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We have reviewed effects of long chain (LC) n-3 PUFA on markers of atherosclerosis in
human subjects with a focus on individual effects of EPA and DHA. Initial results from epi-
demiological studies suggested that LC n-3 PUFA from fish oils (FO) reduced incidence of
CVD; those results have been confirmed in interventional studies. Dietary intervention with n-3
PUFA decreased fasting and postprandial TAG, number of remnant-like chylomicron particles,
large VLDL, and total and small dense LDL particles. It increased mean size of LDL particles
by increasing number of large and decreasing those of small dense particles. With some
exceptions, n-3 PUFA decreased blood pressure (BP) and heart rate (HR), flow-mediated
dilation (FMD) and plasma concentrations of inflammatory markers. n-3 PUFA also decreased
circulating adhesion molecules and intima-media thickness (IMT) in some but not other stu-
dies. For IMT, results varied with the sex and artery being examined. EPA effects on FMD are
endothelial cell dependent, while those of DHA seem to be endothelial cell independent.
Individually, both EPA and DHA decreased TAG and inflammatory markers, but only DHA
decreased HR, BP and number of small dense LDL particles. Results varied because of dose
and duration of n-3 PUFA, EPA:DHA, health status of subjects and other reasons. Future
studies are needed to determine optimal doses of EPA and DHA individually, their synergistic,
additive or antagonistic effects, and to understand underlying mechanisms. In conclusion, n-3
PUFA decreased several risk factors for atherosclerosis without any serious adverse effects.

TAG: LDL size and numbers: Intima-media thickness: Blood pressure

Atherosclerosis comes from the Greek words athero
(meaning gruel or paste) and sclerosis (hardness). It is a
common disorder of the arteries in which fat and other
substances build up in and on the walls of arteries and form
hard structures called plaques(1). The plaques can make the
artery narrow and less flexible, making it harder for blood
to flow. If the coronary arteries become narrow, blood flow
to the heart can slow down or stop. This can cause chest
pain (stable angina), shortness of breath, heart attack and
other symptoms. Pieces of plaque can break off and move

through the bloodstream (embolisation). This is a common
cause of heart attack and stroke. Blood clots can also form
around a tear (fissure) in the plaque and block blood flow.
If the clot moves into an artery in the heart, lungs or brain,
it can cause a stroke, heart attack or pulmonary embo-
lism(2). Eighty million American adults (approximately
one in three) have CVD(3). CVD is the number one cause
of deaths in the US accounting for 34% of all deaths or
2400 deaths each day. It is a major public health problem
with an annual economic loss of $400 billion(3).

Abbreviations: ALA, a-linolenic acid; BP, blood pressure; CAD, coronary artery disease; CRP, C-reactive protein; FMD, flow-mediated dilation; FO, fish
oil; HDL-C, HDL cholesterol; HR, heart rate; ICAM, intracellular adhesion molecule; IMT, intima-media thickness; LC, long chain; LDL-C, LDL
cholesterol; VCAM, vascular adhesion molecule.
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The arterial wall comprises three layers. Adventitia, the
outermost layer carries blood and nerve supply to the
artery itself. Media, the middle layer, comprises smooth
muscle cells and controls vascular tone. Intima, the inner-
most or basement membrane, is covered by a single
layer of endothelial cells which have adhesion molecules
(intracellular adhesion molecule-1 (ICAM-1), and vascular
cell adhesion molecule-1 (VCAM-1)) on their surface to
which the immune cells can stick. It is the site of athero-
sclerosis and it regulates haemostasis, thrombosis, vascular
tone and permeability. Atherosclerosis process starts within
the walls of the artery and not in the lumen(4). It is a
heterogeneous disease, and does not uniformly affect all
blood vessels(5).

Oxidation of LDL by free radicals, particularly reactive
oxygen species initiates atherosclerosis. When oxidised
LDL comes in contact with an artery wall, it alters the
permeability of the arterial wall and penetrates under
the endothelial cells. The body’s immune system responds
by sending specialised leucocytes (monocytes and T-
lymphocytes) to repair the damage to the arterial wall by
attaching to the adherence molecules expressed on the
surface of endothelial cells. Next these cells pass under
the endothelial cell layer where monocytes absorb the
oxidised-LDL and are transformed into specialised foam
cells. Unfortunately, these leucocytes are not able to pro-
cess the oxidised-LDL, and ultimately grow then rupture,
depositing a greater amount of oxidised cholesterol into
the arterial wall. This triggers more leucocytes, and the
cycle continues. Eventually, the artery becomes inflamed.
The growth factors released from monocytes and T-cells
cause the smooth muscle cells to enlarge and form a hard
cover over the affected area. This hard cover is what cau-
ses a narrowing of the artery, reduces the blood flow and
increases blood pressure (BP).

