

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < 2π

be n points and νj the multiplicity with which tj occurs as a component of

the (j − 1)-uple (t1, . . . , tj−1). Then the linear map T : A → Rn defined by

T (ϕ) =
(

ϕ(ν1)(t1), . . . , ϕ
(νn)(tn)

)

is an isomorphism. In particular, A is finite dimensional and its dimension

coincides with the order n.

Proof. Let ϕ ∈ A be in the kernel of the map T . It follows from the
definition of T that ϕ vanishes at least n times counted with multiplicities.
The definition of a Chebyshev space now implies that ϕ vanishes identically.
We have therefore proved that T is injective and it follows that dimA ≤ n.
By the definition of a Chebyshev space we have dimA ≥ n. Hence dimA =
n and T is an isomorphism.
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Corollary A.3. Let A be a Chebyshev space of order n. Let

0 ≤ t1 < t2 < · · · < tk < 2π

be k different points where k ≤ n − 1 and let i1, i2, . . . , ik be k positive

integers satisfying i1 + i2 + · · · + ik = n − ` for ` ≥ 0. Then the set of

functions ϕ in A which have zeros of order ij at tj for j = 1, . . . , k is an

`-dimensional subspace of A.

We shall now prove the following

Theorem A.4. Let A be a Chebyshev space in Cn−1(R) of odd (resp.
even) order n. Let u be a nonvanishing 2π-periodic (resp. 2π-antiperiodic)
Cn−1-function. Suppose

(1)

∫

S1

u(t)ϕ(t)dt = 0

for all ϕ(t) ∈ A. Then the function u(t) changes its sign at least n+1 times

on S1 = R/2πZ.

Proof. Suppose that u does not change sign if n is odd and that it
changes sign only ones if n is even. Let t1 be arbitrary if n is odd and the
zero of u if n is even. By Corollary A.3 there is a nonvanishing function ϕ
in A with a zero in t1 with multiplicity n − 1. We can choose the sign of
ϕ such that u(t)ϕ(t) ≥ 0 for all t. Then the integral in (1) being equal to
zero implies that uϕ vanishes identically. This is a contradiction since both
u and ϕ vanish in at most one point. Hence u changes sign at least ones if
n is odd and at least twice if n is even.

Now assume that u changes sign only in the m distinct points

t1 < t2 < · · · < tm

where m < n + 1. Notice that m is even if n is odd and m is odd if n
is even. Hence n −m is an odd integer. By Corollary A.3, there exists a
function ψ in A such that

(i) ψ has zero in t1 with multiplicity n−m,

(ii) ψ has a zero in tj with multiplicity one if j ≥ 2.
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Since the total multiplicity of zeros of ψ is n − 1, it follows that ψ has no
zeros other than t1, . . . , tm. Since the multiplicities of the zeros at t1, . . . , tm
are all odd integers, we have that ψ changes its sign exactly at t1, . . . , tm.
Thus uψ never changes sign. The vanishing of the integral in (1), now
implies that u must vanish identically, which is a contradiction. Hence u
changes it sign at least n+ 1 times.

Let A be a Chebyshev space of odd (resp. even) order n in Cn−1(R).

Let u be a nonvanishing 2π-periodic (resp. anti 2π-periodic) Cn−1-function.

Let s ∈ S1. A function ϕs ∈ A is called the A-osculating function of u at s

if the first n− 1 derivatives of ϕs and u at s coincide. That ϕs exists and

is unique follows from the bijectivity of the mapping T in Theorem A.2 by

setting t1 = · · · = tn = s.

Definition A.5. Suppose A and u as above are contained in Cn(R).
Then a point s ∈ S1 is called an A-flex if the n-th derivative of ϕs and u
coincide in s.

From now on we assume that a Chebyshev space A of order n is con-

tained in Cn(R). We will show in Theorem A.8 that the number of A-flexes

on an 2π-periodic (resp. 2π-antiperiodic) function u in Cn(R) is at least

n+ 1. For this we will need the next proposition which is interesting in its

own right. It shows that the condition that a Chebyshev space A of order

n be contained in Cn(R) is a necessary and sufficient condition that it is

the kernel of a disconjugate operator of order n.

Notice though that the concept of a Chebyshev space is essentially

wider than that of kernels of disconjugate operators. An example of a

Chebyshev space of order 3 which is in C2(R) but not in C3(R) can be

obtained as follows. Let Aγ be the linear span of the functions {1, x, y}
where γ = (x, y) : S1 → R2 is a strictly convex C2-curve which is not C3.

Clearly, Aγ is a Chebyshev space of order three since any line meets the

curve γ in at most two points counted with multiplicities.