Atherosclerosis starts at very early ages and progresses
with age. There are six stages in the development of
atherosclerosis(4). The first four stages (foam cells, fatty
streak, extracellular fatty streak and lipid core) are
asymptomatic for decades and are compensated by artery
enlargement. The last two stages (lipid core embedded in
fibrosis, plaque rupture leading to thrombosis and hae-
morrhage) cause angina, heart attack and stroke. The
atheromatous plaques, though long compensated for by
artery enlargement, eventually lead to plaque ruptures
and clot formation inside the artery lumen at the site of
ruptures. The clots heal and usually shrink but leave
behind stenosis (narrowing) or complete closure of the
artery which leads to an insufficient blood supply to
the tissues and organs it feeds. If the compensating artery
enlargement process is excessive, it results in aneurysm.

Multiple factors including dyslipidaemia, increased oxi-
dative stress, inflammation, endothelial dysfunction, plaque
rupture, age, sex and smoking contribute to the pathogen-
esis of atherosclerosis(2). Increased LDL cholesterol
(LDL-C), TAG and the number of small dense LDL and
chylomicron particles and low HDL cholesterol (HDL-C)
are atherogenic. Endothelial dysfunction induced by LDL
peroxidation is an initial step in atherosclerosis. Increased
oxidative stress increases lipid peroxidation and inflam-
mation. Macrophages and endothelial cells that have been

modified by the oxidised LDL release a variety of inflam-
matory substances, cytokines and growth factors. Plasma
concentration of markers of systemic inflammation are
directly associated with the risk of atherosclerosis(6,7).

n-3 PUFA and CVD

First indications suggesting the improvement of cardio-
vascular health by n-3 PUFA came from epidemiological
studies. Sinclair noted low incidence of CHD mortality
rate in Greenland Eskimos, who consumed a high-fat diet,
but rich in n-3 PUFA(8). Similar conclusions were drawn
based on the comparisons of CVD between the Greenland
Inuits and Danish population or the Japanese and North
Americans populations(9–12). Other studies have reported
an inverse association between dietary intake of n-3 PUFA
or whole blood n-3 PUFA or adipose tissue PUFA and
CVD (13–17).

n-3 PUFA can regulate atherosclerosis by modulating
plasma concentrations of blood lipids, inflammation and
adhesion molecules, lipid peroxidation, plaque formation
and stability, platelet aggregation, thrombosis, BP and
heart rate (HR). There have been a number of published
reports regarding the effects of fish oils (FO) on risk fac-
tors for atherosclerosis; these studies have been the topics
of a number of recent reviews(18–21). We therefore will
only summarise the findings with FO and discuss studies
with EPA (20:5 n-3) and DHA (22:6 n-3) in greater detail;
studies with FO will be discussed only for risk factors
where there are no or limited number of studies with EPA
and DHA individually. a-Linolenic acid (18:3 n-3, ALA)
from flaxseed oil and walnuts has been reported to mimic
several effects of EPA and DHA, but has been determined
to be less potent than the long chain (LC) n-3 PUFA;
therefore, the effects of ALA on atherosclerosis will not be
discussed here.

DHA and not EPA is the major LC n-3 PUFA in human
tissues. DHA concentration in brain, retina and reproduc-
tive organs is greater than 20 wt% of total fatty acids; its
concentration in human heart is approximately 5.1 wt%
and EPA is 0.5 wt%(22). Mice heart contains about 13 wt%
DHA, while EPA is not detectable(23). Human erythrocyte
membrane phospholipids contain 3 wt% DHA and less
than 0.5 wt% EPA when not supplemented with FO(24).
Thus, most human tissues contain several fold more DHA
than EPA. When an animal is put on an n-3 PUFA-free
diet, the body specifically retains DHA not EPA. Human
beings can readily retroconvert DHA to EPA, but the
elongation of EPA to DHA is minimal(25). In men and
post-menopausal women, conversion of ALA to EPA is
less than 5% and only negligent to DHA(26). While both
EPA and DHA have important roles, the earlier facts
indicate that adequate supply of DHA may be able to meet
the needs for both EPA and DHA, while EPA cannot meet
the need for DHA.

Long chain n-3 PUFA and blood lipids

Effects of DHA on blood lipids and other risk factors for
CVD have recently been reviewed(27,28). Dyslipidaemia,
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specifically hypertriglyceridaemia, increase in the number of
small dense LDL particles and a low HDL-C level have been
viewed as major contributors to atherogenic phenotype.
In addition to these three factors, increase in remnant cho-
lesterol particles and non-HDL-C (VLDL, intermediate-DL
and LDL) also contributes to the atherogenicity of lipopro-
teins. The cardioprotective effects of FO are partially attrib-
uted to their TAG-lowering and the lipoprotein particle size
altering actions; their effects on total cholesterol levels are
weak.

There are more than fifty studies regarding the effects
of FO on fasting TAG and cholesterol, about twenty-four
studies with EPA and DHA individually and eight
studies compared the effects of EPA and DHA esters(27,28).
With some exceptions, overall results from these studies
indicate that FO, EPA and DHA decreased fasting and
postprandial TAG 15–30% depending upon the dose
and duration of n-3 PUFA supplementation and the level
of hypertriglycerdaemia. One recent study compared the
effects of low (0.85 g/d) and high (3.4 g/d) doses of
EPA+DHA on blood lipids in healthy moderately hyper-
triglyceridaemic subjects; TAG concentration was
decreased by 27% by the high dose, and only 10% by the
lower dose that did not attain statistical significance(29).
Both EPA and DHA seem to have similar potency in
lowering fasting TAG, with some exceptions in which
DHA was reported to be more effective than EPA(30,31) or
vice versa(32). Limited number of studies examined
the effect of n-3 PUFA on postprandial TAG, but again the
results were consistent in showing similar decreases,
except one study in which EPA (4 g/d) caused only 19%
decrease in the postprandial lipaemia, while an equivalent
amount of DHA caused a 49% decrease(33).

For most studies, FO did not alter total cholesterol, but
increased HDL-C by 5–10% and LDL-C by 8–17%(34).
This increase in LDL-C and HDL-C seems to result from
a change in the distribution of the LDL-C and HDL-C
among different sub-fractions. FO increased the numbers
of large HDL and/or LDL particles, and decreased
the number of small dense LDL particles in several stu-
dies(35–39). Limited number of studies directly compared
the effects of DHA and EPA on plasma concentrations of
HDL-C and LDL-C. Results from these studies suggest
that DHA and not EPA may be responsible for raising
both the HDL-C and LDL-C(30–40). These effects of DHA
and EPA can be supported by their effects on the dis-
tribution of HDL and LDL particles among different sub-
fractions and the increase in mean particle sizes. Seven
studies investigated the effects of DHA supplementation
on HDL, LDL and VLDL particle sizes and all reported an
increase in LDL or HDL and mean particle size or a
decrease in VLDL particle size(31,32,41–45). Out of the four
studies with EPA, none reported an increase in LDL par-
ticle size but one reported an increase in HDL particle
size(31,32,41,46). Thus, it seems that DHA and not EPA
increases LDL particle sizes.

Plasma remnants such as particle-C or remnant lipopro-
tein-C are considered a novel risk factor for CVD. They
are produced from VLDL and chylomicron and are the
major atherogenic lipoproteins that can be taken up by
macrophages without oxidative modification to form foam

cells(47). They increase atherosclerosis through several
mechanisms, including formation of foam cells, increasing
inflammation, prothrombotic effects, impairing endothelial
cell functions and causing endothelial precursor cell
senescence. Both EPA and DHA decreased remnant-like
chylomicron particles-C in separate studies(48,49). Overall,
both EPA and DHA decreased fasting as well as post-
prandial TAG and remnant-like chylomicron particles-C,
but did not affect total cholesterol. Only DHA increased
HDL-C and LDL-C, and the number of large LDL and
HDL particles. DHA also decreased the number of small
dense LDL particles that are atherogenic. Both large LDL
and HDL particles are cardioprotective. These findings
suggest that lipid profile in subjects taking DHA supple-
ments may be healthier than those taking EPA supple-
ments.

n-3 PUFA and endothelial cell functions

A disturbance in endothelial cell functions is a key event in
the development of atherosclerosis. Endothelial cell func-
tions can be monitored by measuring: (1) regulation of
endothelial dependent blood flow in response to changes in
tissue or organ perfusion requirements; when blood flow
increases through a vessel, the vessel dilates and this phe-
nomenon has been called flow-mediated dilation (FMD);
(2) morphological and mechanical characteristics of vas-
cular wall (intima-media thickness (IMT), vessel diameter,
compliance and distensibility) and (3) plasma concentra-
tions of soluble endothelial markers (intercellular adhesion
molecule (ICAM)-1, vascular cell adhesion molecule
(VCAM)-1, E and P selectins, NO and others)(50).