Proposition A.6. Let A be a Chebyshev space of odd (resp. even)
order n in Cn+m(R) for m ≥ 0, then there exists a unique differential

operator of the form

LA = Dn + an−1D
n−1 + · · · + a1D + a0

such that A is the kernel of LA, where the coefficients aj are 2π-periodic
(resp. 2π-antiperiodic) Cm-functions.
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The operator LA in the proposition is called the disconjugate operator

associated with the Chebyshev space A. The uniqueness of LA is due to the

fact that its highest order coefficient is normalized to be 1.

Proof. We fix a point t ∈ S1 arbitrarily and define a linear map Tt :
A → Rn by setting

Tt(ϕ) =
(

ϕ(t), ϕ′(t), . . . , ϕ(n−1)(t)
)

.

By Theorem A.2, the map Tt is bijective. We define a linear functional
St : A → R by setting St(ϕ) = ϕ(n)(t). Since St ◦ T

−1
t is a linear functional

on Rn, there exists an (a0(t), . . . , an−1(t)) in Rn such that

St ◦ T
−1
t (x0, . . . , xn−1) = −

n−1
∑

i=0

ai(t)xi,

where the choice of the negative sign in front of the sum will soon become
clear. It is clear that (a0(t), . . . , an−1(t)) is Cm-differentiable in t. Now we
have

ϕ(n)(t) = St(ϕ)

= St ◦ T
−1
t (Tt(ϕ))

= St ◦ T
−1
t

(

ϕ(t), ϕ′(t), . . . , ϕ(n−1)(t)
)

= −
n−1
∑

i=0

ai(t)ϕ
(i)(t).

This proves the existence of the operator LA. The uniqueness is clear.

The next proposition is a further preparation for the existence of flexes

in Theorem A.8.

Proposition A.7. Let A be a Chebyshev space of odd (resp. even) or-

der n in Cn(R). Let u be a 2π-periodic (resp. 2π-antiperiodic) Cn-function.

A point s is an A-flex of u if and only if the function LAu vanishes at s.

Proof. Since A is contained in Cn(R) it has an associated disconjugate
operator A such that LAϕ = 0 for all ϕ in A. Let ϕs in A be the osculating
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function of u at a point s. Since LA(ϕs) vanishes identically, we have that

u(n)(t) − ϕ(n)
s (t) = u(n)(t) +

n−1
∑

i=1

ai(t)ϕ
(i)
s (t)

= u(n)(t) +
n−1
∑

i=0

ai(t)u
(i)(t)

= (LAu)(t)

for all t. Hence s is an A-flex if and only if LAu vanishes in s.

Theorem A.8. Let A be a Chebyshev space of odd (resp. even) order

n in Cn(R). Let u be a 2π-periodic (resp. 2π-antiperiodic) Cn-function.

Then the number of A-flexes of u on S1 is at least n+ 1.

Proof. The adjoint operator L∗ of a disconjugate operator L is also
disconjugate; see Theorem 9 on p. 104 in [Co]. Let A∗ be the Chebyshev
space of order n corresponding to L∗

A which is also contained in Cn(R).
Then

∫

S1

(LAu)(t)ϕ(t) dt =

∫

S1

u(t)(L∗
Aϕ)(t) dt = 0

for all ϕ in A∗. We now apply Theorem A.4 to the Chebyshev space A∗ and
conclude that the function LAu changes sign at least n+ 1 times. Hence u
has at least n+ 1 flexes by Proposition A.7.

Theorem A.8 is optimal; see the example after Theorem 5.1.

Appendix B.

Here we shall prove the following result from Calculus which was used

in the proof of Theorem 5.1.

Theorem B.1. Let u be a Cn-function defined on a neighborhood I of

the origin and satisfying

u(0) = u′(0) = · · · = u(r)(0) = 0

where r ≤ n. Then there exists a Cn−r−1-function v on I such that

u(t) = tr+1v(t)

for all t ∈ I.
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Applying the following lemma r+ 1 times immediately proves the the-

orem.

Lemma B.2. Let u be a Ck-function defined on a neighborhood I of

the origin and satisfying u(0) = 0 where k ≥ 1. Then there exists a C k−1-

function v on I such that u(t) = t v(t) for all t ∈ I.

Proof. We have that

u(t) =

∫ 1

0

du(ts)

ds
ds =

∫ 1

0
t u′(ts) ds = t v(t)

where

v(t) :=

∫ 1

0
u′(ts) ds.

It is clear that v is continuous.

Remark. Lemma B.2 can be found on p. 89 in [Ar1] with the redundant
assumption that u′(0) = 0.

References
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