n-3 PUFA and flow-mediated dilation

FMD is a non-invasive surrogate for endothelial cell
function, which is in part, dependent on endothelial pro-
duction and release of NO. It is a useful tool to evaluate
early atherosclerotic disease; larger FMD predicts
decreased risk for CVD events. A mixture of n-3 PUFA
(>0.5 g/d for a duration of 2 weeks to 8 months) from FO
improved FMD in more than a dozen studies(34). There are
only a limited number of studies which examined the
effects of EPA and DHA individually or compared the
effects of these two fatty acids on FMD. In one study,
DHA supplementation (1.2 g/d, 6 weeks) increased endo-
thelial mediated FMD of the brachial artery after occlusion
was increased in hyperlipidaemic children(51). In another
study DHA (0.7 g/d, 3 months) did not alter FMD or
arterial stiffness in healthy subjects(52). A study with
hyperlipidaemic men compared the effects of EPA and
DHA (4 g/d, 6 weeks) on endothelial dependent and inde-
pendent blood flow(31). DHA, but not EPA increased fore-
arm blood flow in response to acetyl choline that induces
endogenous NO release; however, it also increased
forearm blood flow when choline was injected with an
inhibitor of endothelial NO synthase, or with nitroprusside
as donor of exogenous NO, suggesting that increase in
forearm blood flow caused by DHA was independent
of endothelial function. Similarly DHA but not EPA
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decreased vasoconstriction in response to norepinephrine,
which is again endothelial cell independent. In contrast
to the results from this study, EPA (1.8 g/d, 12 weeks)
increased forearm blood flow in response to acetyl choline
(endothelial dependent) but not nitroprusside (endothelial
independent) in hypertriglyceridaemic subjects(53). Dis-
crepancy regarding the effects of EPA between the two
studies may be due to differences in the duration of the study
or the decrease in TAG following EPA supplementation.
Overall, results from these limited number of studies sug-
gest that EPA effects on FMD are endothelial cell depen-
dent, and those of DHA are endothelial cell independent.

n-3 PUFA and intima-media thickness

Carotid IMT has been used as a surrogate endpoint for
evaluating the regression and/or progression of athero-
sclerotic CVD. Many studies have documented the relation
between the carotid IMT and the presence and severity of
atherosclerosis. In general, wall thickening may be in the
intimal layer or in the muscular medial layer. A number of
epidemiological, and observational human studies have
indicated an inverse association between n-3 PUFA intake
and atherosclerosis; however, results from human inter-
ventional studies with FO have been quite variable. One
study compared the IMT and coronary artery calcification
among the Japanese men (300, aged 40–49 years) from
Kusatsu, Shiga and 306 US white men from Allegheny
County Pennsylvania(54). The Japanese men had twice the
plasma concentrations of n-3 PUFA and significantly less
IMT and coronary artery calcification than the US men.
Once they corrected for the serum n-3 PUFA, the differ-
ences between the Japanese and American men became
smaller, though still significant. Part of these differences
between subject groups was due to n-3 PUFA and the
remainder may be due to genetic, environmental and life-
style factors. In the Harvard Atherosclerosis Reversibility
Study, fifty-nine patients with coronary artery disease
(CAD), took supplements of FO (12 g/d; n-3 PUFA 6 g/d)
or olive oil as placebo for 2 years. Changes in diameter of
atherosclerotic coronary arteries as determined by angio-
graphy did not differ between the FO and placebo
groups(55). In the Prevention of Atherosclerosis by Inter-
vention with Marine Omega-3 fatty acids (SCIMO) study,
223 patients with angiographically proven CAD took either
a supplement of FO (1.65 g EPA+DHA, 3 months and
then 3 g/d for 21 months) or a placebo resembling the
typical European fatty acid mixture. Although there were
fewer cardiovascular events in the FO group, the loss in
luminal diameter between the two groups was not sig-
nificantly different(56). Also, the progression of athero-
sclerosis in the carotid artery and the increase in mean IMT
did not differ between the FO and placebo groups(57). In
the subjects without known CAD (Multi-ethnic Study of
Atherosclerosis), men with the highest quartile of plasma
n-3 PUFA had the lowest diameter of brachial artery, while
in women n-3 PUFA had no association with brachial
artery diameter; women in the highest quartile of plasma
n-3 PUFA had the lowest change in percent FMD, while
men had no association between n-3 PUFA and change in

percent FMD(58). In the same study, the intake of n-3
PUFA was associated with lower prevalence of subclinical
atherosclerosis when classified by common carotid artery
IMT, but not by internal carotid IMT, or coronary artery
calcification or ankle brachial arterial pressure index(59). It
seems that the associations between n-3 PUFA intake and
the risk of atherosclerosis varied by sex and the artery
examined. Standardised and more sensitive techniques are
needed to determine the role of IMT in the determination
of atherosclerosis.

There are no published reports that have examined the
effects of supplementing EPA or DHA individually on IMT
or arterial diameter in human subjects; however, there is
one observational study. Coronary artery diameters and
stenosis were monitored at the start and end of a study in
228 postmenopausal women with CAD, who took oestrogen
or placebo supplements for 3 years(60). There was no effect
of hormone therapy on either response tested. The subjects
were then divided into groups with those below and above
the median concentrations of ALA, EPA and DHA in
plasma phospholipids. The differences between the initial
and final readings for mean diameter and stenosis were not
affected by the plasma phospholipids, ALA and EPA con-
centrations; both response variables were significantly
lower in the subjects who had DHA concentrations above
the median than those who had it below the median
(P = 0.007). The number of new lesions that appeared was
also lower in the high than in the low DHA group. Authors
concluded that plasma DHA significantly reduced progres-
sion of coronary atherosclerosis over the 3-year follow up in
postmenopausal women with established CAD.

n-3 PUFA and adhesion molecules

Recruitment of circulating leucocytes at sites of athero-
sclerosis is mediated through a family of adhesion mole-
cules. The function of circulating forms of these adhesion
molecules remains unknown, but their levels may serve
as molecular markers of subclinical CHD. Activated
endothelium releases the soluble VCAM-1 and ICAM-1.
In addition, endothelial cells also produce E and P selec-
tins. Measurement of the circulating concentrations
of these molecules can be used to quantify endothelial
activation. There are only a few studies that examined the
effects of purified EPA and/or DHA on the plasma con-
centrations adhesion molecules (VCAM-1, ICAM-1, and
E and P selectins). In one study, Omacor (4 g/d; EPA-EE
465+DHA-EE 375 mg/g) supplementation given to
hypertriglyceridaemic subjects for 7 months significantly
decreased the plasma concentrations of soluble cellular
adhesion molecule 1 (P = 0.02), and soluble E selectin
(P = 0.0001), but did not change soluble VCAM-1 con-
centration(61). In another study with type 2 diabetic
patients, EPA (1.8 g/d, 4 weeks) significantly decreased
plasma concentrations of E selectin, and those of platelet
and monocyte-derived microparticles that have pro-coagu-
lant activities (P = 0.05); concentration of P selectin was
also decreased but did not attain significance(62). In con-
trast to the results from earlier studies with hyper-
triglyceridaemic or diabetic subjects supplementing 2 or
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6.6 g/d of a 1:1 mixture of EPA and DHA to healthy
subjects for 12 weeks did not decrease the plasma con-
centrations of VCAM and ICAM; only the higher con-
centration of n-3 PUFA decreased that of E-selectin(63). In
another study with healthy subjects, DHA+EPA but not
DHA alone decreased plasma concentrations of soluble
VCAM-1 and E-selectin(64). DHA supplementation (3 g/d,
90 d) in hypertriglyceridaemic men did not alter the circu-
lating concentrations of soluble ICAM-1, soluble VCAM-1
and E-selectin(65). Thus, the effects of n-3 PUFA on
plasma concentrations of adhesion molecules have been
variable. This limited number of studies suggests that EPA
may be more effective than DHA in decreasing the circu-
lating concentrations of adhesion molecules. However, this
contradicts the results from in vitro findings in which DHA
was more potent than EPA in inhibiting the expression of
adhesion molecules on human endothelial cells, monocytes
and lymphocytes(66). Further studies are needed to deter-
mine the effects of individual n-3 PUFA on the plasma
concentration of these molecules.

n-3 PUFA and plaque stability

Carotid endarterectomy is an operation during which a
vascular surgeon removes the plaque from the carotid
artery to restore blood flow. In a randomised study with
patients who were waiting for carotid endarterectomy
(7–189 d, median 42 d; n 52–57/group), they took a sup-
plement of either FO or sunflower oil, or a placebo made
of soyabean and palm oils (4 g/d, EPA+DHA 1.4 g/d)(64).
On the day of surgery carotid plaques were collected,
rinsed, fixed and evaluated according to the American
Heart Association criterion for the plaque stages and for
cap thickness. The group receiving the FO had sig-
nificantly higher number of stage 4 (P = 0.05), and less of
the stage 5 plaques (P = 0.03) than those in the sunflower
oil group (stage 5 is more advanced than 4). There were
also fewer plaques with thinner caps in the FO group than
those in sunflower oil group; thinner caps rupture easier
than those with thicker caps. Since n-3 PUFA from FO had
been incorporated into the caps, the authors concluded that
n-3 PUFA may enhance the stability of the caps. The same
authors repeated another study with the same dose of FO in
another set of endarterectomy patients (7–102 d, median
21 d; n 47 or 53/group); in the second study, they did not
find a difference in plaque stability between the placebo
and FO groups, but fewer foam cells were found in the FO
group(67). Both EPA and DHA contents of the plaques
were increased; only the increase in EPA was statistically
significant (P = 0.02). This may be because of the rela-
tively much lower initial concentration of EPA than that of
DHA. EPA content of the plaques was inversely associated
with plaque instability, plaque inflammation and the num-
ber of T-cells in the plaques. Authors suggest that the lack
of an effect of FO on plaque stability in the second study
may be because of the shorter duration of FO supple-
mentation. Based on these two studies it is difficult to
predict if EPA is more effective than DHA in improving
plaque stability, hence further studies are needed.

Effects of n-3 PUFA on blood pressure and heart rate

Initial indications for the BP lowering effects of n-3 PUFA
came from the studies of Bang and Dyersburg with
Greenland Inuits, when they found a negative association
between plasma concentration of n-3 PUFA and diastolic
BP(9). Preliminary studies with normotensive and hyper-
tensive subjects support the BP lowering effects of n-3
PUFA, although the results have been variable(27,28,68).
Two different meta-analyses concluded that the effect of
n-3 PUFA on BP is dose dependent with a minimal effi-
cacious dose of 3 g/d; a BP decrease of - 0.66/- 0.35
mmHg/g n-3 PUFA for systolic/diastolic BP(68,69).

The earlier conclusions were based on results from stu-
dies that used a mixture of EPA and DHA. More recent
studies used EPA and DHA individually. In a study with
mildly hypercholesterolaemic individuals, DHA but not
EPA significantly reduced BP and HR(70). However, nei-
ther EPA nor DHA reduced BP in another study by the
same investigators in treated hypertensive type 2 diabetic
patients(71). This discrepancy may be because of hyper-
glycaemia or the use of pharmacologic treatments. DHA
decreased both BP and HR in two studies with hyper-
triglyceridaemic subjects(44,72) and in another study with
healthy middle-aged men and women(52). The amount of
DHA supplemented in those human studies showing
reduction in BP ranged from 0.7 to 4.0 g/d for 6–13 weeks.
In one of these studies, DHA supplementation (3 g/d) for
45 d decreased HR by 8%, systolic BP by 6% and diastolic
BP by 4%(44). With the continued supplementation of
DHA for 90 d, HR and BP were still reduced compared
with the corresponding values prior to the start of DHA
supplementation, but the decreases were not statistically
significant. At the end of the study HR was decreased by
only 5%, systolic BP by 2.3% and diastolic BP by 0.5%.
In two other studies with healthy normotensive subjects
DHA did not decrease BP(73,74). In another study with
postmenopausal women DHA supplementation (2.8 g/d,
4 weeks) reduced HR by 7%, but did not change BP(75).
Similarly, DHA but not EPA (4 g/d, 7 weeks) decreased
HR but not BP in healthy subjects(76). Results from this
limited number of studies suggest that DHA may be more
effective than EPA in lowering BP and HR. Further studies
are needed to compare the effects of EPA and DHA on
these variables.

Effects of DHA on the concentrations of inflammatory
markers

Inflammation is the normal response of an organism’s
immune system to the damage caused to its cells and vas-
cularised tissues by viruses, bacteria, injurious chemicals
or physical insults. Blood flow to the infected site is
increased so leucocytes can neutralise and remove the
damage-causing agents. Although painful, inflammation is
usually a healing response. Inadequate inflammatory
response leads to immunodeficiency, cancer and infections;
however, in some instances inflammation proceeds to a
chronic state and is associated with debilitating diseases
such as diabetes and CVD. Progression of inflammatory
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diseases is associated with an increase in the plasma con-
centrations of one or more markers of inflammation(77,78).

Plasma markers of inflammation include an increase in
the number of circulating leucocytes, acute phase proteins
(C-reactive protein (CRP), serum amyloid A, fibrinogen),
cytokines and their soluble receptors (TNFa, IL-1, IL-6,
IL-7, IL-8 and IL-18, interferon g), adhesion molecules
(ICAM-1, VCAM-1, E and P selectin) and plasminogen
activator inhibitor-1. An increase in the concentration of
insulin and decrease in the concentrations of leptin and
adiponectin are also associated with inflammation. Plasma
concentrations of several of these markers are increased in a
number of inflammatory diseases and are used to evaluate
the disease status. Plasma CRP is one of the most commonly
used markers of inflammation. There is a 4.4-fold increase
in the Relative Risk for CVD comparing the highest and
lowest quartiles of CRP, while this increase is only 2.4-fold
comparing the quartiles of cholesterol(6,79). CRP stimulates
mononuclear cells to release tissue factors which are central
to initiation of coagulation reactions, complement activa-
tion and neutralisation of platelet activating factor. Together
these factors promote thrombotic response.

Several lines of evidence support the claim that n-3
PUFA have anti-inflammatory effects. First, epidemiologi-
cal studies which showed lesser incidence of inflammatory
diseases such as CVD and arthritis in populations con-
suming more fish than those populations consuming less
or no fish(14,15,80,81). Second, several studies indicated
inverse associations between the estimated n-3 PUFA
consumption and the plasma concentrations of inflamma-
tory markers(82–84). Third, other studies demonstrated an
inverse association between tissue concentrations of n-3
PUFA and of inflammatory markers(85–89). Fourth, a num-
ber of intervention studies with FO showed a decrease in
the symptoms for inflammatory diseases and a decrease
in the in vivo and ex vivo secretion of inflammatory mar-
kers. There have been dozens of studies regarding the
effects of FO and of individual n-3 PUFA on the ex vivo
production of inflammatory cytokines and eicosanoids.
Those have been summarised in several recent
reviews(77,78). In general, the results indicate anti-inflam-
matory effects of FO, but there have been a number of
inconsistencies due to health and age of the participants,
amount, duration and fatty acid composition of the sup-
plements, diets and the methods used to evaluate the
inflammatory status.

Only a limited number of studies have investigated
the anti-inflammatory effects of individual n-3 PUFA in
human subjects and we found only six studies that exam-
ined the effects of DHA alone. Three of these studies
found decrease in markers of inflammation following
DHA supplementation(65,87,90) the other three did not(91–93).
In one study, healthy men were given a supplement of
DHA (6 g/d for 90 d) producing a 10% decrease in the
number of circulating leucocytes which resulted from a
20% reduction in the number of circulating neutrophils(90).
The absolute number of other types of leucocytes did not
change, but the percentage of lymphocytes was increased
because of a reduction in the number of granulocytes. The
change in the number of circulating neutrophils was
detectable within 56 d of DHA supplementation. In the

same study, DHA supplementation caused a 60–75%
decrease in the ex vivo secretion of PGE2 and leukotriene
B4 and a 30–40% decrease in the secretion of IL-1b and
TNFa within 12 weeks(94). Production of both IL-1b and
TNFa were decreased within 8 weeks of DHA supple-
mentation, but those were not significant. None of these
variables changed in the placebo group.

The second DHA study was of the same duration as the
one discussed earlier (91 d), but it was conducted in
hypertriglyceridaemic men and the DHA supplement was
one-half (3 g/d) of the amount served in the first study(65).
In this study, the number of circulating neutrophils
decreased by 11% within 45 d of DHA supplementation
and this reduction was maintained until the end of
study(65). This change in neutrophil numbers is about half
of what was found in the first study, most likely due to the
dose of DHA used. The reduction in the number of circu-
lating neutrophils caused by DHA may be clinically impor-
tant in conditions like acute respiratory distress syndrome
which result from an increase in the activity and number
of circulating neutrophils. The number of circulating
neutrophils did not change in the placebo group. The con-
centration of other markers of inflammation did not sig-
nificantly change within 45 d, but by 91 d, CRP decreased
by 15%, IL-6 by 23% and granulocyte macrophage colony-
stimulating factor by 21% and the anti-inflammatory
marker, matrix metalloproteinase-2, increased by 7%.
Plasma concentrations of other cytokines (IL-1b, IL-2, IL-8,
IL-10 and TNFa) and adhesion molecules (ICAM-1,
VCAM-1 and E-selectin) did not change in both the DHA
and placebo groups.

The third human study examined the effects of doubling
the dose of DHA (200, 400, 800, 1600 mg/d, over 2-week
intervals each) supplementation to healthy men on the ex
vivo secretion of LTB4 and LTB5 by the cultured periph-
eral blood mononuclear cells stimulated with the Ca iono-
phore A23187(95). The ratio of ex vivo secreted LTB5 and
LTB4 was significantly increased (P< 0.001) at DHA con-
centrations of 800 and 1600 mg/d, and they returned to
normal within 2 weeks of discontinuation of DHA. These
results show that DHA supplementation of 800 mg/d or
higher reduced the inflammatory response.

The lack of an effect of DHA on the concentration of
inflammatory markers in the other three studies was most
likely due to the low dose of DHA (0.7 g/d, 12 weeks)(91)

or short duration (4 or 6 weeks)(92,93) of supplementation,
or a combination of the two. Results from two other studies
supplementing DHA at 3 or 6 g/d demonstrated that
the plasma concentrations and the ex vivo production of
inflammatory cytokines were decreased at 90 d after sup-
plementation, but not at 45 d(65,94). Two studies directly
compared the effects of EPA and DHA on inflammatory
markers. In one study with healthy men and women, nei-
ther DHA nor EPA (4.7 g/d, 12 weeks) decreased plasma
concentrations of inflammatory cytokines(92). Similarly in
another study with type 2 diabetes mellitus patients, neither
fatty acid (4 g/d, 6 weeks) decreased plasma concentrations
of CRP and IL-6, but both decreased concentrations of
TNFa by 25%(93). Results from other studies comparing
the effects of EPA and DHA varied; some suggested
more potent effects of DHA,(93,96) while others suggested
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greater effects of EPA(97). Further studies are needed
to determine the anti-inflammatory potencies of EPA and
DHA individually.

Effect of n-3 PUFA on lipid peroxidation

Increased lipid peroxidation has been associated with the
development and progression of a number of chronic
human diseases including CVD and diabetes(98–101). It
damages biological membranes changing membrane fluid-
ity and functions including receptor activity, and nutrient
and ion transport. Peroxidation of LDL lipids renders
the lipoprotein pro-atherogenic. Many lipid peroxidation
products exert cytotoxic effects and alter cell signal-
ling(102–105). Thus, control of lipid peroxidation plays a
critical role in health maintenance and disease prevention.

Lipid peroxidation in biological systems is believed to
increase in proportion to an increase in the number of
double bonds in the fatty acid chain (PUFA) and inversely
to the antioxidant levels within the cells. LC PUFA, par-
ticularly of the n-3 type, reduces the risk of a number of
chronic diseases, yet there remains a concern that they may
also increase the risk for chronic diseases by increasing
lipid peroxidation.

Human dietary studies with n-3 PUFA regarding their
effects on lipid peroxidation have had variable
results(35,74,106–110). The effect of DHA ranged from pro-
tection to increased lipid peroxidation depending upon
its dose(111). These inconsistencies result from the different
methods used (Cu2 + catalysed lipid peroxidation ex vivo,
F-2 isoprostanes, malondialdehyde, oxygen-radical absor-
bance capacity, etc.) and their limitations. Future studies
using more sensitive and reproducible methods are needed
to establish if there is any risk of lipid peroxidation with
increased consumption of n-3 PUFA and how to minimise
it by increasing the intake of antioxidant nutrients.

Conclusions and future directions

Dietary intervention with LC n-3 PUFA decreased the risk
factors for atherosclerosis in most human studies discussed
in this review. It improved both fasting and postprandial
lipid profile including the mean size and numbers of lipo-
protein particles, decreased BP and HR and increased
FMD. n-3 PUFA decreased blood vessel calcification,
IMT, improved plaque stability and plasma concentrations
of adhesion molecules in some, but not other studies. In
general, both EPA and DHA provided health benefits, but
some effects such as the reduction in BP, HR, the number
of small dense LDL particles, and improved ratio between
HDL-C and LDL-C seem to be limited to DHA. Future
studies are needed to determine the optimal doses of EPA
and DHA individually, their interaction and the mechan-
isms involved.
